Advertisement

Enzymatic Role in the Degradation of E-waste Pollution

  • Ankita Srivastava
  • Sukriti Jaiswal
  • Niharika Chandra
  • Sunil KumarEmail author
Chapter
Part of the Soil Biology book series (SOILBIOL, volume 57)

Abstract

E-waste pollution due to heavy metals has got worldwide attention. The undesirable persistent property of heavy metals poses a serious threat to the environment as well as plants and animals. It may also lead to several diseases in humans. It has a wide range of scope to stress on cost-effectiveness, suitability, and sustainability of the techniques, which mitigate the effect of change in environment. Contamination of food products also influences anthropogenic change on the environment and exploration of the above prospects. Bioremediation could be the cleaner, safer, cost-effective, and environment-friendly tool for decontamination of a wide range of pollutants. Various biological agents like bacteria, yeast, fungi, algae, and higher plants are used in bioremediation as main tools in treating oil spills and heavy metals pollution. In order to regulate increasing pollution and environmental problems, an endless search for new biological agents is still required. Microorganisms have wide capacity of regulating pollution, but the exact mechanisms are still unknown. Therefore, it is indeed required to review available options to control environmental pollution. The role of enzymes in this way is one of the most recent technology for the management of e-waste.

Keywords

Electronic waste Phytoremediation Toxic metals Recycling Microbial remediation 

Notes

Acknowledgment

Authors thank Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India, and National Institute of Technology, Raipur (CG), India, for continuous support and assistance during the course of research work and scientific writing.

Conflict of Interest

None.

References

  1. Abdullah J, Ahmad M, Heng LY, Karuppiah N, Sidek H (2007) An optical biosensor based on immobilization of laccase and MBTH in stacked films for the detection of catechol. Sensors (Basel) 7:2238–2250.  https://doi.org/10.3390/s7102238 CrossRefGoogle Scholar
  2. Aisenberg G, Rolston KV, Safdar A (2004) Bacteremia caused by Achromobacter and Alcaligenes species in 46 patients with cancer (1989–2003). Cancer 101:2134–2140.  https://doi.org/10.1002/cncr.20604 CrossRefPubMedGoogle Scholar
  3. Akyildiz BN, Kurtoglu S, Kondolot M, Tunc A (2010) Cyanide poisoning caused by ingestion of apricot seeds. Ann Trop Paediatr 30:39–43.  https://doi.org/10.1179/146532810X12637745451951 CrossRefPubMedGoogle Scholar
  4. Alneyadi AH, Shah I, AbuQamar SF, Ashraf SS (2017) Differential degradation and detoxification of an aromatic pollutant by two different peroxidases. Biomol Ther 7:E31.  https://doi.org/10.3390/biom7010031 CrossRefGoogle Scholar
  5. Annamalai J (2015) Occupational health hazards related to informal recycling of E-waste in India: an overview. Indian J Occup Environ Med 19:61–65.  https://doi.org/10.4103/0019-5278.157013 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Ayangbenro AS, Babalola OO (2017) A New strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14:E94.  https://doi.org/10.3390/ijerph14010094 CrossRefPubMedGoogle Scholar
  7. Ayangbenro AS, Olanrewaju OS, Babalola OO (2018) Sulfate-reducing bacteria as an effective tool for sustainable acid mine bioremediation. Front Microbiol 9:1986.  https://doi.org/10.3389/fmicb.2018.01986 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Azizi S, Kamika I, Tekere M (2016) Evaluation of heavy metal removal from wastewater in a modified packed bed biofilm reactor. PLoS One 11:e0155462.  https://doi.org/10.1371/journal.pone.0155462 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques-classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32:180.  https://doi.org/10.1007/s11274-016-2137-x CrossRefPubMedPubMedCentralGoogle Scholar
  10. Babu RP, O’Connor K, Seeram R (2013) Current progress on bio-based polymers and their future trends. Prog Biomater 2:8.  https://doi.org/10.1186/2194-0517-2-8 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Basile LJ, Willson RC, Sewell BT, Benedik MJ (2008) Genome mining of cyanide-degrading nitrilases from filamentous fungi. Appl Microbiol Biotechnol 80:427–435.  https://doi.org/10.1007/s00253-008-1559-2 CrossRefPubMedGoogle Scholar
  12. Bento I, Silva CS, Chen Z, Martins LO, Lindley PF, Soares CM (2010) Mechanisms underlying dioxygen reduction in laccases. Structural and modelling studies focusing on proton transfer. BMC Struct Biol 10:28.  https://doi.org/10.1186/1472-6807-10-28 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Brandao PF, Clapp JP, Bull AT (2003) Diversity of nitrile hydratase and amidase enzyme genes in Rhodococcus erythropolis recovered from geographically distinct habitats. Appl Environ Microbiol 69:5754–5766CrossRefGoogle Scholar
  14. Cezairliyan B, Ausubel FM (2017) Investment in secreted enzymes during nutrient-limited growth is utility dependent. Proc Natl Acad Sci USA 114:E7796–E7802.  https://doi.org/10.1073/pnas.1708580114 CrossRefPubMedGoogle Scholar
  15. Chanwun T, Muhamad N, Chirapongsatonkul N, Churngchow N (2013) Hevea brasiliensis cell suspension peroxidase: purification, characterization and application for dye decolorization. AMB Express 3:14.  https://doi.org/10.1186/2191-0855-3-14 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Chen H (2006) Recent advances in azo dye degrading enzyme research. Curr Protein Pept Sci 7:101–111CrossRefGoogle Scholar
  17. Clermont D, Harmant C, Bizet C (2001) Identification of strains of Alcaligenes and Agrobacterium by a polyphasic approach. J Clin Microbiol 39:3104–3109CrossRefGoogle Scholar
  18. Dashtban M, Schraft H, Syed TA, Qin W (2010) Fungal biodegradation and enzymatic modification of lignin. Int J Biochem Mol Biol 1:36–50PubMedPubMedCentralGoogle Scholar
  19. Datta P, Mohi GK, Chander J (2018) Biomedical waste management in India: Critical appraisal. J Lab Physicians 10:6–14.  https://doi.org/10.4103/JLP.JLP_89_17 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Dua M, Singh A, Sethunathan N, Johri AK (2002) Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol 59:143–152.  https://doi.org/10.1007/s00253-002-1024-6 CrossRefPubMedGoogle Scholar
  21. Falade AO, Nwodo UU, Iweriebor BC, Green E, Mabinya LV, Okoh AI (2017) Lignin peroxidase functionalities and prospective applications. MicrobiologyOpen 6:e00394.  https://doi.org/10.1002/mbo3.394 CrossRefGoogle Scholar
  22. Findlay R, Webb A, Lund J (2015) Implementation of advanced inventory management functionality in automated dispensing cabinets. Hosp Pharm 50:603–608.  https://doi.org/10.1310/hpj5007-603 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Finnegan PM, Chen W (2012) Arsenic toxicity: the effects on plant metabolism. Front Physiol 3:182.  https://doi.org/10.3389/fphys.2012.00182 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Franciscon E, Grossman MJ, Paschoal JA, Reyes FG, Durrant LR (2012) Decolorization and biodegradation of reactive sulfonated azo dyes by a newly isolated Brevibacterium sp. strain VN-15. Springerplus 1:37.  https://doi.org/10.1186/2193-1801-1-37 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Garcia LF, Benjamin SR, Antunes RS, Lopes FM, Somerset VS, Gil ES (2016) Solanum melongena polyphenol oxidase biosensor for the electrochemical analysis of paracetamol. Prep Biochem Biotechnol 46:850–855.  https://doi.org/10.1080/10826068.2016.1155060 CrossRefPubMedGoogle Scholar
  26. Gong JS, Lu ZM, Li H, Shi JS, Zhou ZM, Xu ZH (2012) Nitrilases in nitrile biocatalysis: recent progress and forthcoming research. Microb Cell Factories 11:142.  https://doi.org/10.1186/1475-2859-11-142 CrossRefGoogle Scholar
  27. Guo M, Wang H, Huang D, Han Z, Li Q, Wang X, Chen J (2014) Amperometric catechol biosensor based on laccase immobilized on nitrogen-doped ordered mesoporous carbon (N-OMC)/PVA matrix. Sci Technol Adv Mater 15:035005.  https://doi.org/10.1088/1468-6996/15/3/035005 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hildebrand A, Kasuga T, Fan Z (2015) Production of cellobionate from cellulose using an engineered Neurospora crassa strain with laccase and redox mediator addition. PLoS One 10:e0123006.  https://doi.org/10.1371/journal.pone.0123006 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Howard DH (1999) Acquisition, transport, and storage of iron by pathogenic fungi. Clin Microbiol Rev 12:394–404CrossRefGoogle Scholar
  30. Ibarra-Escutia P, Gomez JJ, Calas-Blanchard C, Marty JL, Ramirez-Silva MT (2010) Amperometric biosensor based on a high resolution photopolymer deposited onto a screen-printed electrode for phenolic compounds monitoring in tea infusions. Talanta 81:1636–1642.  https://doi.org/10.1016/j.talanta.2010.03.017 CrossRefPubMedGoogle Scholar
  31. Jan AT, Azam M, Siddiqui K, Ali A, Choi I, Haq QM (2015) Heavy metals and human health: mechanistic insight into toxicity and counter defense system of antioxidants. Int J Mol Sci 16:29592–29630.  https://doi.org/10.3390/ijms161226183 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Jaszczak E, Polkowska Z, Narkowicz S, Namiesnik J (2017) Cyanides in the environment-analysis-problems and challenges. Environ Sci Pollut Res Int 24:15929–15948.  https://doi.org/10.1007/s11356-017-9081-7 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Jeon JR, Baldrian P, Murugesan K, Chang YS (2012) Laccase-catalysed oxidations of naturally occurring phenols: from in vivo biosynthetic pathways to green synthetic applications. Microb Biotechnol 5:318–332.  https://doi.org/10.1111/j.1751-7915.2011.00273.x CrossRefPubMedPubMedCentralGoogle Scholar
  34. Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzym Res 2011:805187.  https://doi.org/10.4061/2011/805187 CrossRefGoogle Scholar
  35. Kaw HY, Kannan N (2017) A review on polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in South Asia with a focus on Malaysia. Rev Environ Contam Toxicol 242:153–181.  https://doi.org/10.1007/398_2016_14 CrossRefPubMedGoogle Scholar
  36. Knowles CJ (1988) Cyanide utilization and degradation by microorganisms. Ciba Found Symp 140:3–15PubMedGoogle Scholar
  37. Kotrba P, Doleckova L, de Lorenzo V, Ruml T (1999) Enhanced bioaccumulation of heavy metal ions by bacterial cells due to surface display of short metal binding peptides. Appl Environ Microbiol 65:1092–1098PubMedPubMedCentralGoogle Scholar
  38. Kracke F, Vassilev I, Kromer JO (2015) Microbial electron transport and energy conservation – the foundation for optimizing bioelectrochemical systems. Front Microbiol 6:575.  https://doi.org/10.3389/fmicb.2015.00575 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kumar S et al (2017) Challenges and opportunities associated with waste management in India. R Soc Open Sci 4:160764.  https://doi.org/10.1098/rsos.160764 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kunz DA, Nagappan O, Silva-Avalos J, Delong GT (1992) Utilization of cyanide as nitrogenous substrate by Pseudomonas fluorescens NCIMB 11764: evidence for multiple pathways of metabolic conversion. Appl Environ Microbiol 58:2022–2029PubMedPubMedCentralGoogle Scholar
  41. Lone MI, He ZL, Stoffella PJ, Yang XE (2008) Phytoremediation of heavy metal polluted soils and water: progresses and perspectives. J Zhejiang Univ Sci B 9:210–220.  https://doi.org/10.1631/jzus.B0710633 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Luque-Almagro VM et al (2005) Bacterial degradation of cyanide and its metal complexes under alkaline conditions. Appl Environ Microbiol 71:940–947.  https://doi.org/10.1128/AEM.71.2.940-947.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Mehrotra P (2016) Biosensors and their applications – a review. J Oral Biol Craniofac Res 6:153–159.  https://doi.org/10.1016/j.jobcr.2015.12.002 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Merchant SS, Helmann JD (2012) Elemental economy: microbial strategies for optimizing growth in the face of nutrient limitation. Adv Microb Physiol 60:91–210.  https://doi.org/10.1016/B978-0-12-398264-3.00002-4 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Mohamad NR, Marzuki NH, Buang NA, Huyop F, Wahab RA (2015) An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol Biotechnol Equip 29:205–220.  https://doi.org/10.1080/13102818.2015.1008192 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Monika, Kishore J (2010) E-waste management: as a challenge to public health in India. Indian J Community Med 35:382–385.  https://doi.org/10.4103/0970-0218.69251 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Needhidasan S, Samuel M, Chidambaram R (2014) Electronic waste – an emerging threat to the environment of urban India. J Environ Health Sci Eng 12:36.  https://doi.org/10.1186/2052-336X-12-36 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Ohajinwa CM, Van Bodegom PM, Vijver MG, Peijnenburg W (2017) Health risks awareness of electronic waste workers in the informal sector in Nigeria. Int J Environ Res Public Health 14:911.  https://doi.org/10.3390/ijerph14080911 CrossRefPubMedCentralGoogle Scholar
  49. Ojuederie OB, Babalola OO (2017) Microbial and plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health 14:E1504.  https://doi.org/10.3390/ijerph14121504 CrossRefPubMedGoogle Scholar
  50. Osibanjo O, Nnorom IC (2007) The challenge of electronic waste (e-waste) management in developing countries. Waste Manage Res 25:489–501.  https://doi.org/10.1177/0734242X07082028 CrossRefGoogle Scholar
  51. Pandve HT (2010) Some initiative in e-waste disposal, management and recycling. Indian J Occup Environ Med 14:20–21.  https://doi.org/10.4103/0019-5278.64611 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Pinto VN (2008) E-waste hazard: the impending challenge. Indian J Occup Environ Med 12:65–70.  https://doi.org/10.4103/0019-5278.43263 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Piscitelli A, Pezzella C, Giardina P, Faraco V, Giovanni S (2010) Heterologous laccase production and its role in industrial applications. Bioeng Bugs 1:252–262.  https://doi.org/10.4161/bbug.1.4.11438 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Ravindran R, Jaiswal AK (2016) Microbial enzyme production using lignocellulosic food industry wastes as feedstock: a review. Bioengineering (Basel) 3:E30.  https://doi.org/10.3390/bioengineering3040030 CrossRefGoogle Scholar
  55. Roth HC, Schwaminger SP, Peng F, Berensmeier S (2016) Immobilization of cellulase on magnetic nanocarriers. ChemistryOpen 5:183–187.  https://doi.org/10.1002/open.201600028 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Ryan A, Wang CJ, Laurieri N, Westwood I, Sim E (2010) Reaction mechanism of azoreductases suggests convergent evolution with quinone oxidoreductases. Protein Cell 1:780–790.  https://doi.org/10.1007/s13238-010-0090-2 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Rydz J, Sikorska W, Kyulavska M, Christova D (2014) Polyester-based (bio)degradable polymers as environmentally friendly materials for sustainable development. Int J Mol Sci 16:564–596.  https://doi.org/10.3390/ijms16010564 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Saddoud A, Hassairi I, Sayadi S (2007) Anaerobic membrane reactor with phase separation for the treatment of cheese whey. Bioresour Technol 98:2102–2108.  https://doi.org/10.1016/j.biortech.2006.08.013 CrossRefPubMedGoogle Scholar
  59. Sirim D, Wagner F, Wang L, Schmid RD, Pleiss J (2011) The laccase engineering database: a classification and analysis system for laccases and related multicopper oxidases. Database 2011:bar006.  https://doi.org/10.1093/database/bar006 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Song JH, Murphy RJ, Narayan R, Davies GB (2009) Biodegradable and compostable alternatives to conventional plastics. Philos Trans R Soc Lond Ser B Biol Sci 364:2127–2139.  https://doi.org/10.1098/rstb.2008.0289 CrossRefGoogle Scholar
  61. Tang X, Hashmi MZ, Long D, Chen L, Khan MI, Shen C (2014) Influence of heavy metals and PCBs pollution on the enzyme activity and microbial community of paddy soils around an e-waste recycling workshop. Int J Environ Res Public Health 11:3118–3131.  https://doi.org/10.3390/ijerph110303118 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. EXS 101:133–164.  https://doi.org/10.1007/978-3-7643-8340-4_6 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Thompson RC, Moore CJ, vom Saal FS, Swan SH (2009) Plastics, the environment and human health: current consensus and future trends. Philos Trans R Soc Lond Ser B Biol Sci 364:2153–2166.  https://doi.org/10.1098/rstb.2009.0053 CrossRefGoogle Scholar
  64. Tokiwa Y, Calabia BP, Ugwu CU, Aiba S (2009) Biodegradability of plastics. Int J Mol Sci 10:3722–3742.  https://doi.org/10.3390/ijms10093722 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Upadhyay P, Shrivastava R, Agrawal PK (2016) Bioprospecting and biotechnological applications of fungal laccase. 3 Biotech 6:15.  https://doi.org/10.1007/s13205-015-0316-3 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Urzua U, Kersten PJ, Vicuna R (1998) Manganese peroxidase-dependent oxidation of glyoxylic and oxalic acids synthesized by Ceriporiopsis subvermispora produces extracellular hydrogen peroxide. Appl Environ Microbiol 64:68–73PubMedPubMedCentralGoogle Scholar
  67. Wang YQ, Liang WS, Geng CY (2009) Coalescence behavior of gold nanoparticles. Nanoscale Res Lett 4:684–688.  https://doi.org/10.1007/s11671-009-9298-6 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Wong MH et al (2007) Export of toxic chemicals – a review of the case of uncontrolled electronic-waste recycling. Environ Pollut 149:131–140.  https://doi.org/10.1016/j.envpol.2007.01.044 CrossRefPubMedGoogle Scholar
  69. Wu JP, Luo XJ, Zhang Y, Luo Y, Chen SJ, Mai BX, Yang ZY (2008) Bioaccumulation of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in wild aquatic species from an electronic waste (e-waste) recycling site in South China. Environ Int 34:1109–1113.  https://doi.org/10.1016/j.envint.2008.04.001 CrossRefPubMedGoogle Scholar
  70. Yamada H, Shimizu S, Kobayashi M (2001) Hydratases involved in nitrile conversion: screening, characterization and application. Chem Rec 1:152–161CrossRefGoogle Scholar
  71. Yoada RM, Chirawurah D, Adongo PB (2014) Domestic waste disposal practice and perceptions of private sector waste management in urban Accra. BMC Public Health 14:697.  https://doi.org/10.1186/1471-2458-14-697 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ankita Srivastava
    • 1
  • Sukriti Jaiswal
    • 2
  • Niharika Chandra
    • 2
  • Sunil Kumar
    • 1
    Email author
  1. 1.Faculty of Bio-Sciences, Institute of Bio-Sciences and TechnologyShri Ramswaroop Memorial UniversityBarabankiIndia
  2. 2.Faculty of Biotechnology, Institute of Bio-Sciences and TechnologyShri Ramswaroop Memorial UniversityBarabankiIndia

Personalised recommendations