Advertisement

Plant Growth-Promoting Bacterial Life at High Salt Concentrations: Genetic Variability

  • Ritika Kapoor
  • S. S. Kanwar
Chapter

Abstract

Abiotic stresses are emerging environmental factors limiting agricultural productivity around the world. Among these stresses, salt stress is a serious threat affecting crop production especially in arid and semiarid regions of the world. Development of strategies to ameliorate deleterious effects of salt stress on plants has received considerable attention. In this scenario, the use of salt-tolerant plant growth-promoting microorganisms to enhance salinity resilience in crops is encouraged due to their vital interactions with crop plants. Bacteria are widely used to diminish deleterious impacts of high salinity on crop plants because they possess various direct and indirect plant growth-promoting characteristics. This chapter focuses on the effect of salt stress on plants, plant growth-promoting bacterial survival in saline conditions, and their mechanisms to mitigate salt stress at genetic level.

Keywords

Salinity Rhizobacteria Stress amelioration nhaA gene 

References

  1. Alkoby D, Rimon A, Burdak M, Patino-Ruiz M, Calinescu O (2014) NhaA Na+/H+ antiporter mutants that hardly react to the membrane potential. PLoS One 9:e93200PubMedPubMedCentralCrossRefGoogle Scholar
  2. Allam NG, Kinany R, El-Refai E, Ali WY (2018) Potential use of beneficial salt tolerant bacteria for improving wheat productivity grown in salinized soil. J Microbiol Res 8:43–53.  https://doi.org/10.5923/j.microbiology.20180802.03 CrossRefGoogle Scholar
  3. Azhar E, Van Cleemput O, Verstraete W (1989) The effect of sodium chlorate and nitrapyrin on the nitrification mediated nitrosation process in soils. Plant Soil 116:133–139CrossRefGoogle Scholar
  4. Brown AD (1976) Microbial water stress. Bacteriol Rev 40:803–846PubMedPubMedCentralGoogle Scholar
  5. Chen M, Wei H, Cao J, Liu R, Wang Y, Zheng C (2007) Expression of Bacillus subtilis proBA genes and reduction of feedback inhibition of proline synthesis increases proline production and confers osmotolerance in transgenic Arabidopsis. J Biochem Mol Biol 40:396–403PubMedPubMedCentralGoogle Scholar
  6. Chowdhury SP, Schmid M, Hartmann A, Tripathi AK (2007) Identification of diazotrophs in the culturable bacterial community associated with roots of Lasiurus sindicus, a perennial grass of Thar Desert, India. Microb Ecol 54:82–90PubMedCrossRefPubMedCentralGoogle Scholar
  7. Cordovilla MP, Ligero F, Lluch C (1994) The effect of salinity on N fixation and assimilation in Vicia faba. J Exp Bot 45:1483–1488CrossRefGoogle Scholar
  8. Das A, Dutta BK, Barooah AK (2013) In vitro solubilization of inorganic phosphate by phosphate solubilizing fungi isolated from tea agroecosystem soil of Barak Valley, Southern Assam. Int J Microbiol Res 4:336–341Google Scholar
  9. DasSarma S, DasSarma P (2012) Halophiles. In: eLS. Wiley, ChichesterGoogle Scholar
  10. Dave SR, Desai HB (2006) Microbial diversity at marine salterns near Bhavnagar, Gujarat, India. Curr Sci 90:497–500Google Scholar
  11. De la Vega MG, Cejudo FJ, Paneque A (1991) Production of exocellular polysaccharide by Azotobacter chroococcum. Appl Biochem Biotechnol 30:273–284PubMedCrossRefGoogle Scholar
  12. Durham DR, Stewart DB, Stellwag EJ (1987) Novel alkaline and heat stable proteases from alkalophilic Bacillus sp. Strain GX 6638. J Bacteriol 169:2262–2768Google Scholar
  13. Eisenberg H, Wachtel EJ (1987) Structural studies of halophilic proteins, ribosomes, and organelles of bacteria adapted to extreme salt concentrations. Annu Rev Biophys Biophys Chem 16:69–92PubMedCrossRefGoogle Scholar
  14. El-Shinnawi MM, Omran MS, Abo El-Naga SA (1982) Denitrification in soil saturated with saline water. Appl Microbiol Biotechnol 43:1099–1106Google Scholar
  15. Etesami H, Beattie GA (2017) Plant-microbe interactions in adaptation of agricultural crops to abiotic stress conditions. In: Kumar V, Kumar M, Sharma S, Prasad R (eds) Probiotics and plant health. Springer, Singapore, pp 163–200CrossRefGoogle Scholar
  16. Etesami H, Alikhani HA, Akbari A (2009) Evaluation of plant growth hormones production (IAA) ability by Iranian soils rhizobial strains and effects of superior strains application on wheat growth indexes. World Appl Sci J 6:1576–1584Google Scholar
  17. Gal SW, Choi YJ (2003) Isolation and characterization of salt tolerance Rhizobia from Acacia root nodules. Agric Chem Biotechnol 46:58–62Google Scholar
  18. Gao H, Bail J, He X, Zhao Q, Lu Q, Wang J (2014) High temperature and salinity enhance soil nitrogen mineralization in a tidal freshwater marsh. PLoS One 9:e95011PubMedPubMedCentralCrossRefGoogle Scholar
  19. Gerchman Y, Olami Y, Rimon A, Taglicht D, Schuldiner S, Padan E (1993) Histidine-226 is part of the pH sensor of NhaA, a Na+/H+ antiporter in Escherichia coli. PNAS 90:1212–1216PubMedCrossRefPubMedCentralGoogle Scholar
  20. Gopalkrishnan S, Upadhyaya HD, Vadlamudi S, Humayun P, Vidya MS, Alekhya G, Singh A, Vijyabharathi Bhimineni RK, Seema M, Rathore RO (2012) Plant growth promoting traits of biocontrol potential bacteria isolated from rice rhizosphere. Springerplus 1:71–76CrossRefGoogle Scholar
  21. Hasnain S, Taskeen N (1989) Characterization of salt tolerant bacteria isolated from the rhizosphere of Leptochloa fusca and Atritplex rhocodoidaes. Pak J Pharm Sci 2:55–57Google Scholar
  22. Hedi A, Sadfi N, Fardeau M-L, Rebib H, Cayol J-L, Ollivier B, Boudabous A (2009) Studies on the biodiversity of halophilic microorganisms isolated from El-Djerid salt lake (Tunisia) under aerobic conditions. Int Microbiol 9:731786Google Scholar
  23. Hiramatsu T, Kodama K, Kuroda T, Mizushima T, Tsuchiya T (1998) A putative multisubunit Na+/H+ antiporter from Staphylococcus aureus. J Bacteriol 180:6642–6648PubMedPubMedCentralGoogle Scholar
  24. Horikoshi K (1971) Production of alkaline enzyme by alkalophilic microorganisms. Part II. Alkaline amylase produced by Bacillus No. A-40-2. Agric Biol Chem 35:1783–1791CrossRefGoogle Scholar
  25. Ibekwe AM, Poss JA, Grattan SR, Grieve CM, Suarez D (2010) Bacterial diversity in cucumber (Cucumis sativus) rhizosphere in response to salinity, soil pH, and boron. Soil Biol Biochem 42:567–575CrossRefGoogle Scholar
  26. Inaba M, Sakamoto A, Murata N (2001) Functional expression in Escherichia coli of low-affinity and high-affinity Na +(Li+)/H+ antiporters of Synechocystis. J Bacteriol 183:1376–1384PubMedPubMedCentralCrossRefGoogle Scholar
  27. Inoue H, Nuomi T, Tsuchiya T, Kanzawa H (1995) Essential aspartic acid residues, Asp-133, Asp-163 and Asp-164, in the transmembrane helices of a Na+/H+antiporter (NhaA) from Escherichia coli. FEBS Lett 363:264–268PubMedCrossRefGoogle Scholar
  28. Islam R, Trivedi P, Madhaiyan M, seshadre S, Lee G, Yang J, Kim Y, Kim M, Han G, Chauhan PS, Sa T (2010) Isolation, enumeration, and characterization of diazotrophic bacteria from paddy soil sample under long term fertilizer management experiment. Biol Fertil Soils 46:261–269CrossRefGoogle Scholar
  29. Ivey DM, Guffanti AA, Zemsky J (1993) Cloning and characterization of a putative Ca2+/H+ antiporter gene from Escherichia coli upon functional complementation of Na+/H+ antiporter-deficient strains by the overexpressed gene. J Biol Chem 268:11296–11303PubMedGoogle Scholar
  30. Kapoor R (2014) Bacterial diversity of salt tolerant nitrogen fixers around the salt mines of Himachal Pradesh. PhD Thesis. CSKHPKV, Palampur (HP)Google Scholar
  31. Kapoor R, Gupta MK, kumar N, Kanwar SS (2017) Analysis of nhaA gene from salt tolerant and plant growth promoting Enterobacter ludwigii. Rhizosphere 4:62–69.  https://doi.org/10.1016/j.rhisph.2017.07.002 CrossRefGoogle Scholar
  32. Klahn S, Marquardt DM, Rollwitz I, Hagemann M (2009) Expression of the ggpPS gene for glucosylglycerol biosynthesis from Azotobacter vinelandii improves the salt tolerance of Arabidopsis thaliana. J Exp Bot 60(6):1679–1689PubMedPubMedCentralCrossRefGoogle Scholar
  33. Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth promoting rhizobacteria. Nature 286:885–886CrossRefGoogle Scholar
  34. Kuroda T, Shimamoto T, Inaba K, Tsuda M, Tsuchiya T (1994) Properties and sequence of the NhaA Na1/H1 antiporter of Vibrio parahaemolyticus. J Biochem 116:1030–1038PubMedCrossRefPubMedCentralGoogle Scholar
  35. Lippert K, Galinski EA (1992) Enzyme stabilization by ectoine-type compatible solutes: protection against heating, freezing and drying. Appl Microbiol Biotechnol 37:61–65CrossRefGoogle Scholar
  36. Loganathan P, Nair S (2004) Swaminathania salitolerans gen. nov. sp. nov., a salt-tolerant nitrogen-fixing and phosphate solubilizing bacterium from wild rice (Porteresia coarctata Tateoka). Int J Syst Evol Microbiol 54:1185–1190PubMedCrossRefPubMedCentralGoogle Scholar
  37. Majernik A, Gottschalk G, Daniel R (2001) Screening of environmental DNA libraries for the presence of genes conferring Na+(Li+)/H+antiporter activity on Escherichia coli: characterization of the recovered genes and the corresponding gene products. J Bacteriol 183:6645–6653PubMedPubMedCentralCrossRefGoogle Scholar
  38. Miller KJ, Wood JM (1996) Osmoadaptation by rhizosphere bacteria. Annu Rev Microbiol 50:101–136PubMedCrossRefPubMedCentralGoogle Scholar
  39. Mrkovacki N, Mezei S, Kovacev L (1996) Effect of Azotobacter inoculation on dry matter mass and nitrogen content in the hybrid varieties of sugar beet. A Periodical of Scientific Research on Field and Vegetable Crops 25:107–113Google Scholar
  40. Nada AMK, Refaat MH, Abdel-Sabour MS, Hassan AM, Abd El Kader MM (2011) Molecular studies on EctC gene (Ectoine) in some halophilic bacterial isolates. Researcher 3:34–42Google Scholar
  41. Nakamura T, Komano Y, Itaya E, Tsukamoto K, Tsuchiya T, Unemoto T (1994) Cloning and sequencing of an Na+/H+ antiporter gene from the marine bacterium Vibrio alginolyticus. Biochim Biophys Acta 1190:465–468PubMedCrossRefPubMedCentralGoogle Scholar
  42. Nakbanpote W, Panitlurtumpai N, Sangdee A, Sakulpone N, Sirisom P, Pimthong A (2014) Salt-tolerant and plant growth-promoting bacteria isolated from Zn/Cd contaminated soil: identification and effect on rice under saline conditions. J Plant Interact 9:379–387CrossRefGoogle Scholar
  43. Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270PubMedCrossRefPubMedCentralGoogle Scholar
  44. Nogales J, Campos R, BenAbdelkhalek H, Olivares J, Lluch C, Sanjuan J (2002) Rhizobium tropici genes involved in free-living salt tolerance are required for the establishing of efficient nitrogen-fixing symbiosis with Phaseolus vulgaris. Mol Plant-Microbe Interact 15:225–232PubMedCrossRefPubMedCentralGoogle Scholar
  45. Nozaki K, Inaba K, Kuroda T, Tsuda M, Tsuchiya T (1996) Cloning and sequencing of the gene for Na+/H+ antiporter of Vibrio parahaemolyticus. Biochem Biophys Res Commun 222:774–779PubMedCrossRefPubMedCentralGoogle Scholar
  46. Nozaki K, Kuroda T, Mizuschima T, Tsuchiya T (1998) A new Na+/H+ antiporter, NhaD, of Vibrio parahaemolyticus. Biochim Biophys Acta 1369:213–220PubMedCrossRefPubMedCentralGoogle Scholar
  47. Nuomi TH, Inoue T, Tsuchiya ST, Kanzawa H (1997) Identification and characterization of functional residues in a Na+/H+ antiporter (NhaA) from Escherichia coli by random mutagenesis. J Biochem 121:661–670CrossRefGoogle Scholar
  48. Padan E (2014) Functional and structural dynamics of NhaA, a prototype for Na+ and H+ antiporters, which are responsible for Na+ and H+ homeostasis in cells. Biochim Biophys Acta 1837:1047–1062PubMedCrossRefPubMedCentralGoogle Scholar
  49. Padan E, Venturi M, Gerchman Y, Dover N (2001) Na(+)/H(+) antiporters. Biochim Biophys Acta 1505:144–157PubMedCrossRefGoogle Scholar
  50. Park KH, Lee OM, Jung HI, Jeong JH, Jeon YD, Hwang DY, Lee CY, Son HJ (2010) Rapid solubilization of insoluble phosphate by a novel environmental stress-tolerant Burkholderia vietnamiensis M6 isolated from ginseng rhizospheric soil. Appl Microbiol Biotechnol 86:947–955PubMedCrossRefGoogle Scholar
  51. Plemenitas A, Lenassi M, Konte T, Kejzar A, Zajc J, Gostincar C, Cimerman NG (2014) Adaptation to high salt concentrations in halotolerant/Halophilic fungi: a molecular prospective. Front Microbiol 5:199PubMedPubMedCentralGoogle Scholar
  52. Pocard JA, Vincent N, Boncompagni E, Smith LT, Poggi MC, DLe R (1997) Molecular characterization of the bet genes encoding glycine betaine synthesis in Sinorhizobium meliloti 102F34. Microbiology 143:1369–1379PubMedCrossRefGoogle Scholar
  53. Ramadoss D, Lakkineni VK, Bose P, Ali S, Annapurna K (2013) Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. Springerplus 2:6PubMedPubMedCentralCrossRefGoogle Scholar
  54. Rosado AS, de Azevedo FS, da Cruz DW, van Elsasand JD, Seldin L (1998) Phenotypic and genetic diversity of Paenibacillus azotofixans strains isolated from the rhizoplane or rhizosphere soil of different grasses. J Appl Microbiol 84:216–226CrossRefGoogle Scholar
  55. Sahoo RM, Ansari MW, Pradhan M, Dangar TK, Mihanty S, Tuteja M (2014) A novel Azotobacter vinellandii (SRIAz3) functions in salinity stress tolerance in rice. Plant Signal Behav 9:e29377PubMedPubMedCentralCrossRefGoogle Scholar
  56. Sevin DC, Sauer U (2014) Ubiquinone accumulation improves osmotic-stress tolerance in Escherichia coli. Nat Chem Biol 10:266–227PubMedCrossRefGoogle Scholar
  57. Shaheen M, Shah AA, Hameed A, Hasan F (2008) Influence of culture conditions on production and activity of protease from Bacillus subtilis bs1. Pak J Bot 40:2161–2169Google Scholar
  58. Sharan A, Shikha DNS, Gaur R (2008) Xanthomonas compestris, a novel stress tolerant, phosphate solubilizing bacterial strain from saline –alkali soils. World J Microbiol Biotechnol 24:753–759CrossRefGoogle Scholar
  59. Sivaprakasam S, Dhandapani B, Mahadevan S (2011) Optimization studies on production of a salt-tolerant protease from Pseudomonas aeruginosa strain bc1 and its application on tannery saline wastewater treatment. Braz J Microbiol 42:1506–1515PubMedPubMedCentralCrossRefGoogle Scholar
  60. Srinivasan R, Alagawadi AR, Mahesh S, Meena KK, Saxena AK (2012) Characterization of phosphate solubilizing microorganisms from salt-affected soils of India and their effect on growth of sorghum plants Sorghum bicolor (L.). Moench. Ann Microbiol 62:93–105CrossRefGoogle Scholar
  61. Strausak D, Waser M, Solioz M (1993) Functional expression of the Enterococcus hirae NaH-antiporter in Escherichia coli. J Biol Chem 268:26334–26337PubMedPubMedCentralGoogle Scholar
  62. Takashina T, Otozati K, Hamamoto T, Horikoshi K (1994) Isolation of halophilic and halotolerant bacteria from a Japanese salt field and comparison of the partial 16S rRNA gene sequence of an extremely halophilic isolate with those of other extreme halophiles. Biodivers Conserv 3:632–642CrossRefGoogle Scholar
  63. Tiquia SM, Davis D, Hadid H, Kasparian S, Ismail M, Sahly R, Shim J, Singh S, Murray KS (2007) Halophilic and halotolerant bacteria from river waters and shallow groundwater along the Rouge river of southeastern Michigan. Environ Technol 28:297–230PubMedCrossRefPubMedCentralGoogle Scholar
  64. Utsugi J, Inaba K, Kuroda T, Tsuda M, Tsuchiya T (1998) Cloning and sequencing of a novel Na+/H+ antiporter gene from Pseudomonas aeruginosa. Biochim Biophys Acta 1398:330–334PubMedCrossRefPubMedCentralGoogle Scholar
  65. Villegas J, Fortin JA (2002) Phosphorous solubilization and pH changes as a result of the interactions between soil bacteria and arbuscular mycorrhizal fungi on a medium containing NO3 as nitrogen source. Can J Bot 80:571–576CrossRefGoogle Scholar
  66. Vimont S, Berche P (2000) NhaA, an Na1/H1 antiporter involved in environmental survival of Vibrio cholera. J Bacteriol 182:2937–2944PubMedPubMedCentralCrossRefGoogle Scholar
  67. Vivekananthan R, Ravi M, Ramanathan A, Samiyappan R (2004) Lytic enzymes induced by Pseudomonas fluorescene and other biocontrol organisms mediated defence against the anthracnose pathogen in mango. World J Microbiol Bioltechnol 20:235–244CrossRefGoogle Scholar
  68. Watanable N, Ota Y, Minoda Y, Yomada K (1977) Isolation and identification of alkaline lipase producing microorganisms, cultural conditions and some properties of crude enzymes. Agric Biol Chem 41:1353–1358Google Scholar
  69. Wei W, Jiang J, Yang SS (2004) Mutagenesis and complementation of relA from Sinorhizobium meliloti 042BM as a salt tolerance involvement gene. Ann Microbiol 54:317–324Google Scholar
  70. Whiting GJ, Gandy EL, Yoch DC (1986) Tight coupling of root-associated nitrogen fixation and plant photosynthesis in the salt marsh grass Spartina alterniflora and carbon dioxide enhancement of nitrogenase activity. Appl Environ Microbiol 52:108–113PubMedPubMedCentralGoogle Scholar
  71. Zahir ZA, Shah KM, Naveed M, Akhter JM (2010) Substrate dependent auxin production by Rhizobium phaseoli improves the growth and yield of Vignaradiata L. under salt stress conditions. J Microbiol Biotechnol 20:1288–1294PubMedCrossRefPubMedCentralGoogle Scholar
  72. Zahran HH, Moharram AM, Mohammad HA (1992) Some ecological and physiological studies on bacteria isolated from salt affected soils of Egypt. J Basic Microbiol 32:405–413PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ritika Kapoor
    • 1
  • S. S. Kanwar
    • 1
  1. 1. Department of MicrobiologyCSK Himachal Pradesh Agricultural UniversityPalampurIndia

Personalised recommendations