Advertisement

Geographic Information Systems as a Tool to Display Agribusiness and Human Development Synergy

  • Rodrigo Martins MoreiraEmail author
Chapter
Part of the World Sustainability Series book series (WSUSE)

Abstract

Agribusiness is one of Brazilian economy’s main pillars. In this scenario, soybean was the most exported agricultural commodity in 2017. International markets have postulated requirements demanding that this commodity way of production be adapted to environmentally friendly best practices. Brazilian producers have positively responded to these demands by implementing best practices in soil and water resources’ usage, producing more by exploiting less. This work explores how Geographic Information System, free and open source software, can be used to graphically present agricultural and human development synergy. Data regarding soybean production, Human Development Index (HDI), from 2000 and 2010 were compared. QuantumGis software was used to graphically express changes in soybean production and HDI at Goiás mesoregions. This work’s main findings show that municipalities that increased soybean production also increased its HDI; the use of GIS software is an effective and low-cost tool to present agribusiness information to stakeholders.

Keywords

Environmental management Moran index Spatial social data distribution 

References

  1. Anselin L (1995) Local indicators of spatial association—LISA. Geogr Anal 27:91–115Google Scholar
  2. Balram S, Dragićević S (2005) Attitudes toward urban green spaces: integrating questionnaire survey and collaborative GIS techniques to improve attitude measurements. Landscape Urban Plan 71(2–4):147–162.  https://doi.org/10.1016/J.LANDURBPLAN.2004.02.007CrossRefGoogle Scholar
  3. Bateman IJ et al (2002) Applying Geographical Information Systems (GIS) to environmental and resource economics. Environ Resour Econ 22(1/2):219–269.  https://doi.org/10.1023/A:1015575214292CrossRefGoogle Scholar
  4. Cegan JC et al (2017) Trends and applications of multi-criteria decision analysis in environmental sciences: literature review. Environ Syst Decisions 37(2):123–133.  https://doi.org/10.1007/s10669-017-9642-9CrossRefGoogle Scholar
  5. Chen J et al (2013) Research on geographical environment unit division based on the method of natural breaks (Jenks).  https://doi.org/10.5194/isprsarchives-xl-4-w3-47-2013CrossRefGoogle Scholar
  6. Corbelle-Rico E, Santé-Riveira I, Crecente-Maseda R (2018) A decision support system for farmland preservation: integration of past and present land use. Springer, Berlin, pp 173–192.  https://doi.org/10.1007/978-3-642-37896-6_8Google Scholar
  7. de Almeida Bressiani D, Gassman PW, Fernandes JG, Garbossa LHP, Srinivasan R, Bonumá NB, Mendiondo EM (2015) Review of soil and water assessment tool (SWAT) applications in Brazil: challenges and prospects. Int J Agric Biol Eng 8(3):9–35Google Scholar
  8. de Andrade SM, Matsuo T, Soares DA, de Souza RKT, de Freitas Mathias TA, Iwakura MLH, Zequim MA (2004) Condições de vida no Estado do Paraná: análise ecológica com base em variáveis do Censo Demográfico de 2000. Semina: Ciências Biológicas e da Saúde 25(1):73–80Google Scholar
  9. Del Grosso SJ et al (2018) Simple models to predict grassland ecosystem C exchange and actual evapotranspiration using NDVI and environmental variables. Agric Forest Meteorol 249:1–10.  https://doi.org/10.1016/J.AGRFORMET.2017.11.007CrossRefGoogle Scholar
  10. Du M, Noguchi N (2017) Monitoring of wheat growth status and mapping of wheat yield’s within-field spatial variations using color images acquired from UAV-camera system. Remote Sens 9(3):289.  https://doi.org/10.3390/rs9030289CrossRefGoogle Scholar
  11. Eloy L et al (2016) On the margins of soy farms: traditional populations and selective environmental policies in the Brazilian Cerrado. J Peasant Stud 43(2):494–516.  https://doi.org/10.1080/03066150.2015.1013099CrossRefGoogle Scholar
  12. FAO. Food and agriculture organization (2018) FAOSTATS. Available at: http://www.fao.org/faostat/en/#data. Accessed: 12 July 2017
  13. FAO. Food and agriculture organization (2018) Reviewed strategic framework. Available at: http://www.fao.org/3/a-ms431reve.pdf. Accessed: 15 July 2017
  14. Ferreira-Leitão V et al (2010) Biomass residues in Brazil: availability and potential uses. Waste Biomass Valorization 1(1):65–76.  https://doi.org/10.1007/s12649-010-9008-8CrossRefGoogle Scholar
  15. Glennie E, Anyamba A (2018) Midwest agriculture and ENSO: a comparison of AVHRR NDVI3g data and crop yields in the United States corn belt from 1982 to 2014. Int J Appl Earth Obs Geoinf 68:180–188.  https://doi.org/10.1016/J.JAG.2017.12.011CrossRefGoogle Scholar
  16. Gosch MS, Ferreira ME, Medina GDS (2017) The role of the rural settlements in the Brazilian savanna deforesting process. J Land Use Sci 12(1):55–70.  https://doi.org/10.1080/1747423x.2016.1254687CrossRefGoogle Scholar
  17. Hettinga S (2014) Spatially optimizing the distribution of sustainable sugarcane production in Goiás, Brazil, based on GHG-emissions and costs. Available at: https://dspace.library.uu.nl/handle/1874/295981. Accessed: 25 May 2018
  18. Hiloidhari M et al (2017) Emerging role of Geographical Information System (GIS), Life Cycle Assessment (LCA) and spatial LCA (GIS-LCA) in sustainable bioenergy planning. Bioresour Technol 242:218–226.  https://doi.org/10.1016/J.BIORTECH.2017.03.079CrossRefGoogle Scholar
  19. Huang G, Jiang Y (2017) Urbanization and socioeconomic development in inner Mongolia in 2000 and 2010: a GIS analysis. Sustainability 9(2):235.  https://doi.org/10.3390/su9020235CrossRefGoogle Scholar
  20. IBGE. Geography and statistics brazilian institute. Soybean production report. Available at: https://sidra.ibge.gov.br/pesquisa/lspa/tabelas. Accessed: 04 Apr 2017
  21. IBGE Cities. Geography and statistics brazilian institute. Cities. Available at: https://cidades.ibge.gov.br/. Accessed: 04 Apr 2017
  22. Lansing S, Víquez J, Martínez H, Botero R, Martin J (2008) Quantifying electricity generation and waste transformations in a low-cost, plug-flow anaerobic digestion system. Ecol Eng 34(4):332–348CrossRefGoogle Scholar
  23. Li G, Weng Q (2007) Measuring the quality of life in city of Indianapolis by integration of remote sensing and census data. Int J Remote Sens 28(2):249–267.  https://doi.org/10.1080/01431160600735624CrossRefGoogle Scholar
  24. Maciel HM, Khan AS (2009) O impacto do programa de microcrédito rural (agroamigo) na melhoria das condições de vida das famílias beneficiadas no estado do Ceará: um estudo de caso. Revista de Economia e Agronegócio 7(1)Google Scholar
  25. Maksimov P et al (2017) GIS-supported epidemiological analysis on canine Angiostrongylus vasorum and Crenosoma vulpis infections in Germany. Parasites Vectors 10(1):108.  https://doi.org/10.1186/s13071-017-2054-3CrossRefGoogle Scholar
  26. Mellor JW (2017) The subsistence farmer in traditional economies. In: Subsistence agriculture and economic development, pp. 209–226. RoutledgeGoogle Scholar
  27. Mokashi MS, Perdita Okeke P, Uma Mohan U (2017) Study on the use of Geographic Information Systems (GIS) for effective transport planning for Transport for London (TfL). Springer, Singapore, pp 719–728.  https://doi.org/10.1007/978-981-10-1678-3_69Google Scholar
  28. Onwude DI et al (2016) Mechanisation of large-scale agricultural fields in developing countries—a review. J Sci Food Agric 96(12):3969–3976.  https://doi.org/10.1002/jsfa.7699CrossRefGoogle Scholar
  29. Parente L, Ferreira L (2018) Assessing the spatial and occupation dynamics of the Brazilian pasturelands based on the automated classification of MODIS images from 2000 to 2016. Remote Sens 10(4):606.  https://doi.org/10.3390/rs10040606CrossRefGoogle Scholar
  30. Paterson RW, Boyle KJ (2002) Out of sight, out of mind? Using GIS to incorporate visibility in hedonic property value models. Land Econ 78(3):417–425.  https://doi.org/10.2307/3146899CrossRefGoogle Scholar
  31. Pierce FJ, Lal R (2017) Monitoring the impact of soil erosion on crop productivity. Routledge, London, pp 235–263.  https://doi.org/10.1201/9780203739358-10
  32. Ramadas M, Samantaray AK (2018) Applications of remote sensing and GIS in water quality monitoring and remediation: a state-of-the-art review. Springer, Singapore, pp 225–246.  https://doi.org/10.1007/978-981-10-7551-3_13Google Scholar
  33. Richards P, Pellegrina H, VanWey L, Spera S (2015) Soybean development: the impact of a decade of agricultural change on urban and economic growth in Mato Grosso, Brazil. PLoS one 10(4).  https://doi.org/10.1371/journal.pone.0122510CrossRefGoogle Scholar
  34. Rodias E et al (2017) Energy savings from optimised in-field route planning for agricultural machinery. Sustainability 9(11):1956.  https://doi.org/10.3390/su9111956CrossRefGoogle Scholar
  35. Sahu BK (2015) A study on global solar PV energy developments and policies with special focus on the top ten solar PV power producing countries. Renew Sustain Energy Rev 43:621–634Google Scholar
  36. Santos KEL, Bernardi ADC, Bettiol GM, Crestana S (2017) Geoestatística e geoprocessamento na tomada de decisão do uso de insumos em uma pastagem/geostatistics and gis in the decision making of the use of inputs in a pasture. Revista Brasileira de Engenharia de Biossistemas 11(3):294–307CrossRefGoogle Scholar
  37. Seynave I et al (2018) GIS Coop: networks of silvicultural trials for supporting forest management under changing environment. Ann Forest Sci 75(2):48.  https://doi.org/10.1007/s13595-018-0692-zCrossRefGoogle Scholar
  38. Spinney JEL, Scott DM, Newbold KB (2009) Transport mobility benefits and quality of life: a time-use perspective of elderly Canadians. Transp Policy 16(1):1–11.  https://doi.org/10.1016/J.TRANPOL.2009.01.002CrossRefGoogle Scholar
  39. Swetnam RD et al (2011) Mapping socio-economic scenarios of land cover change: a GIS method to enable ecosystem service modelling. J Environ Manag 92(3):563–574.  https://doi.org/10.1016/J.JENVMAN.2010.09.007CrossRefGoogle Scholar
  40. TerraView 5.1.5. INPE, São José dos Campos, SP (2010)Google Scholar
  41. Tersoo P (2013) Agribusiness as a veritable tool for rural development in Nigeria. Mediterr J Soc Sci.  https://doi.org/10.5901/mjss.2013.v4n12p21
  42. Zambrano LI et al (2017) Estimating and mapping the incidence of dengue and chikungunya in Honduras during 2015 using Geographic Information Systems (GIS). J Infect Public Health 10(4):446–456.  https://doi.org/10.1016/j.jiph.2016.08.003CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Environmental EngineeringFederal University of RondôniaJi-ParanáBrazil

Personalised recommendations