Advertisement

The Neurobiological Strands of Developmental Dyslexia: What We Know and What We Don’t Know

  • Lesley A. Sand
  • Donald J. BolgerEmail author
Chapter

Abstract

This chapter focuses on the definition of dyslexia as “neurobiological in origin” as prescribed by the International Dyslexia Association and National Institute of Child Health and Human Development. The chapter examines the notion of dyslexia as a specific learning disability and challenges the presumption that impairments are specific or limited to reading behavior based on behavioral and neurobiological evidence. The authors argue that the convergence of evidence from neuroimaging studies leading up to the adoption of the definition of dyslexia in 2003 is belied by a larger set of more divergent findings suggesting a variety of etiologies of the disorder. Moreover, the argument for a central phonological deficit behaviorally with neurobiological impairments in regions associated with receptive language processing (roughly surrounding Wernicke’s area) may be just as much an outcome determined by multiple sources of lower-level impairments as it is a cause of dyslexia. Familial risk factors of the disorder are reflected in brain development, and behavior and evidence of genetic markers suggest a certain degree of heritability. However, clear evidence for environmental mediators and successful interventions yields a complex dynamic of how nature and nurture interact in the emergence of the disorder. Thus, this likely equifinality of the disorder requires that large datasets of neurobiological and behavioral data be culled to uncover endophenotypic subtypes or biotypes of dyslexia that may reflect differential responses to intervention.

Keywords

Neurological basis of dyslexia Genetics of dyslexia Neurological markers of dyslexia Neuroplasticity and reading intervention 

References

  1. Ahissar, M. (2007). Dyslexia and the anchoring-deficit hypothesis. Trends in Cognitive Sciences, 11(11), 458–465.  https://doi.org/10.1016/j.tics.2007.08.015.PubMedCrossRefGoogle Scholar
  2. Alexander-Passe, N. (2006). How dyslexic teenagers cope: An investigation of self-esteem, coping and depression. Dyslexia, 12(4), 256–275.  https://doi.org/10.1002/dys.318.PubMedCrossRefGoogle Scholar
  3. Asbury, K., Wachs, T. D., & Plomin, R. (2005). Environmental moderators of genetic influence on verbal and nonverbal abilities in early childhood. Intelligence, 33(6), 643–661.  https://doi.org/10.1016/j.intell.2005.03.008.CrossRefGoogle Scholar
  4. Aylward, E. H., Richards, T. L., Berninger, V. W., Nagy, W. E., Field, K. M., Grimme, A. C., et al. (2003). Instructional treatment associated with changes in brain activation in children with dyslexia. Neurology, 61(2), 212–219.PubMedCrossRefGoogle Scholar
  5. Banai, K., Hornickel, J., Skoe, E., Nicol, T., Zecker, S., & Kraus, N. (2009). Reading and subcortical auditory function. Cerebral Cortex, 19(11), 2699–2707.  https://doi.org/10.1093/cercor/bhp024.PubMedCrossRefGoogle Scholar
  6. Beaulieu, C., Plewes, C., Paulson, L. A., Roy, D., Snook, L., Concha, L., et al. (2005). Imaging brain connectivity in children with diverse reading ability. NeuroImage, 25(4), 1266–1271.  https://doi.org/10.1016/j.neuroimage.2004.12.053.PubMedCrossRefGoogle Scholar
  7. Ben-Yehudah, G., & Ahissar, M. (2004). Sequential spatial frequency discrimination is consistently impaired among adult dyslexics. Vision Research, 44(10), 1047–1063.  https://doi.org/10.1016/j.visres.2003.12.001.PubMedCrossRefGoogle Scholar
  8. Black, J. M., Tanaka, H., Stanley, L., Nagamine, M., Zakerani, N., Thurston, A., … Hoeft, F. (2012). Maternal history of reading difficulty is associated with reduced language-related gray matter in beginning readers. NeuroImage, 59(3), 3021–3032.  https://doi.org/10.1016/j.neuroimage.2011.10.024.PubMedCrossRefGoogle Scholar
  9. Bolger, D. J., Hornickel, J., Cone, N. E., Burman, D. D., & Booth, J. R. (2008a). Neural correlates of orthographic and phonological consistency effects in children. Human Brain Mapping, 29(12), 1416–1429.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bolger, D. J., Minas, J., Burman, D. D., & Booth, J. R. (2008b). Differential effects of orthographic and phonological consistency in cortex for children with and without reading impairment. Neuropsychologia, 46(14), 3210–3224.  https://doi.org/10.1016/j.neuropsychologia.2008.07.024.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bolger, D. J., Perfetti, C. A., & Schneider, W. (2005). Cross-cultural effect on the brain revisited: Universal structures plus writing system variation. Human Brain Mapping, 25, 92–104.  https://doi.org/10.1002/hbm.20124.PubMedCrossRefGoogle Scholar
  12. Brambati, S. M., Termine, C., Ruffino, M., Stella, G., Fazio, F., Cappa, S. F., et al. (2004). Regional reductions of gray matter volume in familial dyslexia. Neurology, 63(4), 742–745.  https://doi.org/10.1212/01.WNL.0000134673.95020.EE.PubMedCrossRefGoogle Scholar
  13. Brown, W., Eliez, S., Menon, V., Rumsey, J., White, C., & Reiss, A. (2001). Preliminary evidence of widespread morphological variations of the brain in dyslexia. Neurology, 56(6), 781–783.  https://doi.org/10.1212/wnl.56.6.781.PubMedCrossRefGoogle Scholar
  14. Brunswick, N., McCrory, E., Price, C. J., Frith, C. D., & Frith, U. (1999). Explicit and implicit processing of words and pseudowords by adult developmental dyslexics. A search for Wernicke’s Wortschatz? Brain, 122(10), 1901–1917.  https://doi.org/10.1093/brain/122.10.1901.PubMedCrossRefGoogle Scholar
  15. Cao, F., Bitan, T., & Booth, J. R. (2008). Effective brain connectivity in children with reading difficulties during phonological processing. Brain and Language, 107(2), 91–101.Google Scholar
  16. Cao, F., Bitan, T., Chou, T. L., Burman, D. D., & Booth, J. R. (2006). Deficient orthographic and phonological representations in children with dyslexia revealed by brain activation patterns. Journal of Child Psychology and Psychiatry and Allied Disciplines, 47(10), 1041–1050.  https://doi.org/10.1111/j.1469-7610.2006.01684.xPubMedCrossRefGoogle Scholar
  17. Catani, M., & Mesulam, M. (2008). The arcuate fasciculus and the disconnection theme in language and aphasia: History and current state. Cortex, 44(8), 953–961.  https://doi.org/10.1016/j.cortex.2008.04.002.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Centanni, T., Booker, A. B., Chen, F., Sloan, A. M., Carraway, R. S., Rennaker, R. L., … Kilgard, M. P. (2016). Knockdown of dyslexia-gene DCDC2 interferes with speech sound discrimination in continuous streams. Journal of Neuroscience, 36(17), 4895–4906.  https://doi.org/10.1523/jneurosci.4202-15.2016.PubMedCrossRefGoogle Scholar
  19. Centanni, T., Chen, F., Booker, A. M., Engineer, C. T., Sloan, A. M., Rennaker, R. L., … Kilgard, M. P. (2014). Speech sound processing deficits and training-induced neural plasticity in rats with dyslexia gene knockdown. PLoS ONE, 9(5).  https://doi.org/10.1371/journal.pone.0098439.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chandrasekaran, B., Hornickel, J., Skoe, E., Nicol, T., & Kraus, N. (2009). Context-dependent encoding in the human auditory brainstem relates to hearing speech in noise: Implications for developmental dyslexia. Neuron, 64(3), 311–319.  https://doi.org/10.1016/j.neuron.2009.10.006.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Cicchini, G. M., Marino, C., Mascheretti, S., Perani, D., & Morrone, M. C. (2015). Strong motion deficits in dyslexia associated with DCDC2 gene alteration. Journal of Neuroscience, 35(21), 8059–8064.PubMedCrossRefGoogle Scholar
  22. Clark, K. A., Helland, T., Specht, K., Narr, K. L., Manis, F. R., Toga, A. W., et al. (2014). Neuroanatomical precursors of dyslexia identified from pre-reading through to age 11. Brain, 137(12), 3136–3141.  https://doi.org/10.1093/brain/awu229.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Connor, C. M., Piasta, S. B., Fishman, B., Glasney, S., Schatschneider, C., Crowe, E., … Morrison, F. J. (2009). Individualizing student instruction precisely: Effects of child × instruction interactions on first graders’ literacy development. Child Development, 80(1), 77–100.  https://doi.org/10.1111/j.1467-8624.2008.01247.x.CrossRefGoogle Scholar
  24. Darki, F., Peyrard-Janvid, M., Matsson, H., Kere, J., & Klingberg, T. (2012). Three dyslexia susceptibility genes, DYX1C1, DCDC2, and KIAA0319, affect temporo-parietal white matter structure. Biological Psychiatry, 72(8), 671–676.  https://doi.org/10.1016/j.biopsych.2012.05.008.PubMedCrossRefGoogle Scholar
  25. Davis, N., Barquero, L., Compton, D. L., Fuchs, L. S., Fuchs, D., Gore, J. C., et al. (2011). Functional correlates of children’s responsiveness to intervention. Developmental Neuropsychology, 36(3), 288–301.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Dawson, G., Finley, C., Phillips, S., & Galpert, L. (1986). Hemispheric specialization and the language abilities of autistic children. Society for Research in Child Development, 57(6), 1440–1453.CrossRefGoogle Scholar
  27. Debska, A., Łuniewska, M., Chyl, K., Banaszkiewicz, A., Zelechowska, A., Wypych, M., … Jednoróg, K. (2016). Neural basis of phonological awareness in beginning readers with familial risk of dyslexia-Results from shallow orthography. NeuroImage, 132, 406–416.  https://doi.org/10.1016/j.neuroimage.2016.02.063.PubMedCrossRefGoogle Scholar
  28. Dejerine, M., & Symes, W. L. (1893). Some recent papers on neurophysiology. Brain, 16(1–2), 318–320.CrossRefGoogle Scholar
  29. Demb, J. B., Boynton, G. M., Best, M., & Heeger, D. J. (1998). Psychophysical evidence for a magnocellular pathway deficit in dyslexia. Vision Research, 38(11), 1555–1559.  https://doi.org/10.1016/s0042-6989(98)00075-3.PubMedCrossRefGoogle Scholar
  30. Desroches, A. S., Cone, N. E., Bolger, D. J., Bitan, T., Burman, D. D., & Booth, J. R. (2010). Children with reading difficulties show differences in brain regions associated with orthographic processing during spoken language processing. Brain Research, 1356, 73–84.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Deutsch, G. K., Dougherty, R. F., Bammer, R., Siok, W. T., Gabrieli, J. D. E., & Wandell, B. (2005). Children’s reading performance is correlated with white matter structure measured by diffusion tensor imaging. Cortex, 41(3), 354–363.  https://doi.org/10.1016/s0010-9452(08)70272-7.PubMedCrossRefGoogle Scholar
  32. Drysdale, A. T., Grosenick, L., Downar, J., Dunlop, K., Mansouri, F., Meng, Y., … & Schatzberg, A. F. (2017). Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nature medicine, 23(1), 28.Google Scholar
  33. Eckert, M. A., Vaden, Jr., K. I., Gebregziabher, M., & Dyslexia Data Consortium. (2018). Reading profiles in multi-site data with missingness. Frontiers in Psychology, 9, 644.Google Scholar
  34. Eden, G. F., Jones, K. M., Cappell, K., Gareau, L., Wood, F. B., Zeffiro, T. A., … & Flowers, D. L. (2004). Neural changes following remediation in adult developmental dyslexia. Neuron, 44(3), 411–422.Google Scholar
  35. Eden, G. F., VanMeter, J. W., Rumsey, J. M., Maisog, J. M., Woods, R. P., & Zeffiro, T. A. (1996). Abnormal processing of visual motion in dyslexia revealed by functional brain imaging. Nature, 382, 66–69.  https://doi.org/10.1038/382066a0.PubMedCrossRefGoogle Scholar
  36. Elliott, J. G., & Gibbs, S. (2008). Does dyslexia exist? Journal of Philosophy of Education, 42(3–4), 475–491.  https://doi.org/10.1111/j.1467-9752.2008.00653.x.CrossRefGoogle Scholar
  37. Facoetti, A., Corradi, N., Ruffino, M., Gori, S., & Zorzi, M. (2010a). Visual spatial attention and speech segmentation are both impaired in preschoolers at familial risk for developmental dyslexia. Dyslexia, 16(3), 226–239.  https://doi.org/10.1002/dys.413.PubMedCrossRefGoogle Scholar
  38. Facoetti, A., & Molteni, M. (2001). The gradient of visual attention in developmental dyslexia. Neuropsychologia, 39(4), 352–357.  https://doi.org/10.1016/S0028-3932(00)00138-X.PubMedCrossRefGoogle Scholar
  39. Facoetti, A., Pagnoni, G., Turatto, M., Marzola, V., & Mascetti, G. (2000). Visual-spatial attention in developmental dyslexia. Cortex, 36(1), 109–123.  https://doi.org/10.1016/s0010-9452(08)70840-2.PubMedCrossRefGoogle Scholar
  40. Facoetti, A., Trussardi, A. N., Ruffino, M., Lorusso, M. L., Cattaneo, C., Galli, R., … Zorzi, M. (2010). Multisensory spatial attention deficits are predictive of phonological decoding skills in developmental dyslexia. Journal of Cognitive Neuroscience, 22(5), 1011–1025.  https://doi.org/10.1162/jocn.2009.21232.PubMedCrossRefGoogle Scholar
  41. Facoetti, A., Zorzi, M., Cestnick, L., Lorusso, M. L., Molteni, M., Paganoni, P., … Mascetti, G. G. (2006). The relationship between visuo-spatial attention and nonword reading in developmental dyslexia. Cognitive Neuropsychology, 23(6), 841–855.  https://doi.org/10.1080/02643290500483090.PubMedCrossRefGoogle Scholar
  42. Fletcher, J. M. (2005). Predicting math outcomes: Reading predictors and comorbidity. Journal of Learning Disabilities, 38(4), 308–312.PubMedCrossRefGoogle Scholar
  43. Fletcher, J. M., Lyon, G. R., Fuchs, L. S., & Barnes, M. A. (2018). Learning disabilities: From identification to intervention. Guilford Publications.Google Scholar
  44. Fletcher, J. M., & Morris, R. (1986). Classification of disabled learners: Beyond exclusionary definitions. Handbook of cognitive, social, and neuropsychological aspects of learning disabilities, 1, 55–80.Google Scholar
  45. Francis, D. J., Stuebing, K. K., Shaywitz, S. E., Shaywitz, B. A., & Fletcher, J. M. (1996). Developmental lag versus deficit models of reading disability: A longitudinal individual growth curves analysis. Journal of Educational Psychology, 88(1), 3–17.CrossRefGoogle Scholar
  46. Fuchs, L. S., & Fuchs, D. (2002). Mathematical problem-solving profiles of students with mathematics disabilities with and without comorbid reading disabilities. Journal of learning disabilities, 35(6), 564–574.CrossRefGoogle Scholar
  47. Gaab, N., Gabrieli, J. D. E., Deutsch, G. K., Tallal, P., & Temple, E. (2007). Neural correlates of rapid auditory processing are disrupted in children with developmental dyslexia and ameliorated with training: An fMRI study. Restorative Neurology and Neuroscience, 25(3–4), 295–310.PubMedGoogle Scholar
  48. Gabrieli, J. D. E. (2009). Dyslexia: A new synergy between education and cognitive neuroscience. Science (New York, NY), 325(5938), 280–283.  https://doi.org/10.1126/science.1171999.CrossRefGoogle Scholar
  49. Galaburda, A. M., & Kemper, T. L. (1979). Cytoarchitectonic abnormalities in developmental dyslexia: A case study. Annals of Neurology, 6(2), 94–100.  https://doi.org/10.1002/ana.410060203.PubMedCrossRefGoogle Scholar
  50. Galaburda, A. M., & Livingstone, M. (1993). Evidence for a magnocellular defect in developmental dyslexia. Annals of the New York Academy of Sciences, 682(1), 70–82.  https://doi.org/10.1111/j.1749-6632.1993.tb22960.x.PubMedCrossRefGoogle Scholar
  51. Galaburda, A. M., LoTurco, J., Ramus, F., Fitch, R. H., & Rosen, G. D. (2006). From genes to behavior in developmental dyslexia. Nature Neuroscience, 9(10), 1213–1217.  https://doi.org/10.1038/nn1772.PubMedCrossRefGoogle Scholar
  52. Galaburda, A. M., Sanides, F., & Geschwind, N. (1978). Human brain. Cytoarchitectonic left-right asymmetries in the temporal speech region. Archives of Neurology, 35(12), 812–817.Google Scholar
  53. Galaburda, A. M., Sherman, G. F., Rosen, G. D., Aboitiz, F., & Geschwind, N. (1985). Developmental dyslexia: Four consecutive patients with cortical anomalies. Annals of Neurology, 18(2), 222–233.  https://doi.org/10.1002/ana.410180210.PubMedCrossRefGoogle Scholar
  54. Gathercole, S. E., Alloway, T. P., Willis, C., & Adams, A. M. (2006). Working memory in children with reading disabilities. Journal of Experimental Child Psychology, 93(3), 265–281.PubMedCrossRefGoogle Scholar
  55. Georgiewa, P., Rzanny, R., Hopf, J. M., Knab, R., Glauche, V., Kaiser, W. A., & Blanz, B. (1999). fMRI during word processing in dyslexic and normal reading children. Neuroreport, 10(16), 3459–65 (10599862).Google Scholar
  56. Geschwind, N. (1970). The organization of language and the brain. Science, 170(961), 940–944.  https://doi.org/10.1126/science.170.3961.940.PubMedCrossRefGoogle Scholar
  57. Geschwind, N. (1974). Selected papers on language and the brain (Vol. 16). Dordrecht: Springer, Netherlands.  https://doi.org/10.1007/978-94-010-2093-0.CrossRefGoogle Scholar
  58. Gialluisi, A., Newbury, D. F., Wilcutt, E. G., Consortium, T. S. L. I., & Luciano, M. (2014). Genome-wide screening for DNA variants associated with reading and language traits. Genes, Brain and Behavior, 13(7), 686–701.  https://doi.org/10.1111/gbb.12158.CrossRefGoogle Scholar
  59. Graves, W. W., Desai, R., Humphries, C., Seidenberg, M. S., & Binder, J. R. (2010). Neural systems for reading aloud: a multiparametric approach. Cerebral Cortex, 20(8), 1799–1815.  https://doi.org/10.1093/cercor/bhp245.PubMedCrossRefGoogle Scholar
  60. Grigorenko, E. L. (2004). Genetic bases of developmental dyslexia: A capsule review of heritability estimates. Enfance, 56(3), 273–288.  https://doi.org/10.3917/enf.563.0273.CrossRefGoogle Scholar
  61. Grigorenko, E. L. (2005). A conservative meta-analysis of linkage and linkage-association studies of developmental dyslexia. Scientific Studies of Reading, 9(3), 285–316.  https://doi.org/10.1207/s1532799xssr0903.CrossRefGoogle Scholar
  62. Grigorenko, E. L., Naples, A., Chang, J., Romano, C., Ngorosho, D., Kungulilo, S., … Bundy, D. (2007). Back to Africa: Tracing dyslexia genes in East Africa. Reading and Writing: An Interdisciplinary Journal, 20(1–2), 27–49.  https://doi.org/10.1007/s11145-006-9017-y.CrossRefGoogle Scholar
  63. Guttorm, T., Leppanen, P. H. T., Hamalainen, J. A., Eklund, K. M., & Lyytinen, H. J. (2010). Newborn event-related potentials predict poorer pre-reading skills in children at risk for dyslexia. Journal of Learning Disabilities, 43(5), 391–401.  https://doi.org/10.1177/0022219409345005.PubMedCrossRefGoogle Scholar
  64. Guttorm, T., Leppanen, P., Poikkeus, A., Eklund, K., Lyytinen, P., & Lyytinen, H. (2005). Brain event-related potentials (ERPs) measured at birth predict later language development in children with and without familial risk for dyslexia. Cortex, 41(3), 291–303.  https://doi.org/10.1016/S0010-9452(08)70267-3.PubMedCrossRefGoogle Scholar
  65. Guttorm, T., Leppanen, P. H. T., Richardson, U., & Lyytinen, H. (2001). Event-related potentials and consonant differentiation in newborns with familial risk for dyslexia. Journal of Learning Disabilities, 34(6), 534–544.  https://doi.org/10.1177/002221940103400606.PubMedCrossRefGoogle Scholar
  66. Hämäläinen, J. A., Salminen, H. K., & Leppänen, P. H. T. (2013). Basic auditory processing deficits in dyslexia: Systematic review of the behavioral and event-related potential/ field evidence. Journal of Learning Disabilities, 46(5), 413–427.  https://doi.org/10.1177/0022219411436213.PubMedCrossRefGoogle Scholar
  67. Hampshire, A., Highfield, R. R., Parkin, B. L., & Owen, A. M. (2012). Fractionating human intelligence. Neuron, 76(6), 1225–1237.PubMedCrossRefGoogle Scholar
  68. Harlaar, N., Butcher, L. M., Meaburn, E., Sham, P., Craig, I. W., & Plomin, R. (2005). A behavioural genomic analysis of DNA markers associated with general cognitive ability in 7-year-olds. Journal of Child Psychology and Psychiatry and Allied Disciplines, 46(10), 1097–1107.  https://doi.org/10.1111/j.1469-7610.2005.01515.x.CrossRefGoogle Scholar
  69. Hart, S. A., Soden, B., Johnson, W., Schatschneider, C., & Taylor, J. (2013). Expanding the environment: Gene × school-level SES interaction on reading comprehension. Journal of Child Psychology and Psychiatry, 54(10), 1047–1055.  https://doi.org/10.1111/jcpp.12083.PubMedCrossRefGoogle Scholar
  70. Heibert, E. H., & Taylor, B. M. (2000). Beginning reading instruction: Research on early interventions. In M. L. Kamil, P. B. Mosenthal, P. David Pearson, & R. Barr (Eds.), Handbook of reading research, Vol. III (pp. 455–482). Mahwah NJ: Lawrence Erlbaum.Google Scholar
  71. Heim, S., Grande, M., Pape-Neumann, J., van Ermingen, M., Meffert, E., Grabowska, A., … Amunts, K. (2010). Interaction of phonological awareness and “magnocellular” processing during normal and dyslexic reading: behavioural and fMRI investigations. Dyslexia, 16(3), 258–282.  https://doi.org/10.1002/dys.
  72. Hoeft, F., Hernandez, A., McMillon, G., Taylor-Hill, H., Martindale, J. L., Meyler, A., … Gabrieli, J. D. E. (2006). Neural basis of dyslexia: A comparison between dyslexic and nondyslexic children equated for reading ability. Journal of Neuroscience, 26(42), 10700–10708.  https://doi.org/10.1523/jneurosci.4931-05.2006.PubMedCrossRefGoogle Scholar
  73. Hoeft, F., McCandliss, B. D., Black, J. M., Gantman, A., Zakerani, N., Hulme, C., … & Gabrieli, J. D. (2011). Neural systems predicting long-term outcome in dyslexia. Proceedings of the National Academy of Sciences, 108(1), 361–366.Google Scholar
  74. Hornickel, J., & Kraus, N. (2013). Unstable representation of sound: A biological marker of dyslexia. Journal of Neuroscience, 33(8), 3500–3504.  https://doi.org/10.1523/JNEUROSCI.4205-12.2013.PubMedCrossRefGoogle Scholar
  75. Hosseini, S. M. H., Black, J. M., Soriano, T., Bugescu, N., Martinez, R., Raman, M. M., … Hoeft, F. (2013). Topological properties of large-scale structural brain networks in children with familial risk for reading difficulties. NeuroImage, 71, 260–274.  https://doi.org/10.1016/j.neuroimage.2013.01.013.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Hus, Y. (2001). Early reading for low-ses minority language children: An attempt to “catch them before they fall”. Folia Phoniatrica et Logopaedica, 53(3), 173–182.PubMedCrossRefGoogle Scholar
  77. Hutzler, F., Kronbichler, M., Jacobs, A. M., & Wimmer, H. (2006). Perhaps correlational but not causal: No effect of dyslexic readers’ magnocellular system on their eye movements during reading. Neuropsychologia, 44(4), 637–648.  https://doi.org/10.1016/j.neuropsychologia.2005.06.006.PubMedCrossRefGoogle Scholar
  78. Im, K., Raschle, N. M., Smith, S. A., Ellen Grant, P., & Gaab, N. (2016). Atypical sulcal pattern in children with developmental dyslexia and at-risk kindergarteners. Cerebral Cortex, 26(3), 1138–1148.  https://doi.org/10.1093/cercor/bhu305.PubMedCrossRefGoogle Scholar
  79. Johannes, S., Kussmaul, C. L., Münte, T. F., & Mangun, G. R. (1996). Developmental dyslexia: Passive visual stimulation provides no evidence for a magnocellular processing defect. Neuropsychologia, 34(11), 1123–1127.  https://doi.org/10.1016/0028-3932(96)00026-7.PubMedCrossRefGoogle Scholar
  80. Karmiloff-Smith, A. (2009). Nativism versus neuroconstructivism: Rethinking the study of developmental disorders. Developmental Psychology, 45(1), 56–63.  https://doi.org/10.1037/a0014506.PubMedCrossRefGoogle Scholar
  81. Keller, T. A., & Just, M. A. (2009). Altering cortical connectivity: Remediation-induced changes in the white matter of poor readers. Neuron, 64(5), 624–631.Google Scholar
  82. Krafnick, A. J., Flowers, D. L., Luetje, M. M., Napoliello, E. M., & Eden, G. F. (2014). An investigation into the origin of anatomical differences in dyslexia. The Journal of Neuroscience, 34(3), 901–908.  https://doi.org/10.1523/JNEUROSCI.2092-13.2013.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Kronbichler, M., Hutzler, F., Staffen, W., Mair, A., Ladurner, G., & Wimmer, H. (2006). Evidence for a dysfunction of left posterior reading areas in German dyslexic readers. Neuropsychologia, 44(10), 1822–1832.  https://doi.org/10.1016/j.neuropsychologia.2006.03.010.PubMedCrossRefGoogle Scholar
  84. Kronbichler, M., Wimmer, H., Staffen, W., Hutzler, F., Mair, A., & Ladurner, G. (2008). Developmental dyslexia: Gray matter abnormalities in the occipitotemporal cortex. Human Brain Mapping, 29(5), 613–625.  https://doi.org/10.1002/hbm.20425.PubMedCrossRefGoogle Scholar
  85. Langer, N., Peysakhovich, B., Zuk, J., Drottar, M., Sliva, D. D., Smith, S., … Gaab, N. (2015). White matter alterations in infants at risk for developmental dyslexia. Cerebral Cortex, 27(2):1027–1036.  https://doi.org/10.1093/cercor/bhv281.
  86. Leppänen, P. H. T., Hämäläinen, J. A., Guttorm, T., Eklund, K. M., Salminen, H. K., Tanskanen, A., … Lyytinen, H. J. (2012). Infant brain responses associated with reading-related skills before school and at school age. Neurophysiologie Clinique/Clinical Neurophysiology, 42(1–2), 35–41.  https://doi.org/10.1016/j.neucli.2011.08.005.PubMedCrossRefGoogle Scholar
  87. Leppänen, P. H. T., Hämäläinen, J. A., Salminen, H. K., Eklund, K. M., Guttorm, T. K., Lohvansuu, K., … Lyytinen, H. (2010). Newborn brain event-related potentials revealing atypical processing of sound frequency and the subsequent association with later literacy skills in children with familial dyslexia. Cortex, 46(10), 1362–1376.  https://doi.org/10.1016/j.cortex.2010.06.003.PubMedCrossRefGoogle Scholar
  88. Lilienfeld, S. O., & Treadway, M. T. (2016). Clashing diagnostic approaches: DSM-ICD versus RDoC. Annual Review of Clinical Psychology, 12, 435–463.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Linkersdörfer, J., Jurcoane, A., Lindberg, S., Kaiser, J., Hasslehorn, M., Fiebach, C. J., et al. (2014). The association between gray matter volume and reading proficiency: A longitudinal study of beginning readers. Journal of Cognitive Neuroscience, 27(2), 308–318.  https://doi.org/10.1162/jocn.CrossRefGoogle Scholar
  90. Linkersdörfer, J., Lonnemann, J., Lindberg, S., Hasselhorn, M., & Fiebach, C. J. (2012). Grey matter alterations co-localize with functional abnormalities in developmental dyslexia: An ALE meta-analysis. PLoS ONE, 7(8).  https://doi.org/10.1371/journal.pone.0043122.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Livingstone, M. S., & Hubel, D. (1988). Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science, 240(4853), 740–749.  https://doi.org/10.1126/science.3283936.PubMedCrossRefGoogle Scholar
  92. Logan, J. A., Hart, S. A., Cutting, L., Deater-Deckard, K., Schatschneider, C., & Petrill, S. (2014). Reading development in young children: Genetic and environmental influences. Child Development, 84(6), 2131–2144.  https://doi.org/10.1111/cdev.12104.CrossRefGoogle Scholar
  93. Lyon, G. R., Fletcher, J. M., Shaywitz, S. E., Shaywitz, B. A., Torgesen, J. K., Wood, F. B., … & Olson, R. (2001). Rethinking learning disabilities. Rethinking Special Education for a New Century, 259–287.Google Scholar
  94. Lyon, G. R., Shaywitz, S. E., & Shaywitz, B. A. (2003). A definition of dyslexia. Annals of Dyslexia, 53(1), 1–14.  https://doi.org/10.1007/s11881-003-0001-9.CrossRefGoogle Scholar
  95. Lyytinen, H., Guttorm, T., Huttunen, T., Hamalainen, J., Leppanen, P., & Vesterinen, M. (2005). Psychophysiology of developmental dyslexia: a review of findings including studies of children at risk for dyslexia. Journal of Neurolinguistics, 18(2), 167–195.  https://doi.org/10.1016/j.jneuroling.2004.11.001.CrossRefGoogle Scholar
  96. Maisog, J. M., Einbinder, E. R., Flowers, D. L., Turkeltaub, P. E., & Eden, G. F. (2008). A meta-analysis of functional neuroimaging studies of dyslexia. Annals of the New York Academy of Sciences, 1145(1), 237–259.PubMedCrossRefGoogle Scholar
  97. Marinković, K. (2004). Spatiotemporal dynamics of word processing in the human cortex. The Neuroscientist, 10(2), 142–152.  https://doi.org/10.1177/1073858403261018.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Marinković, K., Dhond, R. P., Dale, A. M., Glessner, M., Carr, V., & Halgren, E. (2003). Spatiotemporal dynamics of modality-specific and supramodal word processing. Neuron, 38(3), 487–497.PubMedPubMedCentralCrossRefGoogle Scholar
  99. McCrory, E. J., Mechelli, A., Frith, U., & Price, C. J. (2005). More than words: A common neural basis for reading and naming deficits in developmental dyslexia? Brain, 128(2), 261–267.  https://doi.org/10.1093/brain/awh340.PubMedCrossRefGoogle Scholar
  100. McDonald, C. R., Thesen, T., Carlson, C., Blumberg, M., Girard, H. M., Trongnetrpunya, A., … Halgren, E. (2010). Multimodal imaging of repetition priming: Using fMRI, MEG, and intracranial EEG to reveal spatiotemporal profiles of word processing. NeuroImage, 53(2), 707–717.  https://doi.org/10.1016/j.neuroimage.2010.06.069.PubMedPubMedCentralCrossRefGoogle Scholar
  101. McGuinness, C., McGuinness, D., & McGuinness, G. (1996). Phono-graphix TM: A new method for remediating reading difficulties. Annals of Dyslexia, 46(1), 73–96.CrossRefPubMedGoogle Scholar
  102. Meng, H., Powers, N. R., Tang, L., Cope, N. A., Zhang, P. X., Fuleihan, R., … & Gruen, J. R. (2011). A dyslexia-associated variant in DCDC2 changes gene expression. Behavior Genetics, 41(1), 58–66.Google Scholar
  103. Meng, H., Smith, S. D., Hager, K., Held, M., Liu, J., Olson, R. K., … Gruen, J. R. (2005). DCDC2 is associated with reading disability and modulates neuronal development in the brain. Proceedings of the National Academy of Sciences, 102(47), 17053–8.  https://doi.org/10.1073/pnas.0508591102.CrossRefGoogle Scholar
  104. Meyler, A., Keller, T. A., Cherkassky, V. L., Gabrieli, J. D. E., & Just, M. A. (2008). Modifying the brain activation of poor readers during sentence comprehension with extended remedial instruction: A longitudinal study of neuroplasticity. Neuropsychologia, 46(10), 2580–2592.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Milne, E., & Grafman, J. (2001). Ventromedial prefrontal cortex lesions in humans eliminate implicit gender stereotyping. The Journal of Neuroscience, 21(12), RC150.Google Scholar
  106. Milne, R. D., Syngeniotis, A., Jackson, G., & Corballis, M. C. (2002). Mixed lateralization of phonological assembly in developmental dyslexia. Neurocase, 8(3), 205–209.  https://doi.org/10.1093/neucas/8.3.205.PubMedCrossRefGoogle Scholar
  107. Molfese, D. L. (2000). Predicting dyslexia at 8 years of age using neonatal brain responses. Brain and Language, 72(3), 238–245.  https://doi.org/10.1006/brln.2000.2287.PubMedCrossRefGoogle Scholar
  108. Molfese, D. L., & Molfese, V. J. (1985). Electrophysiological indices of auditory discrimination in newborn infants: The bases for predicting later language development? Infant Behavior and Development, 9(2), 197–211.CrossRefGoogle Scholar
  109. Molfese, D. L., & Molfese, V. J. (1997). Discrimination of language skills at five years of age using event-related potentials recorded at birth. Developmental Neuropsychology, 13(2), 135–156.  https://doi.org/10.1080/87565649709540674.CrossRefGoogle Scholar
  110. Molfese, D. L., Molfese, V. J., & Kelly, S. (2001). The use of brain electrophysiology techniques to study language: A basic guide for the beginning consumer of electrophysiology information. Learning Disability Quarterly, 24(3), 177.  https://doi.org/10.2307/1511242.CrossRefGoogle Scholar
  111. Morris, R. D., Stuebing, K. K., Fletcher, J. M., Shaywitz, S. E., Lyon, G. R., Shankweiler, D. P., … Shaywitz, B. A. (1998). Subtypes of reading disability: Variability around a phonological core. Journal of Educational Psychology, 90(3), 347–373.  https://doi.org/10.1037/0022-0663.90.3.347.CrossRefGoogle Scholar
  112. Myers, C., Vandermosten, M., Farris, R., Hancock, R., Gimenez, P., Black, J., … Hoeft, F. (2014). White matter morphometric changes uniquely predict children’s reading acquisition. Psychological Science, 25(10), 1870–1883.  https://doi.org/10.1177/0956797614544511.PubMedPubMedCentralCrossRefGoogle Scholar
  113. National Reading Panel (US), National Institute of Child Health, & Human Development (US). (2000). Report of the national reading panel: Teaching children to read: An evidence-based assessment of the scientific research literature on reading and its implications for reading instruction: Reports of the subgroups. National Institute of Child Health and Human Development, National Institutes of Health.Google Scholar
  114. Neville, H. J., Coffey, S. A., Holcomb, P. J., & Tallal, P. (1993). The neurobiology of sensory and language processing in language-impaired children. Journal of Cognitive Neuroscience, 5(2), 235–253.  https://doi.org/10.1162/jocn.1993.5.2.235.PubMedCrossRefGoogle Scholar
  115. Noble, K. G., McCandliss, B. D., & Farah, M. J. (2007). Socioeconomic gradients predict individual differences in neurocognitive abilities. Developmental Science, 10(4), 464–480.  https://doi.org/10.1111/j.1467-7687.2007.00600.x.PubMedCrossRefGoogle Scholar
  116. Odegard, T. N., Ring, J., Smith, S., Biggan, J., & Black, J. (2008). Differentiating the neural response to intervention in children with developmental dyslexia. Annals of dyslexia, 58(1), 1.PubMedCrossRefGoogle Scholar
  117. Ozernov-Palchik, O., & Gaab, N. (2016). Tackling the “dyslexia paradox”: Reading brain and behavior for early markers of developmental dyslexia. Wiley Interdisciplinary Reviews: Cognitive Science, 7(2), 156–176.  https://doi.org/10.1002/wcs.1383.PubMedCrossRefGoogle Scholar
  118. Paracchini, S., Thomas, A., Castro, S., Lai, C., Paramasivam, M., Wang, Y., … & Francks, C. (2006). The chromosome 6p22 haplotype associated with dyslexia reduces the expression of KIAA0319, a novel gene involved in neuronal migration. Human Molecular Genetics, 15(10), 1659–1666.Google Scholar
  119. Paulesu, E. (2001). Dyslexia: Cultural diversity and biological unity. Science, 291(5511), 2165–2167.  https://doi.org/10.1126/science.1057179.PubMedCrossRefGoogle Scholar
  120. Paulesu, E., Danelli, L., & Berlingeri, M. (2014). Reading the dyslexic brain: multiple dysfunctional routes revealed by a new meta-analysis of PET and fMRI activation studies. Frontiers in Human Neuroscience, 8(November), 830.  https://doi.org/10.3389/fnhum.2014.00830.PubMedPubMedCentralCrossRefGoogle Scholar
  121. Paulesu, E., Frith, U., Snowling, M., Gallagher, A., Morton, J., Frackowiak, R. S. J., et al. (1996). Is developmental dyslexia a disconnection syndrome? Evidence from PET scanning. Brain, 119(1), 143–157.  https://doi.org/10.1093/brain/119.1.143.PubMedCrossRefGoogle Scholar
  122. Pennington, B. F. (2006). From single to multiple deficit models of developmental disorders. Cognition, 101(2), 385–413.CrossRefPubMedGoogle Scholar
  123. Peterson, R., & Pennington, B. (2015). Developmental dyslexia. Annual Review of Clinical Psychology, 11, 283–307.  https://doi.org/10.1146/annurev-clinpsy-032814-112842.PubMedCrossRefGoogle Scholar
  124. Phillips, B. M., & Lonigan, C. J. (2005). Social correlates of emergent literacy. In M. J. Snowling & C. Hulme (Eds.), The science of reading: A handbook (pp. 173–187). Oxford, UK: Blackwell Publishing Ltd.  https://doi.org/10.1002/9780470757642.ch10.
  125. Platt, M. P., Adler, W. T., Mehlhorn, A. J., Johnson, G. C., Wright, K. A., Choi, R. T., … Rosen, G. D. (2013). Embryonic disruption of the candidate dyslexia susceptibility gene homolog Kiaa0319-like results in neuronal migration disorders. Neuroscience, 248, 585–593.  https://doi.org/10.1016/j.neuroscience.2013.06.056.PubMedCrossRefGoogle Scholar
  126. Plomin, R., Haworth, C. M. A., Meaburn, E. L., Price, T. S., & Davis, O. S. P. (2013). Common DNA markers can account for more than half of the genetic influence on cognitive abilities. Psychological Science, 24(4), 562–568.  https://doi.org/10.1177/0956797612457952.PubMedPubMedCentralCrossRefGoogle Scholar
  127. Powers, S. J., Wang, Y., Beach, S. D., Sideridis, G. D., & Gaab, N. (2016). Examining the relationship between home literacy environment and neural correlates of phonological processing in beginning readers with and without a familial risk for dyslexia: An fMRI study. Annals of Dyslexia, 66(3), 337–360.PubMedPubMedCentralCrossRefGoogle Scholar
  128. Ramus, F., Rosen, S., Dakin, S. C., Day, B. L., Castellote, J. M., White, S., et al. (2003). Theories of developmental dyslexia: Insights from a multiple case study of dyslexic adults. Brain, 126(4), 841–865.  https://doi.org/10.1093/brain/awg076.PubMedCrossRefGoogle Scholar
  129. Ramus, F., & Szenkovits, G. (2008) What phonological deficit? The Quarterly Journal of Experimental Psychology, 61(1),129–141.  https://doi.org/10.1080/17470210701508822CrossRefGoogle Scholar
  130. Raschle, N. M., Chang, M., & Gaab, N. (2011). Structural brain alterations associated with dyslexia predate reading onset. NeuroImage, 57(3), 742–749.  https://doi.org/10.1016/j.neuroimage.2010.09.055.PubMedCrossRefGoogle Scholar
  131. Raschle, N. M., Stering, P. L., Meissner, S. N., & Gaab, N. (2014). Altered neuronal response during rapid auditory processing and its relation to phonological processing in prereading children at familial risk for dyslexia. Cerebral Cortex, 24(9), 2489–2501.  https://doi.org/10.1093/cercor/bht104.PubMedCrossRefGoogle Scholar
  132. Reardon, S. F., Robinson-Cimpian, J. P., & Weathers, E. S. (2014). Patterns and trends in racial/ethnic and socioeconomic academic achievement gaps. In H. A. Ladd & M. E. Goertz (Eds.), Handbook of research in education finance and policy. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  133. Richlan, F., Kronbichler, M., & Wimmer, H. (2009). Functional abnormalities in the dyslexic brain: A quantitative meta-analysis of neuroimaging studies. Human Brain Mapping, 30(10), 3299–3308.PubMedPubMedCentralCrossRefGoogle Scholar
  134. Richlan, F., Kronbichler, M., & Wimmer, H. (2013). Structural abnormalities in the dyslexic brain: A meta-analysis of voxel-based morphometry studies. Human Brain Mapping, 34(11), 3055–3065.  https://doi.org/10.1002/hbm.22127.PubMedCrossRefGoogle Scholar
  135. Rimrodt, S. L., Peterson, D. J., Denckla, M. B., Kaufmann, W. E., & Cutting, L. E. (2010). White matter microstructural differences linked to left perisylvian language network in children with dyslexia. Cortex, 46(6), 739–749.  https://doi.org/10.1016/j.cortex.2009.07.008.PubMedCrossRefGoogle Scholar
  136. Rumsey, J. M., Andreason, P., Zametkin, A. J., Aquino, T., King, A. C., Hamburger, S. D., … Cohen, R. M. (1992). Failure to activate the left temporoparietal cortex in dyslexia. An oxygen 15 positron emission tomographic study. Archives of Neurology, 49(5), 527–34.PubMedCrossRefGoogle Scholar
  137. Rumsey, J. M., Horwitz, B., Donohue, B. C., Nace, K., Maisog, J. M., & Andreason, P. (1997a). Phonological and orthographic components of word recognition. A PET-rCBF study. Brain, 120(5), 739–759.  https://doi.org/10.1093/brain/120.5.739.PubMedCrossRefGoogle Scholar
  138. Rumsey, J. M., Nace, K., Donohue, B., Wise, D., Maisog, J. M., & Andreason, P. (1997b). A positron emission tomographic study of impaired word recognition and phonological processing in dyslexic men. Archives of Neurology, 54(5), 562–573.PubMedCrossRefGoogle Scholar
  139. Rutter, M., & Yule, W. (1975). The concept of specific reading retardation. Journal of Child Psychology and Psychiatry, 16(3), 181–197.CrossRefPubMedGoogle Scholar
  140. Salmelin, R., Kiesilä, P., Uutela, K., Service, E., & Salonen, O. (1996). Impaired visual word processing in dyslexia revealed with magnetoencephalography. Annals of Neurology, 40(2), 157–162.  https://doi.org/10.1002/ana.410400206.PubMedCrossRefGoogle Scholar
  141. Saygin, Z. M., Osher, D. E., Norton, E. S., Youssoufian, D. A., Beach, S., Feather, J., Gaab, N., Gabrieli, J., K. N. (2016). Connectivity precedes function in the development of the visual word form area. Nature Neuroscience, 19(9).  https://doi.org/10.1038/nn.4354.PubMedPubMedCentralCrossRefGoogle Scholar
  142. Saygin, Z. M., Norton, E. S., Osher, D. E., Beach, S. D., Cyr, A. B., Ozernov-Palchik, O., … Gabrieli, J. D. E. (2013). Tracking the roots of reading ability: White matter volume and integrity correlate with phonological awareness in prereading and early-reading kindergarten children. The Journal of Neuroscience, 33(33), 13251–13258.  https://doi.org/10.1523/jneurosci.4383-12.2013.PubMedCrossRefGoogle Scholar
  143. Schultz, J. J. (2008). Is dyslexia hereditary? family education network. https://www.school.familyeducation.com/learningdisabilities/ genetics/42788.html. Retrieved from Aug 25, 2008.
  144. Schulz, E., Maurer, U., van der Mark, S., Bucher, K., Brem, S., Martin, E., et al. (2008). Impaired semantic processing during sentence reading in children with dyslexia: Combined fMRI and ERP evidence. NeuroImage, 41(1), 153–168.  https://doi.org/10.1016/j.neuroimage.2008.02.012.PubMedCrossRefGoogle Scholar
  145. Shaywitz, B. E., Shaywitz, S. E., Blachman, B. A., Pugh, K. R., Fulbright, R. K., Skudlarski, P., Mencl, W. E., Constable, R. T., Holahan, J. M, Marchione, K. E. Fletcher, J. M., Lyon, G., R., & Gore, J. C. (2004). Development of left occipitotemporal systems for skilled reading in children after a phonologically-based intervention. Biological Psychiatry, 55, 926–933.Google Scholar
  146. Shaywitz, B. A., Shaywitz, S. E., Pugh, K. R., Mencl, W. E., Fulbright, R. K., Skudlarski, P., … Gore, J. C. (2002). Disruption of posterior brain systems for reading in children with developmental dyslexia. Biological Psychiatry, 52(2), 101–110.  https://doi.org/10.1016/s0006-3223(02)01365-3.PubMedCrossRefGoogle Scholar
  147. Shaywitz, S. E. (1996). Dyslexia. Scientific American, 98–104.PubMedCrossRefGoogle Scholar
  148. Shaywitz, S. E., Escobar, M. D., Shaywitz, B. A., Fletcher, J. M., & Makuch, R. (1992). Evidence that dyslexia may represent the lower tail of a normal distribution of reading ability. New England Journal of Medicine, 326, 145–150.PubMedPubMedCentralCrossRefGoogle Scholar
  149. Shaywitz, S. E., Mody, M., & Shaywitz, B. A. (2006). Neural mechanisms in dyslexia. Current Directions in Psychological Science, 15(6), 278–281.CrossRefGoogle Scholar
  150. Shaywitz, S. E., & Shaywitz, B. A. (2008). Paying attention to reading: The neurobiology of reading and dyslexia. Development and Psychopathology, 20(4), 1329–1349.  https://doi.org/10.1017/S0954579408000631.PubMedCrossRefGoogle Scholar
  151. Shaywitz, S. E., Shaywitz, B. A., Pugh, K. R., Fulbright, R. K., Constable, R. T., Mencl, W. E., … Gore, J. C. (1998). Functional disruption in the organization of the brain for reading in dyslexia. Proceedings of the National Academy of Sciences, 95(5), 2636–2641.  https://doi.org/10.1073/pnas.95.5.2636.CrossRefGoogle Scholar
  152. Silani, G., Frith, U., Demonet, J. F., Fazio, F., Perani, D., Price, C., … Paulesu, E. (2005). Brain abnormalities underlying altered activation in dyslexia: A voxel based morphometry study. Brain, 128(10), 2453–2461.  https://doi.org/10.1093/brain/awh579.PubMedCrossRefGoogle Scholar
  153. Simos, P. G., Fletcher, J. M., Bergman, E., Breier, J. I., Foorman, B. R., Castillo, E. M., … & Papanicolaou, A. C. (2002). Dyslexia-specific brain activation profile becomes normal following successful remedial training. Neurology, 58(8), 1203–1213.Google Scholar
  154. Simos, P. G., Fletcher, J. M., Sarkari, S., Billingsley-Marshall, R., Denton, C. A., & Papanicolaou, A. C. (2007). Intensive instruction affects brain magnetic activity associated with oral word reading in children with persistent reading disabilities. Journal of Learning Disabilities, 40(1), 37–48.PubMedCrossRefGoogle Scholar
  155. Simos, P. G., Sarkari, S., Castillo, E. M., Billingsley-Marshall, R. L., Pataraia, E., Clear, T., et al. (2005). Reproducibility of measures of neurophysiological activity in Wernicke’s area: A magnetic source imaging study. Clinical Neurophysiology, 116(10), 2381–2391.  https://doi.org/10.1016/j.clinph.2005.06.019.PubMedCrossRefGoogle Scholar
  156. Siok, W. T., Niu, Z., Jin, Z., Perfetti, C. A., & Tan, L. H. (2008). A structural-functional basis for dyslexia in the cortex of Chinese readers. Proceedings of the National Academy of Sciences, 105(14), 5561–5566.  https://doi.org/10.1073/pnas.0801750105.CrossRefGoogle Scholar
  157. Skottun, B. C. (2005). Magnocellular reading and dyslexia. Vision Research, 45(1), 133–134.  https://doi.org/10.1016/j.visres.2003.09.039.PubMedCrossRefGoogle Scholar
  158. Skyttner, L. (2006). General systems theory: Problems, perspective, practice. Singapore: World Scientific Publishing.  https://doi.org/10.1142/5871.CrossRefGoogle Scholar
  159. Smythe, I., & Everatt, J. (2000). Dyslexia diagnosis in different languages. In L. Peer & G. Reid (Eds.), Multilingualism, literacy and dyslexia. London: David Fulton.Google Scholar
  160. Snowling, M. J., & Melby-Lervåg, M. (2016). Oral language deficits in familial dyslexia: A meta-analysis and review. Psychological Bulletin, 142(5), 498–545.PubMedPubMedCentralCrossRefGoogle Scholar
  161. Specht, K., Hugdahl, K., Ofte, S., Nygård, M., Bjørnerud, A., Plante, E., et al. (2009). Brain activation on pre-reading tasks reveals at-risk status for dyslexia in 6-year-old children. Scandinavian Journal of Psychology, 50(1), 79–91.  https://doi.org/10.1111/j.1467-9450.2008.00688.x.PubMedCrossRefGoogle Scholar
  162. Stanovich, K. E. (1986). Matthew effects in reading: Some consequences of individual differences in the acquisition of literacy. Reading Research Quarterly, 21(4), 360–407.  https://doi.org/10.1598/RRQ.21.4.1.CrossRefGoogle Scholar
  163. Stanovich, K. E., & Siegel, L. S. (1994). Phenotypic performance profile of children with reading disabilities: A regression-based test of the phonological-core variable-difference model. Journal of Educational Psychology, 86(1), 24.CrossRefGoogle Scholar
  164. Stein, J. (2001). The magnocellular theory of developmental dyslexia. Dyslexia, 7(1), 12–36.  https://doi.org/10.1002/dys.186.PubMedCrossRefGoogle Scholar
  165. Stein, J. (2014). Dyslexia: The role of vision and visual attention. Current Developmental Disorders Reports, 1(4), 267–280.  https://doi.org/10.1007/s40474-014-0030-6.PubMedPubMedCentralCrossRefGoogle Scholar
  166. Szalkowski, C. E., Fiondella, C. G., Galaburda, A. M., Rosen, G. D., LoTurco, J. J., & Fitch, R. H. (2012). Neocortical disruption and behavioral impairments in rats following in utero RNAi of candidate dyslexia risk gene Kiaa0319. International Journal of Developmental Neuroscience, 30(4), 293–302.  https://doi.org/10.1016/j.ijdevneu.2012.01.009.PubMedPubMedCentralCrossRefGoogle Scholar
  167. Tallal, P. (1980). Auditory temporal perception, phonics, and reading disabilities in children. Brain and Language, 9(2), 182–198.  https://doi.org/10.1016/0093-934X(80)90139-X.PubMedCrossRefGoogle Scholar
  168. Tallal, P., & Gaab, N. (2006). Dynamic auditory processing, musical experience and language development. Trends in Neuroscience, 29(7), 382–390.  https://doi.org/10.1016/j.tins.2006.06.003.CrossRefGoogle Scholar
  169. Tallal, P., Stark, R., & Mellits, E. (1985). Identification of language-impaired children on the basis of rapid perception and production skills. Brain and Language, 25(2), 314–322.PubMedCrossRefGoogle Scholar
  170. Taylor, J., & Schatschneider, C. (2010). Genetic influence on literacy constructs in kindergarten and first grade: Evidence from a diverse twin sample. Behavior Genetics, 40(5), 591–602.  https://doi.org/10.1007/s10519-010-9368-7.PubMedPubMedCentralCrossRefGoogle Scholar
  171. Temple, E. (2002). Brain mechanisms in normal and dyslexic readers. Current Opinion in Neurobiology, 12(2), 178–183.  https://doi.org/10.1016/S0959-4388(02),00303-3.PubMedCrossRefGoogle Scholar
  172. Temple, E., Poldrack, R. A., Protopapas, A., Nagarajan, S., Salz, T., Tallal, P., … Gabrieli, J. D. E. (2000). Disruption of the neural response to rapid acoustic stimuli in dyslexia: Evidence from functional MRI. Proceedings of the National Academy of Sciences, 97(25), 13907–13912.  https://doi.org/10.1073/pnas.240461697.CrossRefGoogle Scholar
  173. Terras, M. M., Thompson, L. C., & Minnis, H. (2009). Dyslexia and psycho-social functioning: An exploratory study of the role of self-esteem and understanding. Dyslexia, 15(4), 304–327.Google Scholar
  174. Thesen, T., McDonald, C. R., Carlson, C., Doyle, W., Cash, S., Sherfey, J., … Halgren, E. (2012). Sequential then interactive processing of letters and words in the left fusiform gyrus. Nature Communications, 3, 1284.  https://doi.org/10.1038/ncomms2220.
  175. Torgesen, J. K. (2000). Individual differences in response to early interventions in reading: The lingering problem of treatment resisters. Learning Disabilities Research & Practice, 15, 55–64.CrossRefGoogle Scholar
  176. Torgesen, J., Myers, D., Schirm, A., Stuart, E., Vartivarian, S., Mansfield, W., … & Haan, C. (2006). National assessment of title I: Interim report. Volume II: Closing the reading gap: First year findings from a randomized trial of four reading interventions for striving readers. National Center for Education Evaluation and Regional Assistance.Google Scholar
  177. Turkheimer, E., Haley, A., Waldron, M., D’Onofrio, B., & Gottesman, I. I. (2003). Socioeconomic status modified heritability of IQ in young children. Psychological Science, 14(6), 623–628.  https://doi.org/10.1046/j.0956-7976.2003.psci_1475.x.PubMedCrossRefGoogle Scholar
  178. Valås, H. (1999). Students with learning disabilities and low-achieving students: Peer acceptance, loneliness, self-esteem, and depression. Social Psychology of Education, 3(3), 173–192.  https://doi.org/10.1023/A:1009626828789.CrossRefGoogle Scholar
  179. Vandermosten, M., Boets, B., Wouters, J., & Ghesquière, P. (2012). A qualitative and quantitative review of diffusion tensor imaging studies in reading and dyslexia. Neuroscience and Biobehavioral Reviews, 36(6), 1532–1552.  https://doi.org/10.1016/j.neubiorev.2012.04.002.PubMedCrossRefGoogle Scholar
  180. Vandermosten, M., Vanderauwera, J., Theys, C., De Vos, A., Vanvooren, S., Sunaert, S., … Ghesquière, P. (2015). A DTI tractography study in pre-readers at risk for dyslexia. Developmental Cognitive Neuroscience, 14, 8–15.  https://doi.org/10.1016/j.dcn.2015.05.006.PubMedCrossRefGoogle Scholar
  181. Vellutino, F. R., Fletcher, J. M., Snowling, M. J., & Scanlon, D. M. (2004). Specific reading disability (dyslexia): What have we learned in the past four decades? Journal of Child Psychology and Psychiatry, 45(1), 2–40.PubMedPubMedCentralCrossRefGoogle Scholar
  182. Vellutino, F. R., Scanlon, D. M., Sipay, E. R., Small, S. G., Pratt, A., Chen, R., et al. (1996). Cognitive profiles of difficult-to-remediate and readily remediated poor readers: Early intervention as a vehicle for distinguishing between cognitive and experiential deficits as basic causes of specific reading disability. Journal of Educational Psychology, 88, 601–638.CrossRefGoogle Scholar
  183. Wada, J. A., Clarke, R., & Hamm, A. (1975). Cerebral hemispheric asymmetry in humans. Cortical speech zones in 100 adults and 100 infant brains. Archives of Neurology, 32(4), 239–246.Google Scholar
  184. Willcutt, E. G., & Pennington, B. F. (2000). Comorbidity of reading disability and attention-deficit/hyperactivity disorder: Differences by gender and subtype. Journal of Learning Disabilities, 33(2), 179–191.PubMedCrossRefGoogle Scholar
  185. Willcutt, E. G., Pennington, B. F., Duncan, L., Smith, S. D., Keenan, J. M., Wadsworth, S., … & Olson, R. K. (2010). Understanding the complex etiologies of developmental disorders: behavioral and molecular genetic approaches. Journal of Developmental and Behavioral Pediatrics: JDBP, 31(7), 533.Google Scholar
  186. Wimmer, H., & Goswami, U. (1994). The influence of orthographic consistency on reading development: Word recognition in English and German children. Cognition, 51(1), 91–103.PubMedCrossRefGoogle Scholar
  187. Ziegler, J. C., & Goswami, U. (2005). Reading acquisition, developmental dyslexia, and skilled reading across languages: A psycholinguistic grain size theory. Psychological Bulletin, 131(1), 3.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of MarylandCollege ParkUSA

Personalised recommendations