Phytoremediation of Electronic Waste: A Mechanistic Overview and Role of Plant Secondary Metabolites

  • Mubarak Ali KhanEmail author
  • Nazif Ullah
  • Tariq Khan
  • Muhsin Jamal
  • Naseer Ali Shah
  • Huma Ali
Part of the Soil Biology book series (SOILBIOL, volume 57)


The escalating economic growth, urbanization and globalization over the last three decades have resulted in the huge production and consumption of electronic devices and appliances all over the world. This has caused an alarming situation of the disposition of electronic waste (e-waste) from the used and discarded electronic products to the environment, which can adversely affect the ecosystem and health of the humans. Management, treatment and recycling of e-waste become crucial to prevent the serious environmental complications and diseases. Among the several methods for treatment of e-waste, phytoremediation is of vital importance, which involves the application of plants and vegetation for the remediation of e-waste contaminants. Phytoremediation technology is a cost-effective green technology known for its optimal results on-site and is considered as environment-friendly and generally socially acceptable. The success of phytoremediation technology is by virtue of some unique plants which possess selective capabilities such as uptake of the metals by roots, translocation through stem and bioaccumulation in the leaves.

In this chapter, we have described in detail the process of phytoremediation as a suitable and sustainable method for remediation of e-waste contaminants including heavy metals and other hazardous substances. Further, a mechanistic overview of the process of phytoremediation technology for treatment of e-waste has been elucidated to highlight the functional role of phytochemicals of plants in contaminants removal through phytoremediation.


Phytoremediation Electronic waste Mechanistic overview Plant secondary metabolites 


  1. Agwaramgbo L (2005) Screening plants for antioxidant & phytoremediation potential. Dillard University, New Orleans, LAGoogle Scholar
  2. Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91(7):869–881CrossRefGoogle Scholar
  3. Ali S, Jin R, Gill RA, Mwamba TM, Zhang N, Islam F, Ali S, Zhou W (2018) Beryllium stress-induced modifications in antioxidant machinery and plant ultrastructure in the seedlings of black and yellow seeded oilseed rape. Biomed Res Int. Google Scholar
  4. Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32(11):1559–1570PubMedCrossRefPubMedCentralGoogle Scholar
  5. Babu BR, Parande AK, Basha CA (2007) Electrical and electronic waste: a global environmental problem. Waste Manag Res 25(4):307–318CrossRefGoogle Scholar
  6. Bourgaud F, Gravot A, Milesi S, Gontier E (2001) Production of plant secondary metabolites: a historical perspective. Plant Sci 161(5):839–851CrossRefGoogle Scholar
  7. Brandl H, Bosshard R, Wegmann M (2001) Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy 59(2–3):319–326CrossRefGoogle Scholar
  8. Bücker-Neto L, Paiva ALS, Machado RD, Arenhart RA, Margis-Pinheiro M (2017) Interactions between plant hormones and heavy metals responses. Genet Mol Biol 40(1):373–386PubMedPubMedCentralCrossRefGoogle Scholar
  9. Caruso JA, Heitkemper DT, B’Hymer C (2001) An evaluation of extraction techniques for arsenic species from freeze-dried apple samples. Analyst 126(2):136–140PubMedCrossRefPubMedCentralGoogle Scholar
  10. Chen G, Liu X, Brookes PC, Xu J (2015) Opportunities for phytoremediation and bioindication of arsenic contaminated water using a submerged aquatic plant: Vallisneria natans (Lour.) Hara. Int J Phytoremediation 17(3):249–255PubMedCrossRefPubMedCentralGoogle Scholar
  11. Cho-Ruk K, Kurukote J, Supprung P, Vetayasuporn S (2006) Perennial plants in the phytoremediation of lead-contaminated soils. Biotechnology 5(1):1–4CrossRefGoogle Scholar
  12. Choudhary DK, Varma A (2016) Microbial-mediated induced systemic resistance in plants. Springer, New YorkCrossRefGoogle Scholar
  13. Coscione AR, Berton RS (2009) Barium extraction potential by mustard, sunflower and castor bean. Sci Agric 66(1):59–63CrossRefGoogle Scholar
  14. Dhillon S, Dhillon K (2009) Phytoremediation of selenium-contaminated soils: the efficiency of different cropping systems. Soil Use Manag 25(4):441–453CrossRefGoogle Scholar
  15. Dı́az J, Bernal A, Pomar F, Merino F (2001) Induction of shikimate dehydrogenase and peroxidase in pepper (Capsicum annuum L.) seedlings in response to copper stress and its relation to lignification. Plant Sci 161(1):179–188CrossRefGoogle Scholar
  16. Dinis TC, Madeira VM, Almeida LM (1994) Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch Biochem Biophys 315(1):161–169PubMedPubMedCentralCrossRefGoogle Scholar
  17. Donot F, Fontana A, Baccou J, Schorr-Galindo S (2012) Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr Polym 87(2):951–962CrossRefGoogle Scholar
  18. Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J. CrossRefGoogle Scholar
  19. Favas PJ, Pratas J, Varun M, D’Souza R, Paul MS (2014) Phytoremediation of soils contaminated with metals and metalloids at mining areas: potential of native flora. In: Environmental risk assessment of soil contamination. InTechGoogle Scholar
  20. Feng R, Wei C, Tu S, Tang S, Wu F (2011) Simultaneous hyperaccumulation of arsenic and antimony in Cretan brake fern: evidence of plant uptake and subcellular distributions. Microchem J 97(1):38–43CrossRefGoogle Scholar
  21. Feng R, Wang X, Wei C, Tu S (2015) The accumulation and subcellular distribution of arsenic and antimony in four fern plants. Int J Phytoremediation 17(4):348–354PubMedCrossRefPubMedCentralGoogle Scholar
  22. Gaiero JR, McCall CA, Thompson KA, Day NJ, Best AS, Dunfield KE (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100(9):1738–1750PubMedCrossRefPubMedCentralGoogle Scholar
  23. Gardea-Torresdey J, Tiemann K, Polette L, Chianelli R, Pingitore N, Mackay W (1999) Phytoremediation of heavy metals with creosote plants. Google PatentsGoogle Scholar
  24. Guo J, Xu L, Su Y, Wang H, Gao S, Xu J, Que Y (2013) ScMT2-1-3, a metallothionein gene of sugarcane, plays an important role in the regulation of heavy metal tolerance/accumulation. Biomed Res Int 2013. Google Scholar
  25. Gupta D, Huang H, Corpas F (2013) Lead tolerance in plants: strategies for phytoremediation. Environ Sci Pollut Res 20(4):2150–2161CrossRefGoogle Scholar
  26. Hajiani NJ, Ghaderian SM, Karimi N, Schat H (2015) A comparative study of antimony accumulation in plants growing in two mining areas in Iran, Moghanlo, and Patyar. Environ Sci Pollut Res 22(21):16542–16553CrossRefGoogle Scholar
  27. Heacock M, Kelly CB, Asante KA, Birnbaum LS, Bergman ÅL, Bruné M-N, Buka I, Carpenter DO, Chen A, Huo X (2016) E-waste and harm to vulnerable populations: a growing global problem. Environ Health Perspect 124(5):550PubMedPubMedCentralCrossRefGoogle Scholar
  28. Heitkemper DT, Vela NP, Stewart KR, Westphal CS (2001) Determination of total and speciated arsenic in rice by ion chromatography and inductively coupled plasma mass spectrometry. J Anal At Spectrom 16(4):299–306CrossRefGoogle Scholar
  29. Helgesen H, Larsen EH (1998) Bioavailability and speciation of arsenic in carrots grown in contaminated soil. Analyst 123(5):791–796PubMedCrossRefPubMedCentralGoogle Scholar
  30. Intawongse M, Dean JR (2006) Uptake of heavy metals by vegetable plants grown on contaminated soil and their bioavailability in the human gastrointestinal tract. Food Addit Contam 23(1):36–48PubMedCrossRefPubMedCentralGoogle Scholar
  31. Islam MS, Ueno Y, Sikder MT, Kurasaki M (2013) Phytofiltration of arsenic and cadmium from the water environment using Micranthemum umbrosum (JF Gmel) SF Blake as a hyperaccumulator. Int J Phytoremediation 15(10):1010–1021PubMedCrossRefPubMedCentralGoogle Scholar
  32. Jabeen R, Ahmad A, Iqbal M (2009) Phytoremediation of heavy metals: physiological and molecular mechanisms. Bot Rev 75(4):339–364CrossRefGoogle Scholar
  33. Jutsz AM, Gnida A (2015) Mechanisms of stress avoidance and tolerance by plants used in phytoremediation of heavy metals. Arch Environ Protection 41(4):104–114CrossRefGoogle Scholar
  34. Kim YJ, Kim JH, Lee CE, Mok YG, Choi JS, Shin HS, Hwang S (2006) Expression of yeast transcriptional activator MSN1 promotes accumulation of chromium and sulfur by enhancing sulfate transporter level in plants. FEBS Lett 580(1):206–210PubMedCrossRefGoogle Scholar
  35. Kofoworola O (2007) Recovery and recycling practices in municipal solid waste management in Lagos, Nigeria. Waste Manag 27(9):1139–1143PubMedCrossRefGoogle Scholar
  36. Krumova E, Kostadinova N, Miteva-Staleva J, Gryshko V, Angelova M (2016) Cellular response to Cu-and Zn-induced oxidative stress in Aspergillus fumigatus isolated from polluted soils in Bulgaria. CLEAN Soil Air Water 44(6):657–666CrossRefGoogle Scholar
  37. Lamb DT, Matanitobua VP, Palanisami T, Megharaj M, Naidu R (2013) Bioavailability of barium to plants and invertebrates in soils contaminated by barite. Environ Sci Technol 47(9):4670–4676PubMedCrossRefGoogle Scholar
  38. Laurent A, Bakas I, Clavreul J, Bernstad A, Niero M, Gentil E, Hauschild MZ, Christensen TH (2014) Review of LCA studies of solid waste management systems–part I: lessons learned and perspectives. Waste Manag 34(3):573–588PubMedCrossRefPubMedCentralGoogle Scholar
  39. Lavid N, Schwartz A, Yarden O, Tel-Or E (2001) The involvement of polyphenols and peroxidase activities in heavy-metal accumulation by epidermal glands of the waterlily (Nymphaeaceae). Planta 212(3):323–331PubMedCrossRefPubMedCentralGoogle Scholar
  40. Leung AO, Duzgoren-Aydin NS, Cheung K, Wong MH (2008) Heavy metals concentrations of surface dust from e-waste recycling and its human health implications in southeast China. Environ Sci Technol 42(7):2674–2680PubMedPubMedCentralCrossRefGoogle Scholar
  41. Li Y, Richardson JB, Bricka RM, Niu X, Yang H, Li L, Jimenez A (2009) Leaching of heavy metals from E-waste in simulated landfill columns. Waste Manag 29(7):2147–2150PubMedCrossRefPubMedCentralGoogle Scholar
  42. Lin J, Jiang W, Liu D (2003) Accumulation of copper by roots, hypocotyls, cotyledons and leaves of sunflower (Helianthus annuus L.). Bioresour Technol 86(2):151–155PubMedCrossRefPubMedCentralGoogle Scholar
  43. Liu W-X, Shen L-F, Liu J-W, Wang Y-W, Li S-R (2007) Uptake of toxic heavy metals by rice (Oryza sativa L.) cultivated in the agricultural soil near Zhengzhou City, People’s Republic of China. Bull Environ Contam Toxicol 79(2):209–213PubMedCrossRefPubMedCentralGoogle Scholar
  44. Lone MI, He Z-l, Stoffella PJ, Yang X-E (2008) Phytoremediation of heavy metal polluted soils and water: progresses and perspectives. J Zhejiang Univ Sci B 9(3):210–220PubMedPubMedCentralCrossRefGoogle Scholar
  45. López-Chuken UJ (2012) Hydroponics and environmental clean-up. In: Hydroponics—a standard methodology for plant biological researches. InTechGoogle Scholar
  46. Ma Y, Prasad M, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29(2):248–258PubMedCrossRefPubMedCentralGoogle Scholar
  47. Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud 15(4):523–530Google Scholar
  48. Montes-Holguin MO, Peralta-Videa JR, Meitzner G, Martinez-Martinez A, de la Rosa G, Castillo-Michel HA, Gardea-Torresdey JL (2006) Biochemical and spectroscopic studies of the response of Convolvulus arvensis L. to chromium (III) and chromium (VI) stress. Environ Toxicol Chem 25(1):220–226PubMedCrossRefPubMedCentralGoogle Scholar
  49. Mukhopadhyay S, Maiti SK (2010) Phytoremediation of metal mine waste. Appl Ecol Environ Res 8(3):207–222Google Scholar
  50. Müller K, Daus B, Mattusch J, Vetterlein D, Merbach I, Wennrich R (2013) Impact of arsenic on uptake and bio-accumulation of antimony by arsenic hyperaccumulator Pteris vittata. Environ Pollut 174:128–133PubMedCrossRefPubMedCentralGoogle Scholar
  51. Muranyi A, Ködöböcz L (2008) Heavy metal uptake by plants in different phytoremediation treatments. Cereal Res Commun 36:387–390CrossRefGoogle Scholar
  52. Muszynska E, Hanus-Fajerska E (2015) Why are heavy metal hyperaccumulating plants so amazing? BioTechnologia 96(4). CrossRefGoogle Scholar
  53. Muszyńska B, Rojowski J, Dobosz K, Opoka W (2015) Biological and physico-chemical properties of thallium. Medicina Internacia Revuo 26(105):180–185 Google Scholar
  54. Ogoko E (2015) Accumulation of heavy metal in soil and their transfer to leafy vegetables with phytoremediation potential. Am J Chem 5(5):125–131Google Scholar
  55. Ogunmayowa OT, Dzantor K, Adeleke E (2015) Coupling bio/phytoremediation with switchgrass to biofuel feedstock production in mixed-contaminant soils. PhD ThesisGoogle Scholar
  56. Ogunseitan OA, Schoenung JM, Saphores J-DM, Shapiro AA (2009) The electronics revolution: from e-wonderland to e-wasteland. Science 326(5953):670–671PubMedCrossRefPubMedCentralGoogle Scholar
  57. Parker DR, Feist LJ, Varvel TW, Thomason DN, Zhang Y (2003) Selenium phytoremediation potential of Stanleya pinnata. Plant Soil 249(1):157–165CrossRefGoogle Scholar
  58. Pence NS, Larsen PB, Ebbs SD, Letham DL, Lasat MM, Garvin DF, Eide D, Kochian LV (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci 97(9):4956–4960PubMedCrossRefPubMedCentralGoogle Scholar
  59. Peralta-Videa JR, Lopez ML, Narayan M, Saupe G, Gardea-Torresdey J (2009) The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. Int J Biochem Cell Biol 41(8–9):1665–1677CrossRefGoogle Scholar
  60. Petruzzelli G, Pedron F, Rosellini I, Tassi E, Gorini F, Barbafieri M (2012) Integrating bioremediation and phytoremediation to clean up polychlorinated biphenyls contaminated soils. World Acad Sci Eng Technol 6(6):357–360Google Scholar
  61. Rajkumar M, Sandhya S, Prasad M, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30(6):1562–1574PubMedCrossRefPubMedCentralGoogle Scholar
  62. Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180(2):169–181PubMedCrossRefPubMedCentralGoogle Scholar
  63. Robinson BH (2009) E-waste: an assessment of global production and environmental impacts. Sci Total Environ 408(2):183–191PubMedPubMedCentralCrossRefGoogle Scholar
  64. Saba H, Jyoti P, Neha S (2013) Mycorrhizae and phytochelators as remedy in heavy metal contaminated land remediation. Intl Res J Environ Sci 2(1):74–78Google Scholar
  65. Sampaio Junior J, Amaral N, Zonta E, Magalhães MO (2015) Barium and sodium in sunflower plants cultivated in soil treated with wastes of drilling of oil well. Rev Bras Eng Agríc Ambient 19(11):1100–1106CrossRefGoogle Scholar
  66. Sas-Nowosielska A, Galimska-Stypa R, Kucharski R, Zielonka U, Małkowski E, Gray L (2008) Remediation aspect of microbial changes of plant rhizosphere in mercury contaminated soil. Environ Monit Assess 137(1–3):101–109PubMedCrossRefPubMedCentralGoogle Scholar
  67. Schiavon M, Pilon-Smits EA (2017) Selenium biofortification and phytoremediation phytotechnologies: a review. J Environ Qual 46(1):10–19PubMedCrossRefPubMedCentralGoogle Scholar
  68. Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012. CrossRefGoogle Scholar
  69. Silva P, Matos M (2016) Assessment of the impact of aluminum on germination, early growth and free proline content in Lactuca sativa L. Ecotoxicol Environ Saf 131:151–156PubMedCrossRefPubMedCentralGoogle Scholar
  70. Singh A, Prasad SM, Singh S, Singh M (2016) Phytoremediation potential of weed plants’ oxidative biomarker and antioxidant responses. Chem Ecol 32(7):684–706CrossRefGoogle Scholar
  71. Sinha S (2007) Downside of the digital revolution. Toxics Link 28Google Scholar
  72. Skinner K, Wright N, Porter-Goff E (2007) Mercury uptake and accumulation by four species of aquatic plants. Environ Pollut 145(1):234–237PubMedCrossRefPubMedCentralGoogle Scholar
  73. Smeets K, Cuypers A, Lambrechts A, Semane B, Hoet P, Van Laere A, Vangronsveld J (2005) Induction of oxidative stress and antioxidative mechanisms in Phaseolus vulgaris after Cd application. Plant Physiol Biochem 43(5):437–444PubMedCrossRefPubMedCentralGoogle Scholar
  74. Srivastava M, Ma LQ, Cotruvo JA (2005) Uptake and distribution of selenium in different fern species. Int J Phytoremediation 7(1):33–42PubMedCrossRefPubMedCentralGoogle Scholar
  75. Subhashini V, Swamy A (2014) Phytoremediation of metal (Pb, Ni, Zn, Cd and Cr) contaminated soils using Canna indica. Curr World Environ 9(3):780CrossRefGoogle Scholar
  76. Tak HI, Ahmad F, Babalola OO (2013) Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals. In: Reviews of environmental contamination and toxicology, vol 223. Springer, New York, pp 33–52Google Scholar
  77. Tangahu BV, Abdullah S, Rozaimah S, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011. CrossRefGoogle Scholar
  78. Tsydenova O, Bengtsson M (2011) Chemical hazards associated with treatment of waste electrical and electronic equipment. Waste Manag 31(1):45–58PubMedPubMedCentralCrossRefGoogle Scholar
  79. Vamerali T, Bandiera M, Coletto L, Zanetti F, Dickinson NM, Mosca G (2009) Phytoremediation trials on metal-and arsenic-contaminated pyrite wastes (Torviscosa, Italy). Environ Pollut 157(3):887–894PubMedCrossRefPubMedCentralGoogle Scholar
  80. Van der Ent A, Baker AJ, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362(1–2):319–334Google Scholar
  81. Van Ginneken L, Meers E, Guisson R, Ruttens A, Elst K, Tack FM, Vangronsveld J, Diels L, Dejonghe W (2007) Phytoremediation for heavy metal-contaminated soils combined with bioenergy production. J Environ Eng Landsc Manag 15(4):227–236CrossRefGoogle Scholar
  82. Watson C, Pulford I, Riddell-Black D (2003) Screening of willow species for resistance to heavy metals: comparison of performance in a hydroponics system and field trials. Int J Phytoremediation 5(4):351–365PubMedCrossRefPubMedCentralGoogle Scholar
  83. Xiezhi Y (2008) Assessment and bioremediation of soils contaminated by uncontrolled recycling of electronic-waste at Guiyu, SE China. Hong Kong Baptist University, Hong KongGoogle Scholar
  84. Yu J, Williams E, Ju M, Shao C (2010) Managing e-waste in China: policies, pilot projects and alternative approaches. Resour Conserv Recycl 54(11):991–999CrossRefGoogle Scholar
  85. Zhang X, Lin A-J, Zhao F-J, Xu G-Z, Duan G-L, Zhu Y-G (2008) Arsenic accumulation by the aquatic fern Azolla: comparison of arsenate uptake, speciation and efflux by A. caroliniana and A. filiculoides. Environ Pollut 156(3):1149–1155PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mubarak Ali Khan
    • 1
    Email author
  • Nazif Ullah
    • 1
  • Tariq Khan
    • 2
  • Muhsin Jamal
    • 3
  • Naseer Ali Shah
    • 4
  • Huma Ali
    • 5
  1. 1.Department of Biotechnology, Faculty of Chemical and Life SciencesAbdul Wali Khan University Mardan (AWKUM)MardanPakistan
  2. 2.Department of BiotechnologyUniversity of MalakandChakdara Dir LowerPakistan
  3. 3.Department of MicrobiologyAbdul Wali Khan University Mardan (AWKUM)MardanPakistan
  4. 4.Department of BiosciencesCOMSATS Institute of Information TechnologyIslamabadPakistan
  5. 5.Department of BiotechnologyBacha Khan UniversityCharsaddaPakistan

Personalised recommendations