Ventilatory Modes: Pressure Support Ventilation and Other Ventilatory Options

  • Pasquale Buonanno
  • Maria VargasEmail author
  • Giuseppe Servillo


Pressure support ventilation is a pressure-targeted, flow-cycled, mode of ventilation in which each breath must be patient-triggered (Fig. 22.1). Thus, respiratory rate is determined by the patient; the ventilator is able to sense patient’s respiratory effort which is immediately supported by a pressure set by the operator [1]. The time of pressurization can be determined and it is defined Rise Time. At the beginning of inspiration, the difference of pressure between the ventilator and the lung is highest so the inspiratory flow reaches its peak; as the air is pushed in the alveoli, the pressure of respiratory system of patient increases and the difference of pressure between the ventilator and the patient decreases so the flow starts to linearly decline. The pressure support stops when the inspiratory flow decreases under a value (called expiratory trigger) set by the operator, so the inspiratory time is variable and flow dependent. Expiratory trigger can be an absolute value (typically ranging from 2 to 6 L/min) or a percentage of the inspiratory peak flow; some ventilators fix a limit for inspiratory duration to prevent the prolongation of inspiration in case of circuit leakage. Expiration is determined by the withdrawal of pressure support so it is totally passive; a PEEP (positive end-expiratory pressure) can be set to avoid atelectasis.


  1. 1.
    Brochard L, Lellouche F. Pressure support ventilation. In: Tobin MJ, editor. Principles and practice of mechanical ventilation. 2nd ed. New York: McGraw-Hill; 2006. p. 221–50.Google Scholar
  2. 2.
    Aslanian P, El Atrous S, Isabey D, Valente E, Corsi D, Harf A, Lemaire F, Brochard L. Effects of flow triggering on breathing effort during partial ventilatory support. Am J Respir Crit Care Med. 1998;157(1):135–43.PubMedCrossRefGoogle Scholar
  3. 3.
    Beydon L, Chasse M, Harf A, Lemaire F. Inspiratory work of breathing during spontaneous ventilation using demand valves and continuous flow systems. Am Rev Respir Dis. 1988;138(2):300–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Samodelov LF, Falke KJ. Total inspiratory work with modern demand valve devices compared to continuous flow CPAP. Intensive Care Med. 1988;14(6):632–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Cox D, Tinloi SF, Farrimond JG. Investigation of the spontaneous modes of breathing of different ventilators. Intensive Care Med. 1988;14(5):532–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Stell IM, Paul G, Lee KC, Ponte J, Moxham J. Noninvasive ventilator triggering in chronic obstructive pulmonary disease. A test lung comparison. Am J Respir Crit Care Med. 2001;164(11):2092–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Brochard L, Harf A, Lorino H, Lemaire F. Inspiratory pressure support prevents diaphragmatic fatigue during weaning from mechanical ventilation. Am Rev Respir Dis. 1989;139(2):513–21.PubMedCrossRefGoogle Scholar
  8. 8.
    Tokioka H, Saito S, Kosaka F. Effect of pressure support ventilation on breathing patterns and respiratory work. Intensive Care Med. 1989;15(8):491–4.PubMedCrossRefGoogle Scholar
  9. 9.
    Chiumello D, Pelosi P, Taccone P, Slutsky A, Gattinoni L. Effect of different inspiratory rise time and cycling off criteria during pressure support ventilation in patients recovering from acute lung injury. Crit Care Med. 2003;31(11):2604–10.PubMedCrossRefGoogle Scholar
  10. 10.
    MacIntyre NR, Ho LI. Effects of initial flow rate and breath termination criteria on pressure support ventilation. Chest. 1991;99(1):134–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Tassaux D, Gainnier M, Battisti A, Jolliet P. Impact of expiratory trigger setting on delayed cycling and inspiratory muscle workload. Am J Respir Crit Care Med. 2005;172(10):1283–9. Epub 2005 Aug 18.PubMedCrossRefGoogle Scholar
  12. 12.
    Tokioka H, Tanaka T, Ishizu T, Fukushima T, Iwaki T, Nakamura Y, Kosogabe Y. The effect of breath termination criterion on breathing patterns and the work of breathing during pressure support ventilation. Anesth Analg. 2001;92(1):161–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Tobin MJ, Jubran A, Laghi F. Patient-ventilator interaction. Am J Respir Crit Care Med. 2001;163(5):1059–63.PubMedCrossRefGoogle Scholar
  14. 14.
    Sassoon CS, Foster GT. Patient-ventilator asynchrony. Curr Opin Crit Care. 2001;7(1):28–33.PubMedCrossRefGoogle Scholar
  15. 15.
    Tassaux D, Michotte JB, Gainnier M, Gratadour P, Fonseca S, Jolliet P. Expiratory trigger setting in pressure support ventilation: from mathematical model to bedside. Crit Care Med. 2004;32(9):1844–50.PubMedCrossRefGoogle Scholar
  16. 16.
    Sassoon CS. Ventilator-associated diaphragmatic dysfunction. Am J Respir Crit Care Med. 2002;166(8):1017–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Sassoon CS, Zhu E, Caiozzo VJ. Assist-control mechanical ventilation attenuates ventilator-induced diaphragmatic dysfunction. Am J Respir Crit Care Med. 2004;170(6):626–32. Epub 2004 Jun 16.PubMedCrossRefGoogle Scholar
  18. 18.
    Esteban A, Anzueto A, Frutos F, Alía I, Brochard L, Stewart TE, Benito S, Epstein SK, Apezteguía C, Nightingale P, Arroliga AC, Tobin MJ, Mechanical Ventilation International Study Group. Characteristics and outcomes in adult patients receiving mechanical ventilation: a 28-day international study. JAMA. 2002;287(3):345–55.PubMedCrossRefGoogle Scholar
  19. 19.
    Ezingeard E, Diconne E, Guyomarc’h S, Venet C, Page D, Gery P, Vermesch R, Bertrand M, Pingat J, Tardy B, Bertrand JC, Zeni F. Weaning from mechanical ventilation with pressure support in patients failing a T-tube trial of spontaneous breathing. Intensive Care Med. 2006;32(1):165–9. Epub 2005 Nov 10.PubMedCrossRefGoogle Scholar
  20. 20.
    Carlucci A, Richard JC, Wysocki M, Lepage E, Brochard L, SRLF Collaborative Group on Mechanical Ventilation. Noninvasive versus conventional mechanical ventilation. An epidemiologic survey. Am J Respir Crit Care Med. 2001;163(4):874–80.PubMedCrossRefGoogle Scholar
  21. 21.
    Stock MC, Downs JB, Frolicher DA. Airway pressure release ventilation. Crit Care Med. 1987;15(5):462–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Putensen C, Mutz NJ, Putensen-Himmer G, Zinserling J. Spontaneous breathing during ventilatory support improves ventilation-perfusion distributions in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 1999;159(4 Pt 1):1241–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Putensen C, Räsänen J, López FA. Ventilation-perfusion distributions during mechanical ventilation with superimposed spontaneous breathing in canine lung injury. Am J Respir Crit Care Med. 1994;150(1):101–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Habashi NM. Other approaches to open-lung ventilation: airway pressure release ventilation. Crit Care Med. 2005;33(3 Suppl):S228–40.PubMedCrossRefGoogle Scholar
  25. 25.
    Kaplan LJ, Bailey H, Formosa V. Airway pressure release ventilation increases cardiac performance in patients with acute lung injury/adult respiratory distress syndrome. Crit Care. 2001;5(4):221–6.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Putensen C, Zech C, Wrigge H, Zinserling J, Stüber F, Von Spiegel T, et al. Long term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med. 2001;164:43–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Hering R, Zinserling J, Wrigge H, Varelmann D, Berg A, Kreyer S, et al. Effects of spontaneous breathing during airway pressure release ventilation on respiratory work and muscle blood flow in experimental lung injury. Chest. 2005;128:2991–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Hering R, Veihofer A, Zinserling J, Wrigge H, Kreyer S, Berg A, et al. Effects of spontaneous breathing during airway pressure release ventilation on intestinal blood flow in experimental lung injury. Anesthesiology. 2003;99:1137–44.PubMedCrossRefGoogle Scholar
  29. 29.
    Putensen C, Muders T. Should we breathe quiet or noisy? Crit Care. 2014;18(2):116. Scholar
  30. 30.
    Kiss T, Koch T, Gama de Abreu M. Potential clinical applications of variable ventilation. Netherlands J Crit Care. 2012;16(3):79–83.Google Scholar
  31. 31.
    Carvalho AR, Spieth PM, Güldner A, Cuevas M, Carvalho NC, Beda A, Spieth S, Stroczynski C, Wiedemann B, Koch T, Pelosi P, de Abreu MG. Distribution of regional lung aeration and perfusion during conventional and noisy pressure support ventilation in experimental lung injury. J Appl Physiol (1985). 2011;110(4):1083–92. Epub 2011 Jan 26.CrossRefGoogle Scholar
  32. 32.
    Arold SP, Suki B, Alencar AM, Lutchen KR, Ingenito EP. Variable ventilation induces endogenous surfactant release in normal Guinea pigs. Am J Physiol Lung Cell Mol Physiol. 2003;285(2):L370–5.PubMedCrossRefGoogle Scholar
  33. 33.
    Ma B, Suki B, Bates JH. Effects of recruitment/derecruitment dynamics on the efficacy of variable ventilation. J Appl Physiol (1985). 2011;110(5):1319–26. Epub 2011 Mar 3.CrossRefGoogle Scholar
  34. 34.
    Lefevre GR, Kowalski SE, Girling LG, Thiessen DB, Mutch WA. Improved arterial oxygenation after oleic acid lung injury in the pig using a computer-controlled mechanical ventilator. Am J Respir Crit Care Med. 1996;154(5):1567–72.PubMedCrossRefGoogle Scholar
  35. 35.
    Gama de Abreu M, Spieth PM, Pelosi P, Carvalho AR, Walter C, Schreiber-Ferstl A, Aikele P, Neykova B, Hübler M, Koch T. Noisy pressure support ventilation: a pilot study on a new assisted ventilation mode in experimental lung injury. Crit Care Med. 2008;36(3):818–27. Scholar
  36. 36.
    Baum M, Benzer H, Putensen C, Koller W, Putz G. Biphasic positive airway pressure (BIPAP)—a new form of augmented ventilation. Anaesthesist. 1989;38(9):452–8.PubMedGoogle Scholar
  37. 37.
    Downs JB, Stock MC. Airway pressure release ventilation: a new concept in ventilatory support. Crit Care Med. 1987;15(5):459–61.PubMedCrossRefGoogle Scholar
  38. 38.
    Tobin MJ, Laghi F, Jubran A. Respiratory muscle dysfunction in mechanically-ventilated patients. Mol Cell Biochem. 1998;179(1–2):87–98.PubMedCrossRefGoogle Scholar
  39. 39.
    Thille AW, Rodriguez P, Cabello B, Lellouche F, Brochard L. Patient-ventilator asynchrony during assisted mechanical ventilation. Intensive Care Med. 2006;32(10):1515–22. Epub 2006 Aug 1.PubMedCrossRefGoogle Scholar
  40. 40.
    Chao DC, Scheinhorn DJ, Stearn-Hassenpflug M. Patient-ventilator trigger asynchrony in prolonged mechanical ventilation. Chest. 1997;112(6):1592–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Younes M. Proportional-assist ventilation. In: Tobin MJ, editor. Principles and practice of mechanical ventilation. 2nd ed. New York: McGraw-Hill; 2006. p. 335–64.Google Scholar
  42. 42.
    Sinderby C, Navalesi P, Beck J, Skrobik Y, Comtois N, Friberg S, Gottfried SB, Lindström L. Neural control of mechanical ventilation in respiratory failure. Nat Med. 1999;5(12):1433–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Lourenço RV, Cherniack NS, Malm JR, Fishman AP. Nervous output from the respiratory center during obstructed breathing. J Appl Physiol. 1966;21(2):527–33.PubMedCrossRefGoogle Scholar
  44. 44.
    Navalesi P, Costa R. New modes of mechanical ventilation: proportional assist ventilation, neurally adjusted ventilatory assist, and fractal ventilation. Curr Opin Crit Care. 2003;9(1):51–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Brander L, Moerer O, Hedenstierna G, Beck J, Takala J, Slutsky AS, Sinderby C. Neural control of ventilation prevents both over-distension and de-recruitment of experimentally injured lungs. Respir Physiol Neurobiol. 2017;237:57–67. Epub 2016 Dec 22.PubMedCrossRefGoogle Scholar
  46. 46.
    Schmidt M, Demoule A, Cracco C, Gharbi A, Fiamma MN, Straus C, Duguet A, Gottfried SB, Similowski T. Neurally adjusted ventilatory assist increases respiratory variability and complexity in acute respiratory failure. Anesthesiology. 2010;112(3):670–81. Scholar
  47. 47.
    Younes M. Proportional assist ventilation, a new approach to ventilatory support. Theory. Am Rev Respir Dis. 1992;145(1):114–20.PubMedCrossRefGoogle Scholar
  48. 48.
    Beck J, Campoccia F, Allo JC, Brander L, Brunet F, Slutsky AS, Sinderby C. Improved synchrony and respiratory unloading by neurally adjusted ventilatory assist (NAVA) in lung-injured rabbits. Pediatr Res. 2007;61(3):289–94.PubMedCrossRefGoogle Scholar
  49. 49.
    Costa R, Spinazzola G, Cipriani F, Ferrone G, Festa O, Arcangeli A, Antonelli M, Proietti R, Conti G. A physiologic comparison of proportional assist ventilation with load-adjustable gain factors (PAV+) versus pressure support ventilation (PSV). Intensive Care Med. 2011;37(9):1494–500. Epub 2011 Jul 1.PubMedCrossRefGoogle Scholar
  50. 50.
    Grasso S, Puntillo F, Mascia L, Ancona G, Fiore T, Bruno F, Slutsky AS, Ranieri VM. Compensation for increase in respiratory workload during mechanical ventilation. Pressure-support versus proportional-assist ventilation. Am J Respir Crit Care Med. 2000;161(3 Pt 1):819–26.PubMedCrossRefGoogle Scholar
  51. 51.
    Ranieri VM, Giuliani R, Mascia L, Grasso S, Petruzzelli V, Puntillo N, Perchiazzi G, Fiore T, Brienza A. Patient-ventilator interaction during acute hypercapnia: pressure-support vs. proportional-assist ventilation. J Appl Physiol (1985). 1996;81(1):426–36.CrossRefGoogle Scholar
  52. 52.
    Grasso S, Ranieri VM. Proportional assist ventilation. Respir Care Clin N Am. 2001;7(3):465–73, ix–xPubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Pasquale Buonanno
    • 1
  • Maria Vargas
    • 1
    Email author
  • Giuseppe Servillo
    • 1
  1. 1.Department of Neurosciences, Reproductive and Odontostomatological SciencesUniversity of Naples “Federico II”NaplesItaly

Personalised recommendations