Pleural Disease

  • José Cárdenas-GarcíaEmail author
  • Fabien Maldonado


Pleural diseases are common in the critically ill patient. These include not only pleural effusions of different etiologies, but also pneumothoraces, hemothoraces and rarely pleural tumors. Pleural effusions, if large, can affect gas exchange, hemodynamic stability and respiratory dynamics (Brogi E, et al. Crit Care 21(1):325, 2017). This chapter is aimed at clinicians on the frontline, with the goal to provide the latest evidence on pleural disease in critically ill patients, outlining the principles of general management and areas of future research.


Pleural disease Pneumothorax Critical care illness 




Conflicts of Interest: J.C.G. and F.M.: This work in original and all authors meet the criteria for authorship, including acceptance of responsibility for the scientific content of the manuscript. This paper is not under consideration in any other Journal and all the authors have read and approved the content of the manuscript.

No potential conflict of interest exists with any companies or organizations whose products or services may be discussed in this article. This paper has not been funded by the National Institutes of Health (NIH), the Wellcome Trust or their agencies.

Supplementary material

Video 34.1

Isoechoic pleural effusion. This video shows a large isoechoic left sided pleural effusion. Increased ultrasonographic echogenicity of the pleural fluid suggests an exudative process (MOV 4165 kb)

Video 34.2

Large pleural effusion. This video shows a simple large anechoic pleural effusion in a patient with fluid overload. Notice the absence of both hematocrit sign and septations (MOV 3800 kb)

Video 34.3

Simple right sided pleural effusion with trapped lung. This video shows a large anechoic right sided pleural effusion in a patient with hepatic hydrothorax. Notice the minimal movement of the atelectactic lung. Pleural manometry showed initial negative pleural pressures, confirming non-reexpandable (trapped) lung (MOV 4531 kb)

Video 34.4

Small left sided pleural effusion. This video shows a simple anechoic small pleural effusion. These finding in the vast majority of critical care patients is not of major clinical significance and should be monitored (MOV 5196 kb)

Video 34.5

Complicated parapneumonic pleural effusion. This video shows a large right sided pleural effusion, with multiple mobile echoic lines (septations) within the pleural space, a finding suggestive of complicated parapneumonic pleural effusion. The pleural fluid analysis confirmed biliothorax (MOV 3806 kb)

Video 34.6

Left sided hydropneumothorax. This video shows a moderate size left sided pleural effusion with air leak, in the setting of an esophageal perforation.The multiple mobile hyperechoic foci represent the bubbles of air in the pleural space (MOV 3854 kb)

Video 34.7

Pigtail in pleural effusion. This video shows the presence of two parallel curvilinear hyperechoic lines within a large pleural effusion representing the tip of the pigtail (MOV 8998 kb)

Video 34.8

Vascular ultrasound, identification of intercostal artery. This video shows a normal intercostal artery located at the lower border of the proximal rib, identified as a pulsatile red area using color Doppler (MOV 4175 kb)

Video 34.9

Lung point. This video shows a “lung point” sign, which confirms the presence of pneumothorax. The pleural drainage catheter should be placed cephalad to this area. (MOV 4290 kb)


  1. 1.
    Brogi E, et al. Thoracic ultrasound for pleural effusion in the intensive care unit: a narrative review from diagnosis to treatment. Crit Care. 2017;21(1):325.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Mattison LE, et al. Pleural effusions in the medical ICU: prevalence, causes, and clinical implications. Chest. 1997;111(4):1018–23.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Maslove DM, et al. The diagnosis and management of pleural effusions in the ICU. J Intensive Care Med. 2013;28(1):24–36.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Azoulay E. Pleural effusions in the intensive care unit. Curr Opin Pulm Med. 2003;9(4):291–7.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Fartoukh M, et al. Clinically documented pleural effusions in medical ICU patients: how useful is routine thoracentesis? Chest. 2002;121(1):178–84.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Light RW, et al. Pleural effusions: the diagnostic separation of transudates and exudates. Ann Intern Med. 1972;77(4):507–13.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Yeh JH, et al. Cautious application of pleural N-terminal pro-B-type natriuretic peptide in diagnosis of congestive heart failure pleural effusions among critically ill patients. PLoS One. 2014;9(12):e115301.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Menzies SM, et al. Blood culture bottle culture of pleural fluid in pleural infection. Thorax. 2011;66(8):658–62.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Psallidas I, et al. A pilot feasibility study in establishing the role of ultrasound-guided pleural biopsies in pleural infection (The AUDIO Study). Chest. 2018;154(4):766–72.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lichtenstein D, et al. Comparative diagnostic performances of auscultation, chest radiography, and lung ultrasonography in acute respiratory distress syndrome. Anesthesiology. 2004;100(1):9–15.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Lichtenstein D, et al. Feasibility and safety of ultrasound-aided thoracentesis in mechanically ventilated patients. Intensive Care Med. 1999;25(9):955–8.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Koh DM, et al. Transthoracic US of the chest: clinical uses and applications. Radiographics. 2002;22(1):e1.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Xirouchaki N, et al. Lung ultrasound in critically ill patients: comparison with bedside chest radiography. Intensive Care Med. 2011;37(9):1488–93.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hallifax RJ, et al. State-of-the-art: radiological investigation of pleural disease. Respir Med. 2017;124:88–99.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Cardenas-Garcia J, Mayo PH. Bedside ultrasonography for the intensivist. Crit Care Clin. 2015;31(1):43–66.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Cardenas-Garcia J, Huggins JT. Chapter 11: Lung and pleural procedures. In: Soni N, Arntfield R, Kory P, editors. Point of Care Ultrasound. 2nd Ed. New York: Elsevier, 2019. p. 92–105.Google Scholar
  17. 17.
    Yang PC, et al. Value of sonography in determining the nature of pleural effusion: analysis of 320 cases. AJR Am J Roentgenol. 1992;159(1):29–33.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mason AC, et al. Accuracy of CT for the detection of pleural adhesions: correlation with video-assisted thoracoscopic surgery. Chest. 1999;115(2):423–7.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Shen KR, et al. The American Association for Thoracic Surgery consensus guidelines for the management of empyema. J Thorac Cardiovasc Surg. 2017;153(6):e129–46.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Vignon P, et al. Quantitative assessment of pleural effusion in critically ill patients by means of ultrasonography. Crit Care Med. 2005;33(8):1757–63.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Balik M, et al. Ultrasound estimation of volume of pleural fluid in mechanically ventilated patients. Intensive Care Med. 2006;32(2):318–21.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Remerand F, et al. Multiplane ultrasound approach to quantify pleural effusion at the bedside. Intensive Care Med. 2010;36(4):656–64.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Rocco M, et al. Diagnostic accuracy of bedside ultrasonography in the ICU: feasibility of detecting pulmonary effusion and lung contusion in patients on respiratory support after severe blunt thoracic trauma. Acta Anaesthesiol Scand. 2008;52(6):776–84.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Sasse S, et al. The effects of early chest tube placement on empyema resolution. Chest. 1997;111(6):1679–83.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Storm HK, et al. Treatment of pleural empyema secondary to pneumonia: thoracocentesis regimen versus tube drainage. Thorax. 1992;47(10):821–4.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ferguson AD, et al. The clinical course and management of thoracic empyema. QJM. 1996;89(4):285–9.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Letheulle J, et al. Iterative thoracentesis as first-line treatment of complicated parapneumonic effusion. PLoS One. 2014;9(1):e84788.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Jouneau S, Letheulle J, Desrues B. Repeated therapeutic thoracentesis to manage complicated parapneumonic effusions. Curr Opin Pulm Med. 2015;21(4):387–92.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Freixinet Gilart J, et al. Guidelines for the diagnosis and treatment of thoracic traumatism. Arch Bronconeumol. 2011;47(1):41–9.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Karmy-Jones R, et al. Timing of urgent thoracotomy for hemorrhage after trauma: a multicenter study. Arch Surg. 2001;136(5):513–8.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Harrison HB, et al. An experimental model of hemothorax autotransfusion: impact on coagulation. Am J Surg. 2014;208(6):1078–82; discussion 1082CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    MacDuff A, Arnold A, Harvey J. Management of spontaneous pneumothorax: British Thoracic Society Pleural Disease Guideline 2010. Thorax. 2010;65(Suppl 2):ii18–31.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Karacabey S, et al. Use of ultrasonography for differentiation between bullae and pneumothorax. Emerg Radiol. 2019;26(1):15–9.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Rahman NM, et al. The relationship between chest tube size and clinical outcome in pleural infection. Chest. 2010;137(3):536–43.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Davies HE, Davies RJ, Davies CW. Management of pleural infection in adults: British Thoracic Society Pleural Disease Guideline 2010. Thorax. 2010;65(Suppl 2):ii41–53.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Matin TN, Gleeson FV. Interventional radiology of pleural diseases. Respirology. 2011;16(3):419–29.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Millikan JS, et al. Complications of tube thoracostomy for acute trauma. Am J Surg. 1980;140(6):738–41.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Bauman ZM, et al. A prospective study of 7-year experience using percutaneous 14-French pigtail catheters for traumatic hemothorax/hemopneumothorax at a level-1 trauma center: size still does not matter. World J Surg. 2018;42(1):107–13.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kulvatunyou N, et al. Two-year experience of using pigtail catheters to treat traumatic pneumothorax: a changing trend. J Trauma. 2011;71(5):1104–7; discussion 1107CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Havelock T, et al. Pleural procedures and thoracic ultrasound: British Thoracic Society Pleural Disease Guideline. Thorax. 2010;65(Suppl 2):ii61–76.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Patel MD, Joshi SD. Abnormal preprocedural international normalized ratio and platelet counts are not associated with increased bleeding complications after ultrasound-guided thoracentesis. AJR Am J Roentgenol. 2011;197(1):W164–8.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Zalt MB, et al. Effect of routine clopidogrel use on bleeding complications after ultrasound-guided thoracentesis. J Bronchol Interv Pulmonol. 2012;19(4):284–7.CrossRefGoogle Scholar
  43. 43.
    Dammert P, Pratter M, Boujaoude Z. Safety of ultrasound-guided small-bore chest tube insertion in patients on clopidogrel. J Bronchol Interv Pulmonol. 2013;20(1):16–20.CrossRefGoogle Scholar
  44. 44.
    Hibbert RM, et al. Safety of ultrasound-guided thoracentesis in patients with abnormal preprocedural coagulation parameters. Chest. 2013;144(2):456–63.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Mahmood K, et al. Hemorrhagic complications of thoracentesis and small-bore chest tube placement in patients taking clopidogrel. Ann Am Thorac Soc. 2014;11(1):73–9.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Puchalski J. Thoracentesis and the risks for bleeding: a new era. Curr Opin Pulm Med. 2014;20(4):377–84.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Salamonsen M, et al. Physician-performed ultrasound can accurately screen for a vulnerable intercostal artery prior to chest drainage procedures. Respirology. 2013;18(6):942–7.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Maldonado F. Gravity-Versus Suction-driven Large Volume Thoracentesis (GRAVITAS). 2018 Dec 02 2018]; identifier: NCT03591952].
  49. 49.
    Ray, A.S., et al., Unilateral thoracentesis via manual drainage vs vacuum bottle suction: a randomized trial. In: ATS 2018. San Diego Convention Center; 2018.Google Scholar
  50. 50.
    French DG, et al. Optimizing postoperative care protocols in thoracic surgery: best evidence and new technology. J Thorac Dis. 2016;8(Suppl 1):S3–S11.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Lang P, et al. Suction on chest drains following lung resection: evidence and practice are not aligned. Eur J Cardiothorac Surg. 2016;49(2):611–6.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Porcel JM. Chest tube drainage of the pleural space: a concise review for pulmonologists. Tuberc Respir Dis (Seoul). 2018;81(2):106–15.CrossRefGoogle Scholar
  53. 53.
    Bjerregaard LS, et al. Early chest tube removal after video-assisted thoracic surgery lobectomy with serous fluid production up to 500 ml/day. Eur J Cardiothorac Surg. 2014;45(2):241–6.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Zhang Y, et al. A prospective randomized single-blind control study of volume threshold for chest tube removal following lobectomy. World J Surg. 2014;38(1):60–7.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Xie HY, et al. A prospective randomized, controlled trial deems a drainage of 300 ml/day safe before removal of the last chest drain after video-assisted thoracoscopic surgery lobectomy. Interact Cardiovasc Thorac Surg. 2015;21(2):200–5.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Davis JW, et al. Randomized study of algorithms for discontinuing tube thoracostomy drainage. J Am Coll Surg. 1994;179(5):553–7.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Martino K, et al. Prospective randomized trial of thoracostomy removal algorithms. J Trauma. 1999;46(3):369–71; discussion 372–3CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Pompili C, et al. Multicenter international randomized comparison of objective and subjective outcomes between electronic and traditional chest drainage systems. Ann Thorac Surg. 2014;98(2):490–6; discussion 496–7CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Skouras V, Awdankiewicz A, Light RW. What size parapneumonic effusions should be sampled? Thorax. 2010;65(1):91.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Moffett BK, et al. Computed tomography measurements of parapneumonic effusion indicative of thoracentesis. Eur Respir J. 2011;38(6):1406–11.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Rahman NM, et al. Intrapleural use of tissue plasminogen activator and DNase in pleural infection. N Engl J Med. 2011;365(6):518–26.CrossRefGoogle Scholar
  62. 62.
    Idell S, Rahman NM. Intrapleural fibrinolytic therapy for empyema and pleural loculation: knowns and unknowns. Ann Am Thorac Soc. 2018;15(5):515–7.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Scarci M, et al. EACTS expert consensus statement for surgical management of pleural empyema. Eur J Cardiothorac Surg. 2015;48(5):642–53.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Wait MA, et al. A randomized trial of empyema therapy. Chest. 1997;111(6):1548–51.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Petrakis IE, et al. Video-assisted thoracoscopic surgery for thoracic empyema: primarily, or after fibrinolytic therapy failure? Am J Surg. 2004;187(4):471–4.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Muhammad MI. Management of complicated parapneumonic effusion and empyema using different treatment modalities. Asian Cardiovasc Thorac Ann. 2012;20(2):177–81.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Maskell NA, et al. U.K. controlled trial of intrapleural streptokinase for pleural infection. N Engl J Med. 2005;352(9):865–74.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Razazi K, et al. Effects of pleural effusion drainage on oxygenation, respiratory mechanics, and hemodynamics in mechanically ventilated patients. Ann Am Thorac Soc. 2014;11(7):1018–24.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Walden AP, Garrard CS, Salmon J. Sustained effects of thoracocentesis on oxygenation in mechanically ventilated patients. Respirology. 2010;15(6):986–92.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Harris A, O’Driscoll BR, Turkington PM. Survey of major complications of intercostal chest drain insertion in the UK. Postgrad Med J. 2010;86(1012):68–72.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Light R. Pleural diseases. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2013. p. 86–127.Google Scholar
  72. 72.
    Heffner JE, Brown LK, Barbieri CA. Diagnostic value of tests that discriminate between exudative and transudative pleural effusions. Primary Study Investigators. Chest. 1997;111(4):970–80.Google Scholar
  73. 73.
    Porcel JM, et al. Bayesian analysis using continuous likelihood ratios for identifying pleural exudates. Respir Med. 2006;100(11):1960–5.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Roth BJ, O’Meara TF, Cragun WH. The serum-effusion albumin gradient in the evaluation of pleural effusions. Chest. 1990;98(3):546–9.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Everts RJ, et al. Validity of cultures of fluid collected through drainage catheters versus those obtained by direct aspiration. J Clin Microbiol. 2001;39(1):66–8.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Huggins JT. Chylothorax and cholesterol pleural effusion. Semin Respir Crit Care Med. 2010;31(6):743–50.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Austin A, et al. The Urinothorax: a comprehensive review with case series. Am J Med Sci. 2017;354(1):44–53.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Delco F, et al. Spontaneous biliothorax (thoracobilia) following cholecystopleural fistula presenting as an acute respiratory insufficiency. Successful removal of gallstones from the pleural space. Chest. 1994;106(3):961–3.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Porcaro F, et al. Pleural effusion from intrathoracic migration of a ventriculo-peritoneal shunt catheter: pediatric case report and review of the literature. Ital J Pediatr. 2018;44(1):42.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Lew SQ. Hydrothorax: pleural effusion associated with peritoneal dialysis. Perit Dial Int. 2010;30(1):13–8.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Balbir-Gurman A, et al. Rheumatoid pleural effusion. Semin Arthritis Rheum. 2006;35(6):368–78.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Rooper LM, Ali SZ, Olson MT. A minimum fluid volume of 75 mL is needed to ensure adequacy in a pleural effusion: a retrospective analysis of 2540 cases. Cancer Cytopathol. 2014;122(9):657–65.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2020

Authors and Affiliations

  1. 1.Division of Pulmonary and Critical Care MedicineUniversity of MichiganAnn ArborUSA
  2. 2.Division of Pulmonary and Critical Care MedicineVanderbilt UniversityNashvilleUSA

Personalised recommendations