Microbe-Mediated Abiotic Stress Alleviation: Molecular and Biochemical Basis

  • Pandiyan Kuppusamy
  • Samadhan Yuvraj Bagul
  • Sudipta Das
  • Hillol Chakdar


Abiotic stress is one of the major factors limiting the crop production globally. Plants experience diverse abiotic stresses including higher concentration of salt (salinity), temperature extremities, and water shortage (drought or dehydration). Such stressors impair the normal metabolic functioning of the plant leading to poor growth and development. A wide range of adaptations and mitigation strategies are required to efficiently manage the deleterious impacts of such stresses. Development of tolerant varieties, shifting the crop calendars, and resource management practices are some examples of such strategies. However, most of these technologies are cost-intensive and are beyond the reach of the small and marginal farmers. Microorganisms are naturally endowed with the ability to sustain extreme environmental conditions and also help other living beings in vicinity/association to cope with such stress to certain extent. Microorganisms through induction of systemic tolerance, modulation of plant defense mechanisms, and improvement of nutrition and growth can effectively alleviate or reduce the effect of stress. Hence, application of stress-alleviating microorganisms for crop production holds considerable potential to become a sustainable option to combat abiotic stresses.


Abiotic stress Salinity Drought Temperature Systematic tolerance Defense mechanisms 



The authors acknowledge the infrastructural facility provided by ICAR-NBAIM, Mau, under the projects entitled “Deciphering molecular mechanism for eliciting drought tolerance in model plant by drought stress alleviating bacteria”, “Molecular mining of AIMs for abiotic stress tolerance”, and “Bioprospecting extremophilic cyanobacteria for plant growth promoting attributes and high value pigments”.


  1. Agarwal P, Reddy MP, Chikara J (2011) WRKY: its structure, evolutionary relationship, DNA-binding selectivity, role in stress tolerance and development of plants. Mol Biol Rep 38:3883–3896PubMedCrossRefPubMedCentralGoogle Scholar
  2. Ait Barka E, Nowak J, Clément C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72(11):7246–7252. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ali AH, Abdelrahman M, Radwan U et al (2018) Effect of Thermomyces fungal endophyte isolated from extreme hot desert-adapted plant on heat stress tolerance of cucumber. Appl Soil Ecol 124:155–162. CrossRefGoogle Scholar
  4. Aroca R, Porcel R, Ruiz-Lozano JM (2007) How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytol 173(4):808–816. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Barnawal D, Bharti N, Pandey SS et al (2017) Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression. Physiol Plant 161:502–514PubMedCrossRefPubMedCentralGoogle Scholar
  6. Barnwal P, Singh KK, Sharma A et al (2014) Biochemical, antioxidant and thermal properties of cryogenic and ambient ground turmeric powder. Int Agric Eng J 23(1):39–46Google Scholar
  7. Bharti N, Pandey SS, Barnawal D et al (2016) Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci Rep 6:34768. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bresson J, Varoquaux F, Bontpart T et al (2013) The PGPR strain Phyllobacterium brassicacearum STM196 induces a reproductive delay and physiological changes that result in improved drought tolerance in Arabidopsis. New Phytol 200(2):558–569. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chinnusamy V, Zhu J, Zhu JK (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12(10):444–451PubMedCrossRefPubMedCentralGoogle Scholar
  10. Cho SM, Kang BR, Han SH et al (2008) 2R,3R-Butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol Plant-Microbe Interact 21(8):1067–1075. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cohen AC, Bottini R, Piccoli PN (2008) Azospirillum brasilense Sp 245 produces ABA in chemically-defined culture medium and increases ABA content in arabidopsis plants. Plant Growth Regul 54:97–103CrossRefGoogle Scholar
  12. Dastogeer KMG, Li H, Sivasithamparam K et al (2017) Metabolic responses of endophytic Nicotiana benthamiana plants experiencing water stress. Environ Exp Bot 143:59–71. CrossRefGoogle Scholar
  13. de Azevedo Neto AD, Tabosa JN (2000) Salt stress in maize seedlings: part I growth analysis. Rev Bras Eng Agrícola e Ambient 4:159–164CrossRefGoogle Scholar
  14. Ding S, Huang CL, Sheng HM et al (2011) Effect of inoculation with the endophyte Clavibacter sp. strain Enf12 on chilling tolerance in Chorispora bungeana. Physiol Plant 141(2):141–151. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Duc NH, Csintalan Z, Posta K (2018) Arbuscular mycorrhizal fungi mitigate negative effects of combined drought and heat stress on tomato plants. Plant Physiol Biochem 132:297–307. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ebrahim MKH, Saleem A-R (2017) Alleviating salt stress in tomato inoculated with mycorrhizae: photosynthetic performance and enzymatic antioxidants. J Taibah Univ Sci 11:850–860CrossRefGoogle Scholar
  17. Egamberdieva D, Jabborova D, Hashem A (2015) Pseudomonas induces salinity tolerance in cotton (Gossypium hirsutum) and resistance to Fusarium root rot through the modulation of indole-3-acetic acid. Saudi J Biol Sci 22(6):773–779. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Farooq M, Wahid A, Kobayashi N et al (2009) Plant drought stress: effects, mechanisms and management. In: Sustainable agriculture. Springer, Dordrecht, pp 153–188CrossRefGoogle Scholar
  19. Fernandez O, Theocharis A, Bordiec S et al (2012) Burkholderia phytofirmans PsJN acclimates grapevine to cold by modulating carbohydrate metabolism. Mol Plant-Microbe Interact 25(4):496–504. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Figueiredo MVB, Burity HA, Martínez CR, Chanway CP (2008) Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and rhizobium tropici. Appl Soil Ecol 40(1):182–188. CrossRefGoogle Scholar
  21. Finkel OM, Castrillo G, Herrera Paredes S et al (2017) Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol 38:155–163PubMedPubMedCentralCrossRefGoogle Scholar
  22. Gagné-Bourque F, Mayer BF, Charron JB et al (2015) Accelerated growth rate and increased drought stress resilience of the model grass brachypodium distachyon colonized by bacillus subtilis B26. PLoS One 10(6):e0130456. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gagné-Bourque F, Bertrand A, Claessens A et al (2016) Alleviation of drought stress and metabolic changes in Timothy (Phleum pratense L.) colonized with Bacillus subtilis B26. Front Plant Sci 7:584. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Galinski EA, Trüper HG (1994) Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol Rev 15(2–3):95–108. CrossRefGoogle Scholar
  25. Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169(1):30–39. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190(1):63–68. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. In: New perspectives and approaches in plant growth-promoting Rhizobacteria research, pp 329–339CrossRefGoogle Scholar
  28. Gontia I, Kavita K, Schmid M et al (2011) Brachybacterium saurashtrense sp. nov., a halotolerant root-associated bacterium with plant growth-promoting potential. Int J Syst Evol Microbiol 61(Pt 12):2799–2804. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Gou W, Tian L, Ruan Z et al (2015) Accumulation of choline and glycinebetaine and drought stress tolerance induced in maize (Zea mays) by three plant growth promoting rhizobacteria (PGPR) strains. Pakistan J Bot 47(2):581–586Google Scholar
  30. Grover M, Madhubala R, Ali SZ et al (2014) Influence of Bacillus spp. strains on seedling growth and physiological parameters of sorghum under moisture stress conditions. J Basic Microbiol 54(9):951–961. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Gupta G, Parihar SS, Ahirwar NK et al (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7:96–102Google Scholar
  32. Gusain YS, Singh US, Sharma AK (2014) Enhance activity of stress related enzymes in rice (Oryza sativa L.) induced by plant growth promoting fungi under drought stress. Afr J Agric Res 9:1430–1434CrossRefGoogle Scholar
  33. Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49:373–385PubMedCrossRefPubMedCentralGoogle Scholar
  34. Hammer EC, Nasr H, Pallon J et al (2011) Elemental composition of arbuscular mycorrhizal fungi at high salinity. Mycorrhiza 21(2):117–129. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Honma M, Smmomura T (1978) Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric Biol Chem 42:1825–1831. CrossRefGoogle Scholar
  36. Jamil A, Riaz S, Ashraf M, Foolad MR (2011) Gene expression profiling of plants under salt stress. Crit Rev Plant Sci 30:435–458CrossRefGoogle Scholar
  37. Jha Y, Subramanian RB, Patel S (2011) Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress. Acta Physiol Plant 33(3):797–802. CrossRefGoogle Scholar
  38. Kasim WA, Gaafar RM, Abou-Ali RM et al (2016) Effect of biofilm forming plant growth promoting rhizobacteria on salinity tolerance in barley. Ann Agric Sci 61(2):217–227. CrossRefGoogle Scholar
  39. Khan A, Sirajuddin, Zhao XQ et al (2016) Bacillus pumilus enhances tolerance in rice (Oryza sativa L.) to combined stresses of NaCl and high boron due to limited uptake of Na+. Environ Exp Bot 124:120–129. CrossRefGoogle Scholar
  40. Kim K, Jang Y-J, Lee S-M et al (2014) Alleviation of salt stress by Enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by up-regulation of conserved salinity responsive factors in plants. Mol Cells 37:109PubMedPubMedCentralCrossRefGoogle Scholar
  41. Kohler J, Hernández JA, Caravaca F, Roldán A (2008) Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct Plant Biol 35:141–151CrossRefGoogle Scholar
  42. Kumar A, Verma JP (2018) Does plant—microbe interaction confer stress tolerance in plants: a review? Microbiol Res 207:41–52PubMedCrossRefPubMedCentralGoogle Scholar
  43. Kumar KV, Srivastava S, Singh N, Behl HM (2009) Role of metal resistant plant growth promoting bacteria in ameliorating fly ash to the growth of Brassica juncea. J Hazard Mater 170(1):51–57. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Lata R, Chowdhury S, Gond SK, White JF (2018) Induction of abiotic stress tolerance in plants by endophytic microbes. Lett Appl Microbiol 66(4):268–276PubMedCrossRefPubMedCentralGoogle Scholar
  45. Lee Y, Krishnamoorthy R, Selvakumar G et al (2015) Alleviation of salt stress in maize plant by co-inoculation of arbuscular mycorrhizal fungi and Methylobacterium oryzae CBMB20. J Korean Soc Appl Biol Chem 58(4):553–540. CrossRefGoogle Scholar
  46. Li Q, Yin M, Li Y et al (2015) Expression of Brassica napus TTG2, a regulator of trichome development, increases plant sensitivity to salt stress by suppressing the expression of auxin biosynthesis genes. J Exp Bot 66:5821–5836PubMedPubMedCentralCrossRefGoogle Scholar
  47. Li H, Lei P, Pang X et al (2017) Enhanced tolerance to salt stress in canola (Brassica napus L.) seedlings inoculated with the halotolerant Enterobacter cloacae HSNJ4. Appl Soil Ecol 119:26–34CrossRefGoogle Scholar
  48. Lim JH, Kim SD (2013) Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. Plant Pathol J 29(2):201–208. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Lim CW, Baek W, Jung J et al (2015) Function of ABA in stomatal defense against biotic and drought stresses. Int J Mol Sci 16(7):15251–15270PubMedPubMedCentralCrossRefGoogle Scholar
  50. Liu F, Xing S, Ma H et al (2013) Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Appl Microbiol Biotechnol 97(20):9155–9164. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Ma Y, Rajkumar M, Moreno A et al (2017) Serpentine endophytic bacterium Pseudomonas azotoformans ASS1 accelerates phytoremediation of soil metals under drought stress. Chemosphere 185:75–85. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Matsubara Y, Ishioka C, Maya MA et al (2014) Bioregulation potential of arbuscular mycorrhizal fungi on heat stress and anthracnose tolerance in cyclamen. Acta Hortic 1037:813–818. CrossRefGoogle Scholar
  53. Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572PubMedCrossRefPubMedCentralGoogle Scholar
  54. Meena KK, Sorty AM, Bitla UM et al (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the Omics strategies. Front Plant Sci 8:172. CrossRefPubMedPubMedCentralGoogle Scholar
  55. Miller KJ, Wood JM (1996) Osmoadaptation by Rhizosphere bacteria. Annu Rev Microbiol 50:101–136. CrossRefPubMedPubMedCentralGoogle Scholar
  56. Milosevic N, Marinkovic J, Tintor B (2012) Mitigating abiotic stress in crop plants by microorganisms. Zb Matice Srp za Prir Nauk 2012(123):17–26. CrossRefGoogle Scholar
  57. Mishra PK, Bisht SC, Ruwari P et al (2011) Alleviation of cold stress in inoculated wheat (Triticum aestivum L.) seedlings with psychrotolerant pseudomonads from NW Himalayas. Arch Microbiol 193(7):497–513. CrossRefPubMedPubMedCentralGoogle Scholar
  58. Naseem H, Bano A (2014) Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. J Plant Interact 9:589–701. CrossRefGoogle Scholar
  59. Nautiyal CS, Srivastava S, Chauhan PS et al (2013) Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol Biochem 66:1–9PubMedCrossRefPubMedCentralGoogle Scholar
  60. Naveed M, Mitter B, Reichenauer TG et al (2014) Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environ Exp Bot 97:30–39. CrossRefGoogle Scholar
  61. Naya L, Ladrera R, Ramos J et al (2007) The response of carbon metabolism and antioxidant Defenses of alfalfa nodules to drought stress and to the subsequent recovery of plants. Plant Physiol 144(2):1104–1114. CrossRefPubMedPubMedCentralGoogle Scholar
  62. Nidhi B, Pandey SS, Barnwal D, Patel VK, Kalra A (2016) Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci Rep 6:34768. CrossRefGoogle Scholar
  63. Niu SQ, Li HR, Paré PW et al (2016) Induced growth promotion and higher salt tolerance in the halophyte grass Puccinellia tenuiflora by beneficial rhizobacteria. Plant Soil 407(1–7):217–230. CrossRefGoogle Scholar
  64. Orhan F (2016) Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum). Brazilian J Microbiol 47(3):621–627. CrossRefGoogle Scholar
  65. Palaniyandi SA, Damodharan K, Yang SH, Suh JW (2014) Streptomyces sp. strain PGPA39 alleviates salt stress and promotes growth of ‘micro Tom’tomato plants. J Appl Microbiol 117:766–773PubMedCrossRefPubMedCentralGoogle Scholar
  66. Pandey V, Ansari MW, Tula S et al (2016) Dose-dependent response of Trichoderma harzianum in improving drought tolerance in rice genotypes. Planta 243(5):1251–1264. CrossRefPubMedPubMedCentralGoogle Scholar
  67. Pereyra MA, García P, Colabelli MN et al (2012) A better water status in wheat seedlings induced by Azospirillum under osmotic stress is related to morphological changes in xylem vessels of the coleoptile. Appl Soil Ecol 53:94–97. CrossRefGoogle Scholar
  68. Petrova OE, Sauer K (2016) Escaping the biofilm in more than one way: desorption, detachment or dispersion. Curr Opin Microbiol 30:67–78PubMedPubMedCentralCrossRefGoogle Scholar
  69. Porcel R, Aroca R, Azcón R, Ruiz-Lozano JM (2006) PIP aquaporin gene expression in arbuscular mycorrhizal Glycine max and Lactuca sativa plants in relation to drought stress tolerance. Plant Mol Biol 60(3):389–404. CrossRefPubMedPubMedCentralGoogle Scholar
  70. Rabab AM, Reda EA (2018) Synergistic effect of arbuscular mycorrhizal fungi on growth and physiology of salt-stressed Trigonella foenum-graecum plants. Biocatal Agric Biotechnol 16(6):538–544Google Scholar
  71. Radhakrishnan R, Lee IJ (2015) Penicillium-sesame interactions: a remedy for mitigating high salinity stress effects on primary and defense metabolites in plants. Environ Exp Bot 116:47–60. CrossRefGoogle Scholar
  72. Rouhier N, Koh CS, Gelhaye E et al (2008) Redox based anti-oxidant systems in plants: biochemical and structural analyses. Biochim Biophys Acta Gen Subj 1780:1249–1260CrossRefGoogle Scholar
  73. Saikia J, Sarma RK, Dhandia R et al (2018) Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. Sci Rep 8(1):3560. CrossRefPubMedPubMedCentralGoogle Scholar
  74. Sairam RK, Srivastava GC, Agarwal S, Meena RC (2005) Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biol Plant 49:85. CrossRefGoogle Scholar
  75. Sandhya V, Ali S, Grover M et al (2009a) Pseudomonas sp. strain P45 protects sunflowers seedlings from drought stress through improved soil structure. J Oilseed Res 26:600–601Google Scholar
  76. Sandhya V, Ali SKZ, Grover M et al (2009b) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-p45. Biol Fertil Soils 46(1):17–26. CrossRefGoogle Scholar
  77. Sarkar A, Ghosh PK, Pramanik K et al (2017) A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Res Microbiol 169(1):20–32PubMedCrossRefPubMedCentralGoogle Scholar
  78. Sarkar A, Pramanik K, Mitra S et al (2018a) Enhancement of growth and salt tolerance of rice seedlings by ACC deaminase-producing Burkholderia sp. MTCC 12259. J Plant Physiol 231:434–442PubMedCrossRefPubMedCentralGoogle Scholar
  79. Sarkar J, Chakraborty B, Chakraborty U (2018b) Plant growth promoting Rhizobacteria protect wheat plants against temperature stress through antioxidant signalling and reducing chloroplast and membrane injury. J Plant Growth Regul 37:1396–1412CrossRefGoogle Scholar
  80. Sarma RK, Saikia R (2014) Alleviation of drought stress in mung bean by strain Pseudomonas aeruginosa GGRJ21. Plant Soil 377(1–2):111–126. CrossRefGoogle Scholar
  81. Shahzad R, Khan AL, Bilal S et al (2017a) Plant growth-promoting endophytic bacteria versus pathogenic infections: an example of Bacillus amyloliquefaciens RWL-1 and Fusarium oxysporum f. sp. lycopersici in tomato. PeerJ 5:e3107. CrossRefPubMedPubMedCentralGoogle Scholar
  82. Shahzad R, Khan AL, Bilal S et al (2017b) Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa. Environ Exp Bot 136:68–77. CrossRefGoogle Scholar
  83. Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22(2):123–131PubMedPubMedCentralCrossRefGoogle Scholar
  84. Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140(3–4):339–353CrossRefGoogle Scholar
  85. Singh RP, Jha P, Jha PN (2015) The plant-growth-promoting bacterium Klebsiella sp. SBP-8 confers induced systemic tolerance in wheat (Triticum aestivum) under salt stress. J Plant Physiol 184:57–67PubMedCrossRefPubMedCentralGoogle Scholar
  86. Subramanian P, Mageswari A, Kim K et al (2015) Psychrotolerant endophytic Pseudomonas sp. strains OB155 and OS261 induced chilling resistance in tomato plants (Solanum lycopersicum mill.) by activation of their antioxidant capacity. Mol Plant-Microbe Interact 28(10):1073–1081. CrossRefPubMedPubMedCentralGoogle Scholar
  87. Subramanian P, Kim K, Krishnamoorthy R et al (2016) Cold stress tolerance in psychrotolerant soil bacteria and their conferred chilling resistance in tomato (Solanum lycopersicum mill.) under low temperatures. PLoS One 11(8):e0161592. CrossRefPubMedPubMedCentralGoogle Scholar
  88. Sun C, Johnson JM, Cai D et al (2010) Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J Plant Physiol 167(12):1009–1017. CrossRefGoogle Scholar
  89. Sziderics AH, Rasche F, Trognitz F et al (2007) Bacterial endophytes contribute to abiotic stress adaptation in pepper plants ( Capsicum annuum L.). Can J Microbiol 53(11):1195–1202. CrossRefPubMedPubMedCentralGoogle Scholar
  90. Theocharis A, Bordiec S, Fernandez O et al (2012) Burkholderia phytofirmans PsJN primes Vitis vinifera L. and confers a better tolerance to low nonfreezing temperatures. Mol Plant-Microbe Interact 25(2):241–249. CrossRefPubMedPubMedCentralGoogle Scholar
  91. Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599. CrossRefPubMedPubMedCentralGoogle Scholar
  92. Timmusk S, Wagner EGH (1999) The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant-Microbe Interact 12:951–959PubMedCrossRefPubMedCentralGoogle Scholar
  93. Tiwari S, Lata C, Chauhan PS, Nautiyal CS (2016) Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiol Biochem 99:108–117. CrossRefPubMedPubMedCentralGoogle Scholar
  94. Tripathi P, Singh PC, Mishra A et al (2017) Arsenic tolerant Trichoderma sp. reduces arsenic induced stress in chickpea (Cicer arietinum). Environ Pollut 223:137–145. CrossRefPubMedPubMedCentralGoogle Scholar
  95. Upadhyay SK, Singh JS, Saxena AK, Singh DP (2012) Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biol 14:605–611PubMedCrossRefPubMedCentralGoogle Scholar
  96. Vaishnav A, Choudhary DK (2018) Regulation of drought-responsive gene expression in Glycine max L. Merrill is mediated through Pseudomonas simiae strain AU. J Plant Growth Regul 38(1):333–342CrossRefGoogle Scholar
  97. Vardharajula S, Ali SZ, Grover M et al (2011) Drought-tolerant plant growth promoting bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. J Plant Interact 6(1):1–14. CrossRefGoogle Scholar
  98. Vargas L, Brígida ABS, Mota Filho JP et al (2014) Drought tolerance conferred to sugarcane by association with gluconacetobacter diazotrophicus: a transcriptomic view of hormone pathways. PLoS One 9(12):e114744. CrossRefPubMedPubMedCentralGoogle Scholar
  99. Vílchez JI, García-Fontana C, Román-Naranjo D et al (2016) Plant drought tolerance enhancement by trehalose production of desiccation-tolerant microorganisms. Front Microbiol 7:1577. CrossRefPubMedPubMedCentralGoogle Scholar
  100. Vimal SR, Gupta J, Singh JS (2018a) Effect of salt tolerant Bacillus sp. and Pseudomonas sp. on wheat (Triticum aestivum L.) growth under soil salinity: a comparative study. Microbiol Res (Pavia) 9:1CrossRefGoogle Scholar
  101. Vimal SR, Patel VK, Singh JS (2018b) Plant growth promoting Curtobacterium albidum strain SRV4: an agriculturally important microbe to alleviate salinity stress in paddy plants. Ecol IndicGoogle Scholar
  102. Vurukonda SSKP, Vardharajula S, Shrivastava M, SkZ A (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24PubMedPubMedCentralCrossRefGoogle Scholar
  103. Wang C, Wang C, Gao YL et al (2016) A consortium of three plant growth-promoting Rhizobacterium strains acclimates Lycopersicon esculentum and confers a better tolerance to chilling stress. J Plant Growth Regul 35(1):54–64. CrossRefGoogle Scholar
  104. Xu L, Wang A, Wang J, Wei Q, Zhang W (2017) Piriformospora indica confers drought tolerance on Zea mays L. through enhancement of antioxidant activity and expression of drought-related genes. Crop J 5(3):251–258CrossRefGoogle Scholar
  105. Yan J, Smith MD, Glick BR, Liang Y (2014) Effects of ACC deaminase containing rhizobacteria on plant growth and expression of Toc GTPases in tomato (Solanum lycopersicum) under salt stress. Botany 92(11):775–781. CrossRefGoogle Scholar
  106. Yang J, Kloepper JW, Ryu C-M (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4PubMedCrossRefPubMedCentralGoogle Scholar
  107. Yang S, Vanderbeld B, Wan J, Huang Y (2010) Narrowing down the targets: towards successful genetic engineering of drought-tolerant crops. Mol Plant 3(3):469–490PubMedCrossRefPubMedCentralGoogle Scholar
  108. Yuan DP, Zhang C, Wang ZY et al (2018) RAVL1 activates brassinosteroids and ethylene signaling to modulate response to sheath blight disease in rice. Phytopathology 108(9):1104–1113PubMedCrossRefPubMedCentralGoogle Scholar
  109. Yun P, Xu L, Wang S-S et al (2018) Piriformospora indica improves salinity stress tolerance in Zea mays L. plants by regulating Na+ and K+ loading in root and allocating K+ in shoot. Plant Growth Regul 86:323–331CrossRefGoogle Scholar
  110. Zahir ZA, Munir A, Asghar HN et al (2008) Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J Microbiol Biotechnol 18(5):958–963PubMedPubMedCentralGoogle Scholar
  111. Zaidi NW, Singh M, Kumar S et al (2018) Trichoderma harzianum improves the performance of stress-tolerant rice varieties in rainfed ecologies of Bihar, India. Field Crop Res 220(97):104. CrossRefGoogle Scholar
  112. Zhang H, Kim M-S, Sun Y et al (2008) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant-Microbe Interact 21:737–744PubMedCrossRefPubMedCentralGoogle Scholar
  113. Zhao L, Wang F, Zhang Y, Zhang J (2014) Involvement of Trichoderma asperellum strain T6 in regulating iron acquisition in plants. J Basic Microbiol 54(Suppl 1):S115–S124. CrossRefPubMedPubMedCentralGoogle Scholar
  114. Zhao L, Zhang Y (2015) Effects of phosphate solubilization and phytohormone production of Trichoderma asperellum Q1 on promoting cucumber growth under salt stress. J Integr Agric 14(8):1588–1597CrossRefGoogle Scholar
  115. Zhou S, Hu W, Deng X et al (2012) Overexpression of the wheat aquaporin gene, TaAQP7, enhances drought tolerance in transgenic tobacco. PLoS One 7:e52439PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Pandiyan Kuppusamy
    • 1
  • Samadhan Yuvraj Bagul
    • 1
  • Sudipta Das
    • 1
  • Hillol Chakdar
    • 1
  1. 1. ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM)Kushmaur, Maunath BhanjanIndia

Personalised recommendations