Advertisement

Phage Interaction with the Mammalian Immune System

  • Jonas D. Van Belleghem
  • Krystyna Dąbrowska
  • Mario Vaneechoutte
  • Jeremy J. Barr
Chapter

Abstract

The human body hosts a large number of bacteriophages (phages). Until recently, these phages were regarded as bystanders that only impacted immunity indirectly through effects on the mammalian microbiome. It has now become clear that phages also impact immunity directly. Moreover, these immune responses seem to have a tendency to be anti-inflammatory. Besides inducing an adaptive immune response via effects on antibody production and effector polarization, phage can also have direct effects on the innate immunity through phagocytosis and cytokine responses.

Current data indicates that high phage concentrations induce immune responses whereas low phage concentrations have less to none observable immune responses, this shows that a certain phage threshold is necessary to trigger an immune response.

In this chapter, we discuss the basics of mammalian immunity and elaborate how phage can interact with the mammalian and human immune system. Understand these interactions are important to further understand how these viruses could be exploited for therapeutic purposes.

References

  1. Adams TE, Hansen JA, Starr R, Nicola NA, Hilton DJ, Billestrup N (1998) Growth hormone preferentially induces the rapid, transient expression of SOCS-3, a novel inhibitor of cytokine receptor signaling. J Biol Chem 273:1285–1287CrossRefGoogle Scholar
  2. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801PubMedCentralCrossRefPubMedGoogle Scholar
  3. Alexander W (2002) Suppressors of cytokine signalling (SOCS) in the immune system. Nat Rev Immunol 2:410–416CrossRefPubMedPubMedCentralGoogle Scholar
  4. Alexander WS, Hilton DJ (2004) The role of suppressors of cytokine signaling (SOCS) proteins in regulation of the immune response. Annu Rev Immunol 22:503–529CrossRefGoogle Scholar
  5. Alexopoulou L, Czopik Holt A, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappa B by Toll-like receptor 3. Nature 413:732–738PubMedCentralCrossRefPubMedGoogle Scholar
  6. Alexopoulou L, Thomas V, Schnare M, Lobet Y, Anguita J, Schoen RT et al (2002) Hyporesponsiveness to vaccination with Borrelia burgdorferi OspA in humans and in TLR1- and TLR2-deficient mice. Nat Med 8:878–884CrossRefGoogle Scholar
  7. Aman MJ, Migone T-S, Sasaki A, Ascherman DP, Zhu M, Soldaini E et al (1999) CIS associates with the interleukin-2 receptor β chain and inhibits interleukin-2-dependent signaling. J Biol Chem 274:30266–30272CrossRefGoogle Scholar
  8. An T-W, Kim S-J, Lee Y-D, Park J-H, Chang H-I (2014) The immune-enhancing effect of the Cronobacter sakazakii ES2 phage results in the activation of nuclear factor-κB and dendritic cell maturation via the activation of IL-12p40 in the mouse bone marrow. Immunol Lett 157:1–8CrossRefGoogle Scholar
  9. Auernhammer CJ, Melmed S (1999) Interleukin-11 stimulates proopiomelanocortin gene expression and adrenocorticotropin secretion in corticotroph cells: evidence for a redundant cytokine network in the hypothalamo-pituitary-adrenal axis. Endocrinology 140:1559–1566CrossRefGoogle Scholar
  10. Auernhammer CJ, Chesnokova V, Bousquet C, Melmed S (1998) Pituitary corticotroph SOCS-3: novel intracellular regulation of leukemia-inhibitory factor-mediated proopiomelanocortin gene expression and adrenocorticotropin secretion. Mol Endocrinol 12:954–961CrossRefGoogle Scholar
  11. Bacon EJ, Richmond SJ, Wood DJ, Stirling P, Bevan BJ, Chalmers WS (1986) Serological detection of phage infection in Chlamydia psittaci recovered from ducks. Vet Rec 119:618–620Google Scholar
  12. Baggiolini M, Dewald B, Moser B (1997) Human chemokines – an update. Annu Rev Immunol 15:675–705CrossRefPubMedPubMedCentralGoogle Scholar
  13. Barr JJ, Auro R, Furlan M, Whiteson KL, Erb ML, Pogliano J et al (2013) Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc Natl Acad Sci USA 110:10771–10776CrossRefPubMedPubMedCentralGoogle Scholar
  14. Barr JJ, Auro R, Sam-Soon N, Kassegne S, Peters G, Bonilla N et al (2015) Subdiffusive motion of bacteriophage in mucosal surfaces increases the frequency of bacterial encounters. Proc Natl Acad Sci 112:13675–13680CrossRefPubMedPubMedCentralGoogle Scholar
  15. Barton BE (1997) IL-6: insights into novel biological activities. Clin Immunol Immunopathol 85:16–20CrossRefPubMedPubMedCentralGoogle Scholar
  16. Barton GM, Medzhitov R (2002) Control of adaptive immune responses by Toll-like receptors. Curr Opin Immunol 14:380–383CrossRefPubMedPubMedCentralGoogle Scholar
  17. Barton BE, Shortall J, Jackson JV (1996) Interleukins 6 and 11 protect mice from mortality in a staphylococcal enterotoxin-induced toxic shock model. Infect Immun 64:714–718PubMedCentralPubMedGoogle Scholar
  18. Bazan JF, Bacon KB, Hardiman G, Wang W, Soo K, Rossi D et al (1997) A new class of membrane-bound chemokine with a CX3C motif. Nature 385:640–644CrossRefPubMedPubMedCentralGoogle Scholar
  19. Ben-Baruch A (2008) Organ selectivity in metastasis: regulation by chemokines and their receptors. Clin Exp Metastasis 25:345–356CrossRefPubMedPubMedCentralGoogle Scholar
  20. Betten A, Dahlgren C, Mellqvist U-H, Hermodsson S, Hellstrand K (2004) Oxygen radical-induced natural killer cell dysfunction: role of myeloperoxidase and regulation by serotonin. J Leukoc Biol 75:1111–1115CrossRefPubMedPubMedCentralGoogle Scholar
  21. Bieback K, Lien E, Klagge IM, Avota E, Schneider-Schaulies J, Duprex WP et al (2002) Hemagglutinin protein of wild-type measles virus activates Toll-like receptor 2 signaling. J Virol 76:8729–8736PubMedCentralCrossRefPubMedGoogle Scholar
  22. Bjørbaek C, Elmquist JK, Frantz JD, Shoelson SE, Flier JS (1998) Identification of SOCS-3 as a potential mediator of central leptin resistance. Mol Cell 1:619–625CrossRefPubMedPubMedCentralGoogle Scholar
  23. Bjørbæk C, Elmquist JK, El-Haschimi K, Kelly J, Ahima RS, Hileman S et al (1999) Activation of SOCS-3 messenger ribonucleic acid in the hypothalamus by ciliary neurotrophic factor. Endocrinology 140:2035–2043CrossRefPubMedPubMedCentralGoogle Scholar
  24. Blasius AL, Beutler B (2010) Intracellular Toll-like receptors. Immunity 32:305–315CrossRefPubMedPubMedCentralGoogle Scholar
  25. Bloch H (1940) Experimental investigation of the relationship between bacteriophage and malignant tumors. Arch Gesamte Virusforsch 1:481–496CrossRefGoogle Scholar
  26. Boisclair YR, Wang J, Shi J, Hurst KR, Ooi GT (2000) Role of the suppressor of cytokine signaling-3 in mediating the inhibitory effects of interleukin-1β on the growth hormone-dependent transcription of the acid-labile subunit gene in liver cells. J Biol Chem 275:3841–3847CrossRefPubMedPubMedCentralGoogle Scholar
  27. Bonilla FA, Oettgen HC (2010) Adaptive immunity. J Allergy Clin Immunol 125:S33–S40CrossRefPubMedPubMedCentralGoogle Scholar
  28. Bourette RP, De Sepulveda P, Arnaud S, Dubreuil P, Rottapel R, Mouchiroud G (2001) Suppressor of cytokine signaling 1 interacts with the macrophage colony-stimulating factor receptor and negatively regulates its proliferation signal. J Biol Chem 276:22133–22139CrossRefPubMedPubMedCentralGoogle Scholar
  29. Brandtzaeg P, Osnes L, Ovstebo R, Joo GB, Westvik AB, Kierulf P (1996) Net inflammatory capacity of human septic shock plasma evaluated by a monocyte-based target cell assay: identification of interleukin-10 as a major functional deactivator of human monocytes. J Exp Med 184:51–60CrossRefPubMedPubMedCentralGoogle Scholar
  30. Bruttin A, Brüssow H (2005) Human volunteers receiving Escherichia coli phage T4 orally: a safety test of phage therapy. Antimicrob Agents Chemother 49:2874–2878PubMedCentralCrossRefPubMedGoogle Scholar
  31. Cacalano NA, Sanden D, Johnston JA (2001) Tyrosine-phosphorylated SOCS-3 inhibits STAT activation but binds to p120 RasGAP and activates Ras. Nat Cell Biol 3:460–465CrossRefPubMedPubMedCentralGoogle Scholar
  32. Cadwell K (2015) The virome in host health and disease. Immunity 42:805–813PubMedCentralCrossRefPubMedGoogle Scholar
  33. Calzascia T, Masson F, Di Berardino-Besson W, Contassot E, Wilmotte R, Aurrand-Lions M et al (2005) Homing phenotypes of tumor-specific CD8 T cells are predetermined at the tumor site by crosspresenting APCs. Immunity 22:175–184CrossRefPubMedPubMedCentralGoogle Scholar
  34. Cannon JG (2000) Inflammatory cytokines in nonpathological states. News Physiol Sci 15:298–303PubMedPubMedCentralGoogle Scholar
  35. Chaplin DD (2010) Overview of the immune response. J Allergy Clin Immunol 125:S3–S23PubMedCentralCrossRefPubMedGoogle Scholar
  36. Charo I (2004) CCR2: from cloning to the creation of knockout mice. Chem Immunol 72:30–41CrossRefGoogle Scholar
  37. Charo IF, Peters W (2003) Chemokine receptor 2 (CCR2) in atherosclerosis, infectious diseases, and regulation of T-cell polarization. Microcirculation 10:259–264CrossRefPubMedPubMedCentralGoogle Scholar
  38. Charo IF, Ransohoff RM (2006) The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 354:610–621CrossRefPubMedPubMedCentralGoogle Scholar
  39. Clarke CJP, Hales A, Hunt A, Foxwell BMJ (1998) IL-10-mediated suppression of TNF-α production is independent of its ability to inhibit NFκB activity. Eur J Immunol 28:1719–1726CrossRefPubMedPubMedCentralGoogle Scholar
  40. Cohney SJ, Sanden D, Cacalano NA, Yoshimura A, Mui A, Migone TS et al (1999) SOCS-3 is tyrosine phosphorylated in response to interleukin-2 and suppresses STAT5 phosphorylation and lymphocyte proliferation. Mol Cell Biol 19:4980–4988PubMedCentralCrossRefPubMedGoogle Scholar
  41. Compton T, Kurt-Jones EA, Boehme KW, Belko J, Latz E, Golenbock DT et al (2003) Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2. J Virol 77:4588–4596PubMedCentralCrossRefPubMedGoogle Scholar
  42. Cone RA (2009) Barrier properties of mucus. Adv Drug Deliv Rev 61:75–85CrossRefPubMedPubMedCentralGoogle Scholar
  43. Cooper CJ, Khan Mirzaei M, Nilsson AS (2016) Adapting drug approval pathways for bacteriophage-based therapeutics. Front Microbiol 7:1–15Google Scholar
  44. Costantini TW, Putnam JG, Sawada R, Baird A, Loomis WH, Eliceiri BP et al (2009) Targeting the gut barrier: identification of a homing peptide sequence for delivery into the injured intestinal epithelial cell. Surgery 146:206–212PubMedCentralCrossRefPubMedGoogle Scholar
  45. Cyster JG (1999) Chemokines and cell migration in secondary lymphoid organs. Science 286:2098–2102CrossRefPubMedPubMedCentralGoogle Scholar
  46. Cyster JG (2003) Lymphoid organ development and cell migration. Immunol Rev 195:5–14CrossRefPubMedPubMedCentralGoogle Scholar
  47. Cyster J, Ngo V, Ekland E, Gunn M, Sedgwick J, Ansel K (1999) Chemokines and B-cell homing to follicles. Curr Top Microbiol Immunol 246:87–92PubMedPubMedCentralGoogle Scholar
  48. Dąbrowska K, Opolski A, Wietrzyk J, Switala-Jelen K, Boratynski J, Nasulewicz A et al (2004) Antitumor activity of bacteriophages in murine experimental cancer models caused possibly by inhibition of beta3 integrin signaling pathway. Acta Virol 48:241–248PubMedPubMedCentralGoogle Scholar
  49. Dabrowska K, Switala-Jelen K, Opolski A, Weber-Dabrowska B, Gorski A (2005) Bacteriophage penetration in vertebrates. J Appl Microbiol 98:7–13CrossRefPubMedPubMedCentralGoogle Scholar
  50. Dąbrowska K, Miernikiewicz P, Piotrowicz A, Hodyra K, Owczarek B, Lecion D et al (2014) Immunogenicity studies of proteins forming the T4 phage head surface. J Virol 88:12551–12557PubMedCentralCrossRefPubMedGoogle Scholar
  51. Daly C, Rollins BJ (2003) Monocyte chemoattractant protein-1 (CCL2) in inflammatory disease and adaptive immunity: therapeutic opportunities and controversies. Microcirculation 10:247–257CrossRefPubMedPubMedCentralGoogle Scholar
  52. Davis MM, Bjorkman PJ (1988) T-cell antigen receptor genes and T-cell recognition. Nature 334:395–402CrossRefGoogle Scholar
  53. De Sepulveda P, Okkenhaug K, La Rose J, Hawley RG, Dubreuil P, Rottapel R (1999) Socs1 binds to multiple signalling proteins and suppresses Steel factor-dependent proliferation. EMBO J 18:904–915PubMedCentralCrossRefPubMedGoogle Scholar
  54. Denou E, Bruttin A, Barretto C, Ngom-Bru C, Brüssow H, Zuber S (2009) T4 phages against Escherichia coli diarrhea: potential and problems. Virology 388:21–30CrossRefPubMedPubMedCentralGoogle Scholar
  55. Di Giovine M, Salone B, Martina Y, Amati V, Zambruno G, Cundari E et al (2001) Binding properties, cell delivery, and gene transfer of adenoviral penton base displaying bacteriophage. Virology 282:102–112CrossRefPubMedPubMedCentralGoogle Scholar
  56. Diebold SS (2004) Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303:1529–1531PubMedCentralCrossRefPubMedGoogle Scholar
  57. Dinarello CA (1997a) Induction of interleukin-1 and interleukin-1 receptor antagonist. Semin Oncol 24:S9-81-S9-93PubMedPubMedCentralGoogle Scholar
  58. Dinarello CA (1997b) Interleukin-1. Cytokine Growth Factor Rev 8:253–265CrossRefPubMedPubMedCentralGoogle Scholar
  59. Dinarello CA (1998) Interleukin-1, interleukin-1 receptors and interleukin-1 receptor antagonist. Int Rev Immunol 16:457–499CrossRefPubMedPubMedCentralGoogle Scholar
  60. Dinarello CA (1999) IL-18: a T(H1)-inducing, proinflammatory cytokine and new member of the IL-1 family. J Allergy Clin Immunol 103:11–24CrossRefPubMedPubMedCentralGoogle Scholar
  61. Dinarello CA (2000) Proinflammatory cytokines. Chest 118:503–508CrossRefGoogle Scholar
  62. Dinarello CA, Thompson RC (1991) Blocking IL-1: interleukin 1 receptor antagonist in vivo and in vitro. Immunol Today 12:404–410PubMedCentralCrossRefPubMedGoogle Scholar
  63. Duerkop BA, Hooper LV (2013) Resident viruses and their interactions with the immune system. Nat Immunol 14:654–659PubMedCentralCrossRefPubMedGoogle Scholar
  64. Duerr DM, White SJ, Schluesener HJ (2004) Identification of peptide sequences that induce the transport of phage across the gastrointestinal mucosal barrier. J Virol Methods 116:177–180CrossRefGoogle Scholar
  65. El-Benna J, Dang PM-C, Gougerot-Pocidalo M-A, Elbim C (2005) Phagocyte NADPH oxidase: a multicomponent enzyme essential for host defenses. Arch Immunol Ther Exp 53:199–206Google Scholar
  66. Elson CO (1996) The basis of current and future therapy for inflammatory bowel disease. Am J Med 100:656–662CrossRefGoogle Scholar
  67. Emanuelli B, Peraldi P, Filloux C, Sawka-Verhelle D, Hilton D, Van Obberghen E (2000) SOCS-3 is an insulin-induced negative regulator of insulin signaling. J Biol Chem 275:15985–15991CrossRefGoogle Scholar
  68. Emilsson V, Arch JRS, De Groot RP, Lister CA, Cawthorne MA (1999) Leptin treatment increases suppressors of cytokine signaling in central and peripheral tissues. FEBS Lett 455:170–174CrossRefPubMedPubMedCentralGoogle Scholar
  69. Endo TA, Masuhara M, Yokouchi M, Suzuki R, Sakamoto H, Mitsui K et al (1997) A new protein containing an SH2 domain that inhibits JAK kinases. Nature 387:921–924CrossRefPubMedPubMedCentralGoogle Scholar
  70. Eriksson F, Culp WD, Massey R, Egevad L, Garland D, Persson MAAA et al (2007) Tumor specific phage particles promote tumor regression in a mouse melanoma model. Cancer Immunol Immunother 56:677–687CrossRefPubMedPubMedCentralGoogle Scholar
  71. Eriksson F, Tsagozis P, Lundberg K, Parsa R, Mangsbo SM, Persson MAA et al (2009) Tumor-specific bacteriophages induce tumor destruction through activation of tumor-associated macrophages. J Immunol 182:3105–3111CrossRefGoogle Scholar
  72. Flier J, Boorsma DM, van Beek PJ, Nieboer C, Stoof TJ, Willemze R et al (2001) Differential expression of CXCR3 targeting chemokines CXCL10, CXCL9, and CXCL11 in different types of skin inflammation. J Pathol 194:398–405CrossRefGoogle Scholar
  73. Fogelman I, Davey V, Ochs HD, Elashoff M, Feinberg MB, Mican J et al (2000) Evaluation of CD4+ T cell function In vivo in HIV-infected patients as measured by bacteriophage phiX174 immunization. J Infect Dis 182:435–441CrossRefGoogle Scholar
  74. Fraser JS, Yu Z, Maxwell KL, Davidson AR (2006) Ig-like domains on bacteriophages: a tale of promiscuity and deceit. J Mol Biol 359:496–507CrossRefGoogle Scholar
  75. Fraser JS, Maxwell KL, Davidson AR (2007) Immunoglobulin-like domains on bacteriophage: weapons of modest damage? Curr Opin Microbiol 10:382–387CrossRefGoogle Scholar
  76. Gerard C, Rollins BJ (2001) Chemokines and disease. Nat Immunol 2:108–115PubMedCentralCrossRefPubMedGoogle Scholar
  77. Gerszten RE, Garcia-Zepeda EA, Lim Y-C, Yoshida M, Ding HA, Jr MAG et al (1999) MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature 398:718–723CrossRefGoogle Scholar
  78. Gill DJ, Tham KM, Chia J, Wang SC, Steentoft C, Clausen H et al (2013) Initiation of GalNAc-type O-glycosylation in the endoplasmic reticulum promotes cancer cell invasiveness. Proc Natl Acad Sci 110:E3152–E3161CrossRefGoogle Scholar
  79. Gilleron M, Quesniaux VFJ, Puzo G (2003) Acylation state of the phosphatidylinositol hexamannosides from Mycobacterium bovis, Bacillus calmette guérin and Mycobacterium tuberculosis H37Rv and its implication in Toll-like receptor response. J Biol Chem 278:29880–29889CrossRefGoogle Scholar
  80. Girardin SE, Boneca IG, Carneiro LAM, Antignac A, Jéhanno M, Viala J et al (2003) Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300:1584–1587CrossRefGoogle Scholar
  81. Girn HR, Orsi NM, Homer-Vanniasinkam S (2007) An overview of cytokine interactions in atherosclerosis and implications for peripheral arterial disease. Vasc Med 12:299–309CrossRefGoogle Scholar
  82. Gorski A, Dąbrowska K, Switala-Jele K, Nowaczyk M, Weber-Dabrowska B, Boratynski J et al (2003) New insights into the possible role of bacteriophages in host defense and disease. Med Immunol 2:1–5CrossRefGoogle Scholar
  83. Górski A, Ważna E, Weber-Dąbrowska B, Dąbrowska K, Switała-Jelen K, Miedzybrodzki R et al (2006) Bacteriophage translocation. FEMS Immunol Med Microbiol 46:313–319CrossRefPubMedPubMedCentralGoogle Scholar
  84. Górski A, Międzybrodzki R, Borysowski J, Dąbrowska K, Wierzbicki P, Ohams M et al (2012) Phage as a modulator of immune responses: practical implications for phage therapy. Adv Virus Res 83:41–71CrossRefPubMedPubMedCentralGoogle Scholar
  85. Górski A, Miedzybrodzki R, Weber-Dabrowska B, Fortuna W, Letkiewicz S, Rogóz P et al (2016) Phage therapy: combating infections with potential for evolving from merely a treatment for complications to targeting diseases. Front Microbiol 7:1515PubMedCentralCrossRefPubMedGoogle Scholar
  86. Greenhalgh CJ, Miller ME, Hilton DJ, Lund PKK (2002) Suppressors of cytokine signaling: relevance to gastrointestinal function and disease. Gastroenterology 123:2064–2081CrossRefGoogle Scholar
  87. Gu L, Tseng S, Horner RM, Tam C, Loda M, Rollins BJ (2000) Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature 404:407–411CrossRefGoogle Scholar
  88. Guarner F, Malagelada JR (2003) Gut flora in health and disease. Lancet 361:512–519CrossRefGoogle Scholar
  89. Hagenbaugh A, Sharma S, Dubinett SM, Wei SH, Aranda R, Cheroutre H et al (1997) Altered immune responses in interleukin 10 transgenic mice. J Exp Med 185:2101–2110PubMedCentralCrossRefPubMedGoogle Scholar
  90. Halaby DM, Mornon JPE (1998) The immunoglobulin superfamily: an insight on its tissular, species, and functional diversity. J Mol Evol 46:389–400CrossRefGoogle Scholar
  91. Hamanaka I, Saito Y, Yasukawa H, Kishimoto I, Kuwahara K, Miyamoto Y et al (2001) Induction of JAB/SOCS-1/SSI-1 and CIS3/SOCS-3/SSI-3 is involved in gp130 resistance in cardiovascular system in rat treated with cardiotrophin-1 in vivo. Circ Res 88:727–732CrossRefGoogle Scholar
  92. Handley SA, Thackray LB, Zhao G, Presti R, Miller AD, Droit L et al (2012) Pathogenic simian immunodeficiency virus infection is associated with expansion of the enteric virome. Cell 151:253–266PubMedCentralCrossRefPubMedGoogle Scholar
  93. Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR et al (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:1099–1103CrossRefGoogle Scholar
  94. Heil F (2004) Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 303:1526–1529CrossRefGoogle Scholar
  95. Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K et al (2002) Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 3:196–200CrossRefGoogle Scholar
  96. Hochrein H, Schlatter B, O’keeffe M, Wagner C, Schmitz F, Schiemann M et al (2004) Herpes simplex virus type-1 induces IFN-alpha production via Toll-like receptor 9-dependent and -independent pathways. Proc Natl Acad Sci USA 101:11416–11421CrossRefGoogle Scholar
  97. Hodyra-Stefaniak K, Miernikiewicz P, Drapała J, Drab M, Jonczyk-Matysiak E, Lecion D et al (2015) Mammalian host-versus-phage immune response determines phage fate in vivo. Sci Rep 5:3–8CrossRefGoogle Scholar
  98. Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RAB (1999) Phylogenetic perspectives in innate immunity. Science 284:1313–1318CrossRefGoogle Scholar
  99. Homey B, Alenius H, Müller A, Soto H, Bowman EP, Yuan W et al (2002) CCL27-CCR10 interactions regulate T cell-mediated skin inflammation. Nat Med 8:157–165CrossRefGoogle Scholar
  100. Hong F, Nguyen VA, Gao B (2001) Tumor necrosis factor alpha attenuates interferon alpha signaling in the liver: involvement of SOCS3 and SHP2 and implication in resistance to interferon therapy. FASEB J 15:1595–1597CrossRefPubMedPubMedCentralGoogle Scholar
  101. Hooper LV, Littman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336:1268–1273PubMedCentralCrossRefPubMedGoogle Scholar
  102. Howard M, O’Garra A (1992) Biological properties of interleukin 10. Immunol Today 13:198–200CrossRefPubMedPubMedCentralGoogle Scholar
  103. Huff WE, Huff GR, Rath NC, Donoghue AM (2010) Immune interference of bacteriophage efficacy when treating colibacillosis in poultry. Poult Sci 89:895–900CrossRefPubMedPubMedCentralGoogle Scholar
  104. Illson TRAW, Prigg NASS, Tarr ROS, Icholson SAEN, Etcalf DOM, Hilton DJ et al (1998) Twenty proteins containing a C-terminal SOCS box form five structural classes. Proc Natl Acad Sci USA 95:114–119CrossRefGoogle Scholar
  105. Isaksen DE, Baumann H, Trobridge PA, Farr AG, Levin SD, Ziegler SF (1999) Requirement for stat5 in thymic stromal lymphopoietin-mediated signal transduction. J Immunol 163:5971–5977PubMedPubMedCentralGoogle Scholar
  106. Ivanenkov VV, Felici F, Menon AG (1999) Uptake and intracellular fate of phage display vectors in mammalian cells. Biochim Biophys Acta Mol Cell Res 1448:450–462CrossRefGoogle Scholar
  107. Ivanov II, de Frutos RL, Manel N, Yoshinaga K, Rifkin DB, Sartor RB et al (2008) Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4:337–349PubMedCentralCrossRefPubMedGoogle Scholar
  108. Jaiswal A, Koley H, Mitra S, Saha DR, Sarkar B (2014) Comparative analysis of different oral approaches to treat Vibrio cholerae infection in adult mice. Int J Med Microbiol 304:422–430CrossRefPubMedPubMedCentralGoogle Scholar
  109. Janeway CA (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54:1–13CrossRefPubMedPubMedCentralGoogle Scholar
  110. Janeway CA, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216CrossRefPubMedPubMedCentralGoogle Scholar
  111. Jentoft N (1990) Why are proteins O-glycosylated? Trends Biochem Sci 15:291–294CrossRefPubMedPubMedCentralGoogle Scholar
  112. Jerne NK (1952) Bacteriophage inactivation by antiphage serum diluted in distilled water. Nature 169:117–118CrossRefPubMedPubMedCentralGoogle Scholar
  113. Jerne NK (1956) The presence in normal serum of specific antibody against bacteriophage T4 and its increase during the earliest stages of immunization. J Immunol 76:209–216PubMedPubMedCentralGoogle Scholar
  114. Johansson MEV, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC et al (2008) The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. PNAS 105:15064–15069CrossRefPubMedPubMedCentralGoogle Scholar
  115. Jończyk-Matysiak E, Łusiak-Szelachowska M, Kłak M, Bubak B, Międzybrodzki R, Weber-Dąbrowska B et al (2015) The effect of bacteriophage preparations on intracellular killing of bacteria by phagocytes. J Immunol Res.  https://doi.org/10.1155/2015/482863 CrossRefGoogle Scholar
  116. Jun JW, Shin TH, Kim JH, Shin SP, Han JE, Heo GJ et al (2014) Bacteriophage therapy of a Vibrio parahaemolyticus infection caused by a multiple-antibiotic-resistant O3:K6 pandemic clinical strain. J Infect Dis 210:72–78CrossRefPubMedPubMedCentralGoogle Scholar
  117. Kamme C (1973) Antibodies against staphylococcal bacteriophages in human sera: I. Assay of antibodies in healthy individuals and in patients with staphylococcal infections. Acta Pathol Microbiol Scand Sect B Microbiol Immunol 81:741–748Google Scholar
  118. Kantoch M, Mordarski M (1958) Binding of bacterial viruses by cancer cells in vitro. Postepy Hig Med Dosw 12:191–192PubMedPubMedCentralGoogle Scholar
  119. Kapp A, Freudenberg M, Galanos C (1987) Induction of human granulocyte chemiluminescence by bacterial lipopolysaccharides. Infect Immun 55:758–761PubMedCentralPubMedGoogle Scholar
  120. Karlsen AE, Rønn SG, Lindberg K, Johannesen J, Galsgaard ED, Pociot F et al (2001) Suppressor of cytokine signaling 3 (SOCS-3) protects beta -cells against interleukin-1beta - and interferon-gamma-mediated toxicity. Proc Natl Acad Sci USA 98:12191–12196CrossRefPubMedPubMedCentralGoogle Scholar
  121. Kasai T, Inada K, Takakuwa T, Yamada Y, Inoue Y, Shimamura T et al (1997) Anti-inflammatory cytokine levels in patients with septic shock. Res Commun Mol Pathol Pharmacol 98:34–42PubMedPubMedCentralGoogle Scholar
  122. Kaur S, Harjai K, Chhibber S (2014) Bacteriophage-aided intracellular killing of engulfed methicillin-resistant Staphylococcus aureus (MRSA) by murine macrophages. Appl Microbiol Biotechnol 98:4653–4661CrossRefPubMedPubMedCentralGoogle Scholar
  123. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384CrossRefPubMedPubMedCentralGoogle Scholar
  124. Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34:637–650CrossRefPubMedPubMedCentralGoogle Scholar
  125. Kawazoe Y, Naka T, Fujimoto M, Kohzaki H, Morita Y, Narazaki M et al (2001) Signal transducer and activator of transcription (STAT)-induced STAT inhibitor 1 (SSI-1)/suppressor of cytokine signaling 1 (SOCS1) inhibits insulin signal transduction pathway through modulating insulin receptor substrate 1 (IRS-1) phosphorylation. J Exp Med 193:263–269PubMedCentralCrossRefPubMedGoogle Scholar
  126. Keller R, Engley FB (1958) Fate of bacteriophage particles introduced into mice by various routes. Exp Biol Med 98:577–580CrossRefGoogle Scholar
  127. Kelner GS, Kennedy J, Bacon KB, Kleyensteuber S, Largaespada DA, Jenkins NA et al (1994) Lymphotactin: a cytokine that represents a new class of chemokine. Science 266:1395–1399CrossRefPubMedPubMedCentralGoogle Scholar
  128. Kelso A (1998) Cytokines: principles and prospects. Immunol Cell Biol 76:300–317CrossRefPubMedPubMedCentralGoogle Scholar
  129. Kotenko SV, Izotova LS, Mirochnitchenko OV, Esterova E, Dickensheets H, Donnelly RP et al (2001) Identification, cloning, and characterization of a novel soluble receptor that binds IL-22 and neutralizes its activity. J Immunol 166:7096–7103CrossRefPubMedPubMedCentralGoogle Scholar
  130. Krug A, French AR, Barchet W, Fischer JAA, Dzionek A, Pingel JT et al (2004a) TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity 21:107–119CrossRefPubMedPubMedCentralGoogle Scholar
  131. Krug A, Luker GD, Barchet W, Leib DA, Akira S, Colonna M (2004b) Herpes simplex virus type 1 activates murine natural interferon-producing cells through toll-like receptor 9. Blood 103:1433–1437CrossRefPubMedPubMedCentralGoogle Scholar
  132. Kumar H, Kawai T, Akira S (2009) Toll-like receptors and innate immunity. Biochem Biophys Res Commun 388:621–625CrossRefPubMedPubMedCentralGoogle Scholar
  133. Kumar H, Kawai T, Akira S (2011) Pathogen recognition by the innate immune system. Int Rev Immunol 30:16–34CrossRefPubMedPubMedCentralGoogle Scholar
  134. Kurt-Jones EA, Popova L, Kwinn L, Haynes LM, Jones LP, Tripp RA et al (2000) Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol 1:398–401CrossRefPubMedPubMedCentralGoogle Scholar
  135. Kurt-Jones EA, Chan M, Zhou S, Wang J, Reed G, Bronson R et al (2004) Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis. Proc Natl Acad Sci USA 101:1315–1320CrossRefPubMedPubMedCentralGoogle Scholar
  136. Kurzepa A, Da̧browska K, Skaradziński G, Górski A (2009) Bacteriophage interactions with phagocytes and their potential significance in experimental therapy. Clin Exp Med 9:93–100CrossRefPubMedPubMedCentralGoogle Scholar
  137. Lalani I, Bhol K, Ahmed AR (1997) Interleukin-10: biology, role in inflammation and autoimmunity. Ann Allergy Asthma Immunol 79:469–483CrossRefPubMedPubMedCentralGoogle Scholar
  138. Lehti TA, Pajunen MI, Skog MS, Finne J (2017) Internalization of a polysialic acid-binding Escherichia coli bacteriophage into eukaryotic neuroblastoma cells. Nat Commun 8:1915PubMedCentralCrossRefPubMedGoogle Scholar
  139. Lejeune D, Demoulin J-B, Renauld J-C (2001) Interleukin 9 induces expression of three cytokine signal inhibitors: cytokine-inducible SH2-containing protein, suppressor of cytokine signalling (SOCS)-2 and SOCS-3, but only SOCS-3 overexpression suppresses interleukin 9 signalling. Biochem J 353:109–116PubMedCentralCrossRefPubMedGoogle Scholar
  140. Lengeling A, Mahajan A, Gally D (2013) Bacteriophages as pathogens and immune modulators? MBio.  https://doi.org/10.1128/mBio.00501-13
  141. Letarova M, Strelkova D, Nevolina S, Letarov A (2012) A test for the ‘physiological phagemia’ hypothesis—natural intestinal coliphages do not penetrate to the blood in horses. Folia Microbiol (Praha) 57:81–83CrossRefGoogle Scholar
  142. Liehn EA, Radu E, Schuh A (2013) Chemokine contribution in stem cell engraftment into the infarcted myocardium. Curr Stem Cell Res Ther 8:278–283PubMedCentralCrossRefPubMedGoogle Scholar
  143. Linden SK, Sutton P, Karlsson NG, Korolik V, McGuckin MA (2008) Mucins in the mucosal barrier to infection. Mucosal Immunol 1:183–197CrossRefGoogle Scholar
  144. Losman JA, Chen XP, Hilton D, Rothman P (1999) Cutting edge: SOCS-1 is a potent inhibitor of IL-4 signal transduction. J Immunol 162:3770–3774PubMedCentralPubMedGoogle Scholar
  145. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489:220–230PubMedCentralCrossRefPubMedGoogle Scholar
  146. Lund J, Sato A, Akira S, Medzhitov R, Iwasaki A (2003) Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J Exp Med 198:513–520PubMedCentralCrossRefPubMedGoogle Scholar
  147. Łusiak-Szelachowska M, Żaczek M, Weber-Dąbrowska B, Międzybrodzki R, Kłak M, Fortuna W et al (2014) Phage neutralization by sera of patients receiving phage therapy. Viral Immunol 27:295–304PubMedCentralCrossRefPubMedGoogle Scholar
  148. Luster AD (1998) Chemokines – chemotactic cytokines that mediate inflammation. N Engl J Med 338:436–445CrossRefPubMedPubMedCentralGoogle Scholar
  149. Luster AD (2002) The role of chemokines in linking innate and adaptive immunity. Curr Opin Immunol 14:129–135CrossRefPubMedPubMedCentralGoogle Scholar
  150. Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T et al (1998) Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci USA 95:9448–9453CrossRefPubMedPubMedCentralGoogle Scholar
  151. Magrangeas F, Boisteau O, Denis S, Jacques Y, Minvielle S (2001a) Negative cross-talk between interleukin-3 and interleukin-11 is mediated by suppressor of cytokine signalling-3 (SOCS-3). Biochem J 353:223–230PubMedCentralCrossRefPubMedGoogle Scholar
  152. Magrangeas F, Boisteau O, Denis S, Jacques Y, Minvielle S (2001b) Negative regulation of onconstatin M signaling by suppressor of cytokine signaling (SOCS-3). Eur Cytokine Netw 12:309–315PubMedPubMedCentralGoogle Scholar
  153. Mahad DJ, Trebst C, Kivisäkk P, Staugaitis SM, Tucky B, Wei T et al (2004) Expression of chemokine receptors CCR1 and CCR5 reflects differential activation of mononuclear phagocytes in pattern II and pattern III multiple sclerosis lesions. J Neuropathol Exp Neurol 63:262–273CrossRefPubMedPubMedCentralGoogle Scholar
  154. Majewska J, Beta W, Lecion D, Hodyra-Stefaniak K, Kłopot A, Kaźmierczak Z et al (2015) Oral application of T4 phage induces weak antibody production in the gut and in the blood. Viruses 7:4783–4799PubMedCentralCrossRefPubMedGoogle Scholar
  155. Malmberg KJ (2004) Effective immunotherapy against cancer: a question of overcoming immune suppression and immune escape? Cancer Immunol Immunother 53:879–892CrossRefPubMedPubMedCentralGoogle Scholar
  156. Mantovani A (1999) The chemokine system: redundancy for robust outputs. Immunol Today 20:254–257CrossRefPubMedPubMedCentralGoogle Scholar
  157. Martens EC, Chiang HC, Gordon JI (2008) Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe 4:447–457PubMedCentralCrossRefPubMedGoogle Scholar
  158. Matloubian M, David A, Engel S, Ryan JE, Cyster JG (2000) A transmembrane CXC chemokine is a ligand for HIV-coreceptor Bonzo. Nat Immunol 1:298–304CrossRefPubMedPubMedCentralGoogle Scholar
  159. Mazmanian SK, Cui HL, Tzianabos AO, Kasper DL (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122:107–118CrossRefPubMedPubMedCentralGoogle Scholar
  160. McCallin S, Alam Sarker S, Barretto C, Sultana S, Berger B, Huq S et al (2013) Safety analysis of a Russian phage cocktail: from MetaGenomic analysis to oral application in healthy human subjects. Virology 443:187–196CrossRefGoogle Scholar
  161. McMahon SA, Miller JL, Lawton JA, Kerkow DE, Hodes A, Marti-Renom MA et al (2005) The C-type lectin fold as an evolutionary solution for massive sequence variation. Nat Struct Mol Biol 12:886–892CrossRefPubMedPubMedCentralGoogle Scholar
  162. Medhekar B, Miller JF (2007) Diversity-generating retroelements. Curr Opin Microbiol 10:388–395PubMedCentralCrossRefPubMedGoogle Scholar
  163. Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449:819–826PubMedCentralCrossRefPubMedGoogle Scholar
  164. Medzhitov R, Janeway CA Jr (1997) Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 9:4–9PubMedCentralCrossRefPubMedGoogle Scholar
  165. Medzhitov R, Janeway C (2000) Innate immunity. N Engl J Med 343:338–344CrossRefPubMedPubMedCentralGoogle Scholar
  166. Menéndez-Benito V, Neefjes J (2007) Autophagy in MHC class II presentation: sampling from within. Immunity 26:1–3CrossRefPubMedPubMedCentralGoogle Scholar
  167. Merril CR (2008) Bacteriophage ecology. Cambridge University Press, CambridgeGoogle Scholar
  168. Merril CR, Trigg ME, Geier MR (1973) Fate of bacteriophage Lamba in non-immune germ-free mice. Nature 246:221–223CrossRefPubMedPubMedCentralGoogle Scholar
  169. Merril CR, Biswas B, Carlton R, Jensen NC, Creed GJ, Zullo S et al (1996) Long-circulating bacteriophage as antibacterial agents. Proc Natl Acad Sci USA 93:3188–3192CrossRefPubMedPubMedCentralGoogle Scholar
  170. Metcalf D, Greenhalgh CJ, Viney E, Willson TA, Starr R, Nicola NA et al (2000) Gigantism in mice lacking suppressor of cytokine signalling-2. Nature 405:1069–1073CrossRefPubMedPubMedCentralGoogle Scholar
  171. Miedzybrodzki R, Switala-Jelen K, Fortuna W, Weber-Dąbrowska B, Przerwa A, Lusiak-Szelachowska M et al (2008) Bacteriophage preparation inhibition of reactive oxygen species generation by endotoxin-stimulated polymorphonuclear leukocytes. Virus Res 131:233–242CrossRefPubMedPubMedCentralGoogle Scholar
  172. Miernikiewicz P, Dąbrowska K, Piotrowicz A, Owczarek B, Wojas-Turek J, Kicielińska J et al (2013) T4 phage and its head surface proteins do not stimulate inflammatory mediator production Poh LNF (ed). PLoS One 8:e71036PubMedCentralCrossRefPubMedGoogle Scholar
  173. Miernikiewicz P, Klopot A, Soluch R, Szkuta P, Keska W, Hodyra-Stefaniak K et al (2016) T4 phage tail Adhesin Gp12 counteracts LPS-induced inflammation In Vivo. Front Microbiol 7:1–8CrossRefGoogle Scholar
  174. Minamoto S, Ikegame K, Ueno K, Narazaki M, Naka T, Yamamoto H et al (1997) Cloning and functional analysis of new members of STAT induced STAT inhibitor (SSI) family: SSI-2 and SSI-3. Biochem Biophys Res Commun 237:79–83CrossRefGoogle Scholar
  175. Minot S, Sinha R, Chen J, Li H, Keilbaugh SA, Wu GD et al (2011) The human gut virome: inter-individual variation and dynamic response to diet. Genome Res 21:1616–1625PubMedCentralCrossRefPubMedGoogle Scholar
  176. Minot S, Grunberg S, Wu GD, Lewis JD, Bushman FD (2012) Hypervariable loci in the human gut virome. Proc Natl Acad Sci 109:3962–3966CrossRefGoogle Scholar
  177. Morita Y, Naka T, Kawazoe Y, Fujimoto M, Narazaki M, Nakagawa R et al (2000) Signals transducers and activators of transcription (STAT)-induced STAT inhibitor-1 (SSI-1)/suppressor of cytokine signaling-1 (SOCS-1) suppresses tumor necrosis factor alpha-induced cell death in fibroblasts. Proc Natl Acad Sci USA 97:5405–5410CrossRefGoogle Scholar
  178. Moser B, Wolf M, Walz A, Loetscher P (2004) Chemokines: multiple levels of leukocyte migration control. Trends Immunol 25:75–84CrossRefGoogle Scholar
  179. Müller G, Höpken UE, Lipp M (2003) The impact of CCR7 and CXCR5 on lymphoid organ development and systemic immunity. Immunol Rev 196:265CrossRefGoogle Scholar
  180. Munoz C, Carlet J, Fitting C, Misset B, Blériot JP, Cavaillon JM (1991) Dysregulation of in vitro cytokine production by monocytes during sepsis. J Clin Invest 88:1747–1754PubMedCentralCrossRefPubMedGoogle Scholar
  181. Murphy PM (2002) International union of pharmacology. XXX. Update on chemokine receptor nomenclature. Pharmacol Rev 54:227–229CrossRefGoogle Scholar
  182. Naka T, Narazaki M, Hirata M, Matsumoto T, Minamoto S, Aono A et al (1997) Structure and function of a new STAT-induced STAT inhibitor. Nature 387:924–929CrossRefGoogle Scholar
  183. Navarro F, Muniesa M (2017) Phages in the human body. Front Microbiol 8:566PubMedCentralPubMedGoogle Scholar
  184. Nguyen S, Baker K, Padman BS, Patwa R, Dunstan RA, Weston TA et al (2017) Bacteriophage transcytosis provides a mechanism to cross epithelial cell layers. MBio 8:e01874–e01817PubMedCentralPubMedGoogle Scholar
  185. Nicholson SE, Willson TA, Farley A, Starr R, Zhang JG, Baca M et al (1999) Mutational analyses of the SOCS proteins suggest a dual domain requirement but distinct mechanisms for inhibition of LIF and IL-6 signal transduction. EMBO J 18:375–385PubMedCentralCrossRefPubMedGoogle Scholar
  186. Nomiyama H, Osada N, Yoshie O (2010) The evolution of mammalian chemokine genes. Cytokine Growth Factor Rev 21:253–262CrossRefGoogle Scholar
  187. Northrop JH (1958) Studies on the origin of bacterial viruses. I-IV. J Gen Physiol 42:109–136PubMedCentralCrossRefPubMedGoogle Scholar
  188. Ochs HD, Davis SD, Wedgwood RJ (1971) Immunologic responses to bacteriophage phi-X 174 in immunodeficiency diseases. J Clin Invest 50:2559–2568PubMedCentralCrossRefPubMedGoogle Scholar
  189. Okabe S, Tauchi T, Morita H, Ohashi H, Yoshimura A, Ohyashiki K (1999) Thrombopoietin induces an SH2-containing protein, CIS1, which binds to MP1: involvement of the ubiquitin proteosome pathway. Exp Hematol 27:1542–1547CrossRefGoogle Scholar
  190. Oliveira A, Sereno R, Nicolau A, Azeredo J (2009) The influence of the mode of administration in the dissemination of three coliphages in chickens. Poult Sci 88:728–733CrossRefGoogle Scholar
  191. Opal SM, Wherry JC, Grint P (1998) Interleukin-10: potential benefits and possible risks in clinical infectious diseases. Clin Infect Dis 27:1497–1507CrossRefGoogle Scholar
  192. Opal S, DePalo VVA, Opals SM, DePalo VVA, Opal S, DePalo VVA (2000) Anti-inflammatory cytokines. Chest J 117:1162–1172CrossRefGoogle Scholar
  193. Orsini E, Guarini A, Chiaretti S, Mauro FR, Foa R (2003) The circulating dendritic cell compartment in patients with chronic lymphocytic leukemia is severely defective and unable to stimulate an effective T-cell response. Cancer Res 63:4497–4506Google Scholar
  194. Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, Wilson CB et al (2000) The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci USA 97:13766–13771CrossRefGoogle Scholar
  195. Pan Y, Lloyd C, Zhou H, Dolich S, Deeds J, Gonzalo JA et al (1997) Neurotactin, a membrane-anchored chemokine upregulated in brain inflammation. Nature 387:611–617CrossRefGoogle Scholar
  196. Papadakis KA, Targan SR (2000) Role of cytokines in the pathogenesis of inflammatory bowel disease. Annu Rev Med 51:289–298CrossRefGoogle Scholar
  197. Park ES, Kim H, Suh JM, Park SJ, Kwon O-Y, Kim YK et al (2000) Thyrotropin induces SOCS-1 (Suppressor of Cytokine Signaling-1) and SOCS-3 in FRTL-5 thyroid cells. Mol Endocrinol 14:440–448CrossRefGoogle Scholar
  198. Park K, Cha KE, Myung H (2014) Observation of inflammatory responses in mice orally fed with bacteriophage T7. J Appl Microbiol 117:627–633CrossRefGoogle Scholar
  199. Pawlak W, Kedziora J, Zolynski K, Kedziora-Kornatowska K, Blaszczyk J, Witkowski P (1998) Free radicals generation by granulocytes from men during bed rest. J Gravit Physiol 5:P131-2PubMedPubMedCentralGoogle Scholar
  200. Penner JC, Ferreira JAG, Secor PR, Sweere JM, Birukova MK, Joubert LM et al (2016) Pf4 bacteriophage produced by Pseudomonas aeruginosa inhibits Aspergillus fumigatus metabolism via iron sequestration. Microbiol (United Kingdom) 162:1583–1594Google Scholar
  201. Perrier S, Darakhshan F, Hajduch E (2006) IL-1 receptor antagonist in metabolic diseases: Dr Jekyll or Mr Hyde? FEBS Lett 580:6289–6294CrossRefPubMedPubMedCentralGoogle Scholar
  202. Pezet A, Lè H, Favre N, Kelly PA, Edery M (1999) Inhibition and restoration of prolactin signal transduction by suppressors of cytokine signaling. J Biol Chem 274:24497–24502CrossRefPubMedPubMedCentralGoogle Scholar
  203. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, Du X et al (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088CrossRefPubMedPubMedCentralGoogle Scholar
  204. Poulsen LK, Lan F, Kristensen CS, Hobolth P, Molin S, Krogfelt KA (1994) Spatial distribution of Escherichia coli in the mouse large intestine inferred from rRNA in situ hybridization. Infect Immun 62:5191–5194PubMedCentralPubMedGoogle Scholar
  205. Proudfoot AE, Handel TM, Johnson Z, Lau EK, LiWang P, Clark-Lewis I et al (2003) Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proc Natl Acad Sci USA 100:1885–1890CrossRefPubMedPubMedCentralGoogle Scholar
  206. Przerwa A, Zimecki M, Świtała-Jeleń K, Dąbrowska K, Krawczyk E, Łuczak M et al (2006) Effects of bacteriophages on free radical production and phagocytic functions. Med Microbiol Immunol 195:143–150CrossRefPubMedPubMedCentralGoogle Scholar
  207. Puig A, Araujo R, Jofre J, Frias-Lopez J (2001) Identification of cell wall proteins of Bacteroides fragilis to which bacteriophage B40-8 binds specifically. Microbiology 147:281–288CrossRefPubMedPubMedCentralGoogle Scholar
  208. Pulendran B, Palucka K, Banchereau J (2001) Sensing pathogens and tuning immune responses. Science 293:253–256CrossRefPubMedPubMedCentralGoogle Scholar
  209. Qu C, Edwards EW, Tacke F, Angeli V, Llodrá J, Sanchez-Schmitz G et al (2004) Role of CCR8 and other chemokine pathways in the migration of monocyte-derived dendritic cells to lymph nodes. J Exp Med 200:1231–1241PubMedCentralCrossRefPubMedGoogle Scholar
  210. Ram PA, Waxman DJ (1999) SOCS/CIS protein inhibition of growth hormone-stimulated STAT5 signaling by multiple mechanisms. J Biol Chem 274:35553–35561CrossRefPubMedPubMedCentralGoogle Scholar
  211. Reyes A, Haynes M, Hanson N, Angly FE, Heath AC, Rohwer F et al (2010) Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 466:334–338PubMedCentralCrossRefPubMedGoogle Scholar
  212. Reynaud A, Cloastre L, Bernard J, Laveran H, Ackermann HW, Licois D et al (1992) Characteristics and diffusion in the rabbit of a phage for Escherichia coli 0103. Attempts to use this phage for therapy. Vet Microbiol 30:203–212CrossRefPubMedPubMedCentralGoogle Scholar
  213. Riedemann NC, Guo R-F, Ward PA (2003) Novel strategies for the treatment of sepsis. Nat Med 9:517–524CrossRefPubMedPubMedCentralGoogle Scholar
  214. Rollins BJ (1997) Chemokines. Blood 90:909–928CrossRefPubMedPubMedCentralGoogle Scholar
  215. Rubinstein A, Mizrachi Y, Bernstein L, Shliozberg J, Golodner M, Liu GQ et al (2000) Progressive specific immune attrition after primary, secondary and tertiary immunizations with bacteriophage phi X174 in asymptomatic HIV-1 infected patients. AIDS 14:F55–F62CrossRefPubMedPubMedCentralGoogle Scholar
  216. Ruzek MC, Miller AH, Opal SM, Pearce BD, Biron CA (1997) Characterization of early cytokine responses and an interleukin (IL)-6-dependent pathway of endogenous glucocorticoid induction during murine cytomegalovirus infection. J Exp Med 185:1185–1192PubMedCentralCrossRefPubMedGoogle Scholar
  217. Sadowski CL, Choi TS, Le M, Wheeler TT, Wang LH, Sadowski HB (2001) Insulin induction of SOCS-2 and SOCS-3 mRNA expression in C2C12 skeletal muscle cells is mediated by Stat5. J Biol Chem 276:20703–20710CrossRefPubMedPubMedCentralGoogle Scholar
  218. Sartor RB (1994) Cytokines in intestinal inflammation: pathophysiological and clinical considerations. Gastroenterology 106:533–539CrossRefPubMedPubMedCentralGoogle Scholar
  219. Sasaki A, Yasukawa H, Shouda T, Kitamura T, Dikic I, Yoshimura A (2000) CIS3/SOCS-3 suppresses erythropoietin (EPO) signaling by binding the EPO receptor and JAK2. J Biol Chem 275:29338–29347CrossRefPubMedPubMedCentralGoogle Scholar
  220. Schroeder HW, Cavacini L (2010) Structure and function of immunoglobulins. J Allergy Clin Immunol 125:S41–S52PubMedCentralCrossRefPubMedGoogle Scholar
  221. Schulz BL, Sloane AJ, Robinson LJ, Prasad SS, Lindner RA, Robinson M et al (2007) Glycosylation of sputum mucins is altered in cystic fibrosis patients. Glycobiology 17:698–712CrossRefPubMedPubMedCentralGoogle Scholar
  222. Schutyser E, Struyf S, Van Damme J (2003) The CC chemokine CCL20 and its receptor CCR6. Cytokine Growth Factor Rev 14:409–426CrossRefPubMedPubMedCentralGoogle Scholar
  223. Secor PR, Sweere JM, Michaels LA, Singh PK, Parks WC, Bollyky PL et al (2015) Filamentous bacteriophage promote biofilm assembly and function article filamentous bacteriophage promote biofilm assembly and function. Cell Host Microbe 18:549–559PubMedCentralCrossRefPubMedGoogle Scholar
  224. Sharp R (2001) Bacteriophages: biology and history. J Chem Technol Biotechnol 76:667–672CrossRefGoogle Scholar
  225. Shearer WT, Lugg DJ, Rosenblatt HM, Nickolls PM, Sharp RM, Reuben JM et al (2001) Antibody responses to bacteriophage φX-174 in human subjects exposed to the Antarctic winter-over model of spaceflight. J Allergy Clin Immunol 107:160–164CrossRefPubMedPubMedCentralGoogle Scholar
  226. Shen X, Hong F, Nguyen V-A, Gao B (2000) IL-10 attenuates IFN-α-activated STAT1 in the liver: involvement of SOCS2 and SOCS3. FEBS Lett 480:132–136CrossRefPubMedPubMedCentralGoogle Scholar
  227. Shimaoka T, Kume N, Minami M, Hayashida K, Kataoka H, Kita T et al (2000) Molecular cloning of a novel scavenger receptor for oxidized low density lipoprotein, SR-PSOX, on macrophages. J Biol Chem 275:40663–40666CrossRefPubMedPubMedCentralGoogle Scholar
  228. Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K et al (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 189:1777–1782PubMedCentralCrossRefPubMedGoogle Scholar
  229. Sikora JP (2002) Immunotherapy in the management of sepsis. Arch Immunol Ther Exp 50:317–324Google Scholar
  230. Smith HW, Huggins MB, Shaw KM (1987) Factors influencing the survival and multiplication of bacteriophages in calves and in their environment. J Gen Microbiol 133:1127–1135PubMedPubMedCentralGoogle Scholar
  231. Song MM, Shuai K (1998) The suppressor of cytokine signaling (SOCS) 1 and SOCS3 but not SOCS2 proteins inhibit interferon-mediated antiviral and antiproliferative activities. J Biol Chem 273:35056–35062CrossRefPubMedPubMedCentralGoogle Scholar
  232. Sørensen TL, Tani M, Jensen J, Pierce V, Lucchinetti C, Folcik VA et al (1999) Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J Clin Invest 103:807–815PubMedCentralCrossRefPubMedGoogle Scholar
  233. Sozzani S, Allavena P, Vecchi A, Mantovani A (2000) Chemokines and dendritic cell traffic. J Clin Immunol 20:151–160CrossRefPubMedPubMedCentralGoogle Scholar
  234. Sporri B, Kovanen PE, Sasaki A, Yoshimura A, Leonard WJ (2001) JAB/SOCS1/SSI-1 is an interleukin-2-induced inhibitor of IL-2 signaling. Blood 97:221–226CrossRefPubMedPubMedCentralGoogle Scholar
  235. Starr R, Willson TA, Viney EM, Murray LJ, Rayner JR, Jenkins BJ et al (1997) A family of cytokine-inducible inhibitors of signalling. Nature 387:917–921CrossRefPubMedPubMedCentralGoogle Scholar
  236. Summers WC (2001) Bacteriophage therapy. Annu Rev Micriobiol 55:437–451CrossRefGoogle Scholar
  237. Tabeta K, Georgel P, Janssen E, Du X, Hoebe K, Crozat K et al (2004) Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc Natl Acad Sci USA 101:3516–3521CrossRefPubMedPubMedCentralGoogle Scholar
  238. Tachibana K, Hirota S, Iizasa H, Yoshida H, Kawabata K, Kataoka Y et al (1998) The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 393:591–594CrossRefPubMedPubMedCentralGoogle Scholar
  239. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820CrossRefGoogle Scholar
  240. Takeuchi O, Hoshino K, Akira S (2000) Cutting Edge: TLR2-deficient and MyD88-deficient mice are highly susceptible to Staphylococcus aureus infection. J Immunol 165:5392–5396CrossRefGoogle Scholar
  241. Takeuchi O, Kawai T, Mühlradt PF, Morr M, Radolf JD, Zychlinsky A et al (2001) Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 13:933–940CrossRefPubMedPubMedCentralGoogle Scholar
  242. Tam JCH, Jacques DA (2014) Intracellular immunity: finding the enemy within-how cells recognize and respond to intracellular pathogens. J Leukoc Biol 96:233–244PubMedCentralCrossRefPubMedGoogle Scholar
  243. Terstegent L, Gatsios P, Bode JG, Schaper F, Heinrich PC, Graeve L (2000) The inhibition of interleukin-6-dependent STAT activation by mitogen- activated protein kinases depends on tyrosine 759 in the cytoplasmic tail of glycoprotein 130. J Biol Chem 275:18810–18817CrossRefGoogle Scholar
  244. Thoma-Uszynski S (2001) Induction of direct antimicrobial activity through mammalian Toll-like receptors. Science 291:1544–1547CrossRefPubMedPubMedCentralGoogle Scholar
  245. Tilg H, Trehu E, Atkins MB, Dinarello CA, Mier JW (1994) Interleukin-6 (IL-6) as an anti-inflammatory cytokine: induction of circulating IL-1 receptor antagonist and soluble tumor necrosis factor receptor p55. Blood 83:113–118CrossRefGoogle Scholar
  246. Tonegawa S (1983) Somatic generation of antibody diversity. Nature 302:575–581CrossRefPubMedPubMedCentralGoogle Scholar
  247. Trebst C, Lykke Sørensen T, Kivisäkk P, Cathcart MK, Hesselgesser J, Horuk R et al (2001) CCR1+/CCR5+ mononuclear phagocytes accumulate in the central nervous system of patients with multiple sclerosis. Am J Pathol 159:1701–1710PubMedCentralCrossRefPubMedGoogle Scholar
  248. Trop S (2001) Overexpression of suppressor of cytokine signaling-1 impairs pre-T-cell receptor-induced proliferation but not differentiation of immature thymocytes. Blood 97:2269–2277CrossRefPubMedPubMedCentralGoogle Scholar
  249. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE et al (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484PubMedCentralCrossRefPubMedGoogle Scholar
  250. Vaishnava S, Yamamoto M, Severson KM, Ruhn KA, Yu X, Koren O et al (2011) The antibacterial lectin RegIII promotes the spatial segregation of microbiota and host in the intestine. Science 334:255–258PubMedCentralCrossRefPubMedGoogle Scholar
  251. Van Belleghem JD, Clement F, Merabishvili M, Lavigne R, Vaneechoutte M (2017) Pro- and anti-inflammatory responses of peripheral blood mononuclear cells induced by Staphylococcus aureus and Pseudomonas aeruginosa phages. Sci Rep 7:8004PubMedCentralCrossRefPubMedGoogle Scholar
  252. Wang Q, Miyakawa Y, Fox N, Kaushansky K (2000a) Interferon-alpha directly represses megakaryopoiesis by inhibiting thrombopoietin-induced signaling through induction of SOCS-1. Blood 96:2093–2099CrossRefPubMedPubMedCentralGoogle Scholar
  253. Wang W, Soto H, Oldham ER, Buchanan ME, Homey B, Catron D et al (2000b) Identification of a novel chemokine (CCL28), which binds CCR10 (GPR2). J Biol Chem 275:22313–22323CrossRefPubMedPubMedCentralGoogle Scholar
  254. Watts C (2004) The exogenous pathway for antigen presentation on major histocompatibility complex class II and CD1 molecules. Nat Immunol 5:685–692CrossRefPubMedPubMedCentralGoogle Scholar
  255. Weber-Dąbrowska B, Zimecki M, Mulczyk M (2000) Effective phage therapy is associated with normalization of cytokine production by blood cell cultures. Arch Immunol Ther Exp 48:31–37Google Scholar
  256. Weiss M, Denou E, Bruttin A, Serra-Moreno R, Dillmann ML, Brüssow H (2009) In vivo replication of T4 and T7 bacteriophages in germ-free mice colonized with Escherichia coli. Virology 393:16–23CrossRefPubMedPubMedCentralGoogle Scholar
  257. Wenger SL, Turner JH, Petricciani JC (1978) The cytogenetic, proliferative and viability effects of four bacteriophages on human lymphocytes. In Vitro 14:543–549CrossRefPubMedPubMedCentralGoogle Scholar
  258. White DW, Suzanne Beard R, Barton ES (2012) Immune modulation during latent herpesvirus infection. Immunol Rev 245:189–208PubMedCentralCrossRefPubMedGoogle Scholar
  259. Wiest R, Garcia-Tsao G (2005) Bacterial translocation (BT) in cirrhosis. Hepatology 41:422–433CrossRefPubMedPubMedCentralGoogle Scholar
  260. Wolochow H, Hildebrand GJ, Lamanna C (1966) Translocation of microorganisms across the intestinal wall of the rat: effect of microbial size and concentration. J Infect Dis 116:523–528CrossRefPubMedPubMedCentralGoogle Scholar
  261. Yasukawa H, Sasaki A, Yoshimura A (2000) Negative regulation of cytokine signaling pathways. Annu Rev Immunol 18:143–164CrossRefPubMedPubMedCentralGoogle Scholar
  262. Yoshimura A, Ohkubo T, Kiguchi T, Jenkins NA, Gilbert DJ, Copeland NG et al (1995) A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors. EMBO J 14:2816–2826PubMedCentralCrossRefPubMedGoogle Scholar
  263. Żaczek M, Łusiak-Szelachowska M, Jończyk-Matysiak E, Weber-Dąbrowska B, Międzybrodzki R, Owczarek B et al (2016) Antibody production in response to Staphylococcal MS-1 phage cocktail in patients undergoing phage therapy. Front Microbiol 7:1–14CrossRefGoogle Scholar
  264. Zhang D, Zhang G, Hayden MS, Greenblatt MB, Bussey C, Flavell RA et al (2004) A toll-like receptor that prevents infection by uropathogenic bacteria. Science 303:1522–1527CrossRefPubMedPubMedCentralGoogle Scholar
  265. Zhang T, Breitbart M, Lee WH, Run JQ, Wei CL, Soh SWL et al (2006) RNA viral community in human feces: prevalence of plant pathogenic viruses. PLoS Biol 4:0108–0118CrossRefGoogle Scholar
  266. Zlotnik A, Yoshie O (2000) Chemokines: a new classification system and their role in immunity. Immunity 12:121–127CrossRefPubMedPubMedCentralGoogle Scholar
  267. Zlotnik A, Yoshie O (2012) The chemokine superfamily revisited. Immunity 36:705–716PubMedCentralCrossRefPubMedGoogle Scholar
  268. Zong CS, Chan J, Levy DE, Horvath C, Sadowski HB, Wang LH (2000) Mechanism of STAT3 activation by insulin-like growth factor I receptor. J Biol Chem 275:15099–15105CrossRefPubMedPubMedCentralGoogle Scholar
  269. Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393:595–599CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jonas D. Van Belleghem
    • 1
    • 2
  • Krystyna Dąbrowska
    • 3
  • Mario Vaneechoutte
    • 1
  • Jeremy J. Barr
    • 4
  1. 1.Laboratory Bacteriology Research, Department of Clinical Chemistry, Microbiology and ImmunologyUniversity GhentGhentBelgium
  2. 2.Division of Infectious Diseases and Geographic Medicine, Department of MedicineStanford University School of MedicineStanfordUSA
  3. 3.Bacteriophage Laboratory, Institute of Immunology and Experimental TherapyPolish Academy of SciencesWrocławPoland
  4. 4.School of Biological SciencesMonash UniversityMelbourneAustralia

Personalised recommendations