Advertisement

Phage Therapy in Europe: Regulatory and Intellectual Property Protection Issues

  • Daniel De VosEmail author
  • Gilbert Verbeken
  • Johan Quintens
  • Jean-Paul Pirnay
Chapter

Abstract

Bacteriophages (phages for short) are increasingly put forward as potential (additional) tools in the fight against the worldwide antibiotic crisis. However, the setup of clinical trials, which are necessary to demonstrate the efficacy of phages and to optimize their clinical application protocols, and consequently to their implementation in the clinic is still hindered by the lack of an adapted regulatory framework. Although some (local) progresses have been made in recent years, no real paradigm shift has occurred. This chapter discusses the current status in Europe with regard to the two most pertinent barriers to phage therapy: the regulatory and intellectual property protection issues.

References

  1. Abedon ST (2014) Phage therapy: eco-physiological pharmacology. Scientifica 2014:581639PubMedPubMedCentralCrossRefGoogle Scholar
  2. Abedon ST, Thomas-Abedon C (2010) Phage therapy pharmacology. Curr Pharm Biotechnol 11:28–47PubMedPubMedCentralCrossRefGoogle Scholar
  3. Aiello AE, King NB, Foxman B (2006) Ethical conflicts in public health research and practice. Am J Public Health 96:1910–1914PubMedPubMedCentralCrossRefGoogle Scholar
  4. Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J (2010) Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol 8:251–259PubMedCrossRefPubMedCentralGoogle Scholar
  5. Atlas RA, Maloy SED (2014) One health, people, animals, and the environment. ASM Press, Washington, DCGoogle Scholar
  6. Baquero F, Coque TM, Canton R (2003) Antibiotics, complexity and evolution. ASM News 69:547–552Google Scholar
  7. Benner SA (2010) Defining life. Astrobiology 10:1021–1030PubMedPubMedCentralCrossRefGoogle Scholar
  8. Britton RA, Cani PD (2018) Bugs as drugs. ASM Press, Washington, DCCrossRefGoogle Scholar
  9. Brower V (2012) US court reverses gene patent ruling for BRCA1 and BRC2. Lancet Oncol 12:835CrossRefGoogle Scholar
  10. Brüssow H (2009) The not so universal tree of life or the place of viruses in the living world. Phil Trans R Soc B 364:2263–2274PubMedCrossRefPubMedCentralGoogle Scholar
  11. Brüssow H (2012) What is needed for phage therapy to become a reality in Western medicine? Virology 434:138–142PubMedCrossRefPubMedCentralGoogle Scholar
  12. Brzuszkiewicz E, Thurmer A, Schuldes J, Leinbach A, Lieregang H, Meyer FD, Boelter J, Petersen H, Gottschalk G, Daniel R (2011) Genome sequence analyses of two isolates from the recent Eschericha coli outbreak in Germany reveal the emergence of a new pathogen type Entero-aggregative-Haemorhagic-Escherichia coli (EAHEC). Arch Microbiol 193:883–891PubMedPubMedCentralCrossRefGoogle Scholar
  13. Buckling A, Rainey PB (2002) Antagonistic coevolution between a bacterium and a bacteriophage. Proc Biol Sci 269:931–936PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bush K, Courvalin P, Dantas G, Davies J, Eisenstein B, Huovinen P, Jacoby GA, Kishony R, Kreiswirth BN, Kutter E, Lerner SA, Levy S, Lewis K, Lomovskaya O, Miller JH, Mobashery S, Piddock LJV, Projan S, Thomas CM, Tomasz A, Tulkens PM, Walsh TR, Watson JD, Witkowski J, Witte W, Wright G, Yeh P, Zgurskaya HI (2011) Tackling antibiotic resistance. Nat Rev Microbiol 9:894–896PubMedPubMedCentralCrossRefGoogle Scholar
  15. Cassini A, Högberg LD, Plachouras D, Quattrocchi A, Hoxha A, Simonsen GS, Colomb-Cotinat M, Kretzschmar ME, Devleesschauwer B, Cecchini M, Ouakrim DA, Oliveira TC, Struelens MJ, Suetens C, Monnet DL, Burden of AMR Collaborative Group (2019) Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European economic area in 2015: a population-level modelling analysis. Lancet Infect Dis 19:56–66PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chanishvili N (2009) A literature review of the practical application of bacteriophage research. UK HPA, Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi, GeorgiaGoogle Scholar
  17. Cleland CE (2007) Epistemological issues in the study of microbial life: alternative terran biospheres? Stud Hist Phil Biol Biomed Sci 38:847–861CrossRefGoogle Scholar
  18. Conlon-Bingham GM, Aldeyab M, Scott M, Kearney MP, Farren D, Gilmore F, McElnay J (2019) Effects of antibiotic cycling policy on incidence of healthcare-associated MRSA and Clostridioides difficile infection in secondary healthcare settings. Emerg Infect Dis 25:52–62PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cooper MA, Shlaes D (2011) Fix the antibiotics pipeline. Nature 472:32PubMedCrossRefPubMedCentralGoogle Scholar
  20. Corbellini G (2008) Evolution based medicine (EBM), an epistemological framework for thinking of, and dealing with the so called “crisis of medicine”. J Hist Med 20:115–139Google Scholar
  21. Danner M-C, Robertson A, Behrends V, Reiss J (2019) Antibiotic pollution in surface fresh waters: occurrence and effects. Sci Total Environ 664:793–804PubMedCrossRefPubMedCentralGoogle Scholar
  22. Darwin C (1968) The origin of species. Penguin Classics, Penguin Group, London, UKGoogle Scholar
  23. De Vos D, Verbeken G, Ceulemans C, Huys I, Pirnay J-P (2014) Reintroducing phage therapy in modern medicine: the regulatory and intellectual property hurdles, Ch. 12. In: Borysowski J, Miedzybrodski R, Gorski A (eds) Phage therapy, current research and applications. Caister Academic Press, New YorkGoogle Scholar
  24. Djebara S, Maussen C, De Vos D, Merabishvili M, Damanet B, Pang KW, De Leenheer P, Strachinaru I, Soentjens P, Pirnay J-P (2019) Processing phage therapy requests in a Brussels Military Hospital: lessons identified. Viruses 11:265PubMedCentralCrossRefGoogle Scholar
  25. European Parliament (2003) Commission Directive 2003/63/EC of 25 June 2003 amending Directive 2001/83/EC of the European Parliament and the council of the Community code relating to medicinal products for human use. Official Journal of the European Union (translated into Belgian Law by Royal decree of 04.03.2004, published in the Belgian Official Journal on 10.03.2004)Google Scholar
  26. European Parliament (2004) Directive 2001/83/EC of the European Parliament and of the Council of 6 November 2001 on the Community code relating to medicinal products for human use. Official Journal of the European Communities (translated into Belgian Law by Royal Decree of 04.03.2004, published in the Belgian Official Journal on 10.03.2004)Google Scholar
  27. Faruque SM, Naser IB, Islam MJ, Faruque ASG, Ghosh AN, Nair GB, Sack DA, Mekalanos JJ (2005a) Seasonal epidemics of cholera inversely correlate with the prevalence of environmental cholera phages. Proc Natl Acad Sci USA 102:1701–1707Google Scholar
  28. Faruque SM, Islam MJ, Ahmad QS, Faruque ASG, Sack DA, Nair GB, Mekalanos JJ (2005b) Self-limiting nature of seasonal cholera epidemics: role of host-mediated amplification of phage. Proc Natl Acad Sci USA 102:6119–6124PubMedCrossRefPubMedCentralGoogle Scholar
  29. Fauconnier A (2019) Phage therapy regulation: from night to down. Viruses 11:352–360PubMedCentralCrossRefGoogle Scholar
  30. Forterre P (2001) Genomics and early cellular evolution, the origin of the DNA world. Life Sci 324:1067–1076Google Scholar
  31. Forterre P (2006) The origin of viruses and their possible role in major evolutionary transitions. Virus Res 117:5–16PubMedCrossRefPubMedCentralGoogle Scholar
  32. Gilmore BF (2012) Bacteriophages as anti-infective agents: recent developments and regulatory challenges. Expert Rev Anti Infect Ther 10:533–535PubMedCrossRefPubMedCentralGoogle Scholar
  33. Gold ER, Kaplan W, Orbinski J, Harland-Logan S, N-Marandi S (2009) Are patents impeding medical care and innovation? PLoS Med 7:e1000208CrossRefGoogle Scholar
  34. Honigsbaum M (2018) Superbugs and us. Lancet 319:420CrossRefGoogle Scholar
  35. Human D, Fluss SS (2001) The World Medical Association’s declaration of Helsinki: historical and contemporary perspectives. http://www.wma.net
  36. Jault P, Leclerc T, Jennes S, Pirnay J-P, Que Y, Resh G, Rousseau AF, Ravat F, Carsin H, Le Floch R, Schaal JV, Soler C, Fevre C, Arnaud I, Bretaudeau L, Gabard J (2019) Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (Phagoburn): a randomised, controlled, double-blind phase ½ trial. Lancet Infect Dis 19:35–45CrossRefGoogle Scholar
  37. Jennes S, Merabishvili M, Soentjens P, Pang KW, Rose T, Keersebilck E, Soete O, François P-M, Teodorescu S, Verween G, Verbeken G, De Vos D, Pirnay J-P (2017) Use of bacteriophages in the treatment of colistin-only-sensitive Pseudomonas aeruginosa septicaemia in a patient with acute kidney injury – a case report. Crit Care 21:129PubMedPubMedCentralCrossRefGoogle Scholar
  38. Jernberg C, Löfmark S, Edlund C, Jansson JK (2010) Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology 156:3216–3223PubMedCrossRefPubMedCentralGoogle Scholar
  39. Kapczynski A (2009) Innovation policy for a new era. J Law Med Ethics 37:264–268PubMedCrossRefPubMedCentralGoogle Scholar
  40. Karkey A, Thwaites GE, Baker S (2018) The evolution of antimicrobial resistance in Salmonella typhi. Curr Opin Gastroenterol 34:25–30PubMedCrossRefPubMedCentralGoogle Scholar
  41. Kesselheim AS (2010) Using market-exclusivity incentives to promote pharmaceutical innovation. N Engl J Med 363:1855–1862PubMedCrossRefPubMedCentralGoogle Scholar
  42. Khawaldeh A, Morales S, Dillon B, Alavidze Z, Ginn AN, Thomas L, Chapman SJ, Dublanchet A, Smithyman A, Iredell JR (2011) Bacteriophage therapy for refractory Pseudomonas aeruginosa urinary tract infection. J Med Microbiol 60:1697–1700CrossRefGoogle Scholar
  43. Kittler S, Wittmann J, Mengden RALP, Klein G, Rohde C, Lehnherr H (2017) The use of bacteriophages as one-health approach to reduce multidrug-resistant bacteria. Sustain Chem Pharm.  https://doi.org/10.1016/j.scp.2016.06.001 CrossRefGoogle Scholar
  44. Koonin EV, Starokadomsky P (2017) Are viruses alive? The replicator paradigm sheds decisive light on an old but misguided question. Stud Hist Philos Biomed Sci 59:125–134CrossRefGoogle Scholar
  45. Kumarasamy K, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, Chaudhary U, Doumith M, Giske CG, Irfan S, Krishnan P, Kumar AV, Maharjan S, Mushtaq S, Noorie T, Paterson DL, Pearson A, Perry C, Pike R, Rao B, Ray U, Sarma JB, Sharma M, Sheridan E, Thirunarayan MA, Turton J, Upadhyay S, Warner M, Welfare W, Livermore DM, Woodford N (2010) Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 10:597–602PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kutateladze M, Adamia R (2010) Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol 28:591–595PubMedPubMedCentralCrossRefGoogle Scholar
  47. Leibovici L, Paul M, Ezra O (2012) Ethical dilemmas in antibiotic treatment. J Antimicrob Chemother 67:12–16PubMedCrossRefPubMedCentralGoogle Scholar
  48. Levy SB, Marshal B (2004) Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 10:S122–S129PubMedCrossRefGoogle Scholar
  49. Li R, Jay JA, Stenstrom MK (2019) Fate of antibiotic resistance genes and antibiotic-resistance bacteria in water resource recovery facilities. Water Environ Res 91:5–20PubMedCrossRefPubMedCentralGoogle Scholar
  50. Ma W (2016) The essence of life. Biol Direct 11:49.  https://doi.org/10.1186/s13062-016-0150-5 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Martinez JL, Baquero F (2002) Interactions among strategies associated with bacterial infection: pathogenicity, epidemicity, and antibiotic resistance. Clin Microbiol Rev 15:647–679PubMedPubMedCentralCrossRefGoogle Scholar
  52. Mayr E (2004) What makes biology unique? Considerations on the autonomy of a discipline. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  53. Mi S, Lee X, Li X-P, Veldman G, Finnerty H, Racie L, LaVilie E, Tang X-Y, Edouard P, Howes S, Keith JC, McCoy JM (2000) Syncitin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403:785–789PubMedCrossRefPubMedCentralGoogle Scholar
  54. Möller-Gundersen K, Nygaard Jensen J, Bjerrum L, Plejdrup Hansen M (2019) Short-course vs long course antibiotic treatment for community-acquired pneumonia: a literature review. Basic Clin Pharmacol Toxicol 124:550–559PubMedCrossRefPubMedCentralGoogle Scholar
  55. Parracho HM, Burrowes BH, Enright MC, McConville ML, Harper DR (2012) The role of regulated clinical trials in the development of bacteriophage therapeutics. J Mol Genet Med 6:279–286PubMedPubMedCentralCrossRefGoogle Scholar
  56. Paterson IK, Hoyle A, Ochoa G, Baker-Austin C, Taylor NGH (2016) Optimizing antibiotic usage to treat bacterial infections. Sci Rep 6:37853PubMedPubMedCentralCrossRefGoogle Scholar
  57. Patey O, McCallin S, Mazure H, Liddle M, Smithyman A, Dublanchet A (2018) Clinical indications and compassionate use of phage therapy: personal experience and literature review with a focus on osteoarticular infections. Viruses 11:11CrossRefGoogle Scholar
  58. Phoba MF, Barbé B, Lunguya O, Masendu L, Lulengwa D, Dougan G, Wong VK, Bertrand S, Ceyssens PJ, Jacobs J ea (2017) Salmonella enterica serovar Typhi producing CTX-M-15 extended spectrum beta-lactamase in the Democratic Republic of the Congo. Clin Infect Dis 65:1229–1231PubMedPubMedCentralCrossRefGoogle Scholar
  59. Pirnay J-P, Verbeken G, Ceyssens P-J, Huys I, De Vos D, Ameloot C, fauconnier A (2018) The magistral phage. Viruses 10.  https://doi.org/10.3390/v10020064 CrossRefGoogle Scholar
  60. Podolski SH (2018) The evolving response to antibiotic resistance (1945–2018). Palgrave Commun 4:124CrossRefGoogle Scholar
  61. Raoult D, Forterre P (2008) Redefining viruses: lessons from the mimivirus. Nat Rev Microbiol 6:315–319PubMedCrossRefPubMedCentralGoogle Scholar
  62. Renjie L, Jay JA, Stenstrom MK (2019) Fate of antibiotic resistance genes and antibiotic-resistant bacteria in water resource recovery facilities. Water Environ Res 91:5–20CrossRefGoogle Scholar
  63. Selgelid MJ (2007) Ethics and drug resistance. Bioethics 21:218–229PubMedCrossRefPubMedCentralGoogle Scholar
  64. Servick K (2016) DRUG DEVELOPMENT. Beleaguered phage therapy trial presses on. Science 352:1506PubMedCrossRefPubMedCentralGoogle Scholar
  65. Shanks N, Pyles RA (2007) Evolution and medicine: the long reach of “Dr. Darwin”. Philos Ethics Humanit Med 24.  https://doi.org/10.1186/1747-5341-2-4 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Spellberg B, Tyalor-Blake B (2013) On the exoneration of Dr. William H. Stuart: debunking an urban legend. Infect Dis Poverty 2:3PubMedPubMedCentralCrossRefGoogle Scholar
  67. Taubman A (2008) The international patent system and biomedical research: reconciling aspiration, policy and practice. AAPS J 10:526–536PubMedPubMedCentralCrossRefGoogle Scholar
  68. Thiel K (2004) Old dogma, new tricks – 21st century phage therapy. Nat Biotechnol 22:31–36PubMedCrossRefPubMedCentralGoogle Scholar
  69. Tirard S, Morange M, Lazcano A (2010) The definition of life: a brief history of an elusive scientific endeavor. Astrobiology 10:1003–1009PubMedCrossRefPubMedCentralGoogle Scholar
  70. Torres-Barcello C (2018) The disparate effects of bacteriophages on antibiotic-resistant bacteria. Emerg Microbes Infect 7:168CrossRefGoogle Scholar
  71. Torres-Barcello C, Hochberg ME (2016) Evolutionary rationale for phages as complements of antibiotics. Trends Microbiol 24:249–256CrossRefGoogle Scholar
  72. Valenti R (2012) Time, evolution and physical reductionism. EMBO Rep 13:181–185CrossRefGoogle Scholar
  73. Van Overwalle G (2009) Gene patents and collaborative licensing models, patent pools, clearing houses, open source models and liability regimes. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  74. Van Overwalle G (2010) Turning patent swords into shares. Science 230:1630–1631CrossRefGoogle Scholar
  75. Verbeken G, De Vos D, Vaneechoutte M, Merabishvili M, Zizi M, Pirnay J-P (2007) European regulatory conundrum of phage therapy. Future Microbiol 2:485–491PubMedPubMedCentralCrossRefGoogle Scholar
  76. Verbeken G, Pirnay J-P, De Vos D, Jennes S, Zizi M, Lavigne R, Casteels M, Huys I (2012) Optimizing the European regulatory framework for sustainable bacteriophage therapy in human medicine. Arch Immunol Ther Exp 60:161–172CrossRefGoogle Scholar
  77. Ward P (2005) Life as we do not know it. Viking Penguin, New YorkGoogle Scholar
  78. Williams PD (2010) Darwinian interventions: taming pathogens through evolutionary ecology. Trends Parasitol 26:83–92PubMedCrossRefPubMedCentralGoogle Scholar
  79. World Medical Association (2008) Declaration of Helsinki. Ethical principles for medical research involving human subjects. http://www.wma.net/en/30publications/10policies/b3/index.html. Accessed Jan 2012

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Daniel De Vos
    • 1
    Email author
  • Gilbert Verbeken
    • 1
    • 2
  • Johan Quintens
    • 3
  • Jean-Paul Pirnay
    • 1
  1. 1.Laboratory for Molecular and Cellular Technology (LabMCT)Queen Astrid Military HospitalBrusselsBelgium
  2. 2.QA/QC and regulatory affairs, Laboratory for Molecular and Cellular TechnologyQueen Astrid Military HospitalBrusselsBelgium
  3. 3.Vésale BioscienceNoville sur MehaigneBelgium

Personalised recommendations