Circulating MicroRNAs as Potential Biomarkers for Lung Cancer

  • Sabrina Müller
  • Florian Janke
  • Steffen Dietz
  • Holger SültmannEmail author
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 215)


Lung cancer is the number one cause of cancer-related mortality worldwide. To improve disease outcome, it is crucial to implement biomarkers into the clinics which assist physicians in their decisions regarding diagnosis, prognosis, as well as prediction of treatment response. Liquid biopsy offers an opportunity to obtain such biomarkers in a minimal invasive manner by retrieving tumor-derived material from body fluids of the patient. The abundance of circulating microRNAs is known to be altered in disease and has therefore been studied extensively as a cancer biomarker. Circulating microRNAs present a variety of favorable characteristics for application as liquid biopsy-based biomarkers, including their high stability, relatively high abundance, and presence is nearly all body fluids. Although the application of circulating microRNAs for the management of lung cancer has not entered the clinics yet, several studies showed their utility for diagnosis, prognosis, and efficacy prediction of various treatment strategies, including surgery, radio-/chemotherapy, as well as targeted therapy. To compensate for their limited tumor specificity, several microRNAs are frequently combined into microRNA panels. Moreover, the possibility to combine single microRNAs or microRNA panels with tumor imaging or other cancer-specific biomarkers has the potential to increase specificity and sensitivity and could lead to the clinical application of novel multi-marker combinations.


Circulating microRNA Liquid biopsy Lung cancer NSCLC (Blood-based) biomarker Diagnosis Prognosis Prediction 



We thank Sabine Klauck for critical reading of the manuscript and valuable comments.


  1. Aharonov R, Lebanony D, Benjamin H et al (2009) Diagnostic assay based on hsa-miR-205 expression distinguishes squamous from nonsquamous non-small-cell lung carcinoma. J Clin Oncol 27:2030–2037PubMedCrossRefGoogle Scholar
  2. Ak G, Tomaszek SC, Kosari F et al (2015) MicroRNA and mRNA features of malignant pleural mesothelioma and benign asbestos-related pleural effusion. Biomed Res Int. Scholar
  3. Appierto V, Callari M, Cavadini E, Morelli D, Daidone MG, Tiberio P (2014) A lipemia-independent NanoDrop®-based score to identify hemolysis in plasma and serum samples. Bioanalysis 6:1215–1226PubMedCrossRefGoogle Scholar
  4. Aupérin A, Le Péchoux C, Rolland E et al (2010) Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J Clin Oncol 28:2181–2190PubMedCrossRefGoogle Scholar
  5. Aushev VN, Zborovskaya IB, Laktionov KK, Girard N, Cros MP, Herceg Z, Krutovskikh V (2013) Comparisons of microRNA patterns in plasma before and after tumor removal reveal new biomarkers of lung squamous cell carcinoma. PLoS One. 8(10):e78649. Scholar
  6. Baggish AL, Hale A, Weiner RB, Lewis GD, Systrom D, Wang F, Wang TJ, Chan SY (2011) Dynamic regulation of circulating microRNA during acute exhaustive exercise and sustained aerobic exercise training. J Physiol 589:3983–3994PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bianchi F, Nicassio F, Marzi M, Belloni E, Dall’Olio V, Bernard L, Pelosi G, Maisonneuve P, Veronesi G, Di Fiore PP (2011) A serum circulating miRNA diagnostic test to identify asymptomatic high-risk individuals with early stage lung cancer. EMBO Mol Med 3:495–503PubMedPubMedCentralCrossRefGoogle Scholar
  9. Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13:1097–1101CrossRefGoogle Scholar
  10. Brase JC, Johannes M, Schlomm T, Haese A, Steuber T, Beissbarth T, Kuner R, Sültmann H (2011) Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer 128:608–616PubMedCrossRefGoogle Scholar
  11. Butz H, Kinga N, Racz K, Patocs A (2016) Circulating miRNAs as biomarkers for endocrine disorders. J Endocrinol Invest 39:1–10PubMedCrossRefGoogle Scholar
  12. Calin GA, Sevignani C, Dumitru CD et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci 101:2999–3004PubMedCrossRefGoogle Scholar
  13. Chang JY, Senan S, Paul MA et al (2015) Stereotactic ablative radiotherapy versus lobectomy for operable stage I non-small-cell lung cancer: a pooled analysis of two randomised trials. Lancet Oncol 16:630–637PubMedPubMedCentralCrossRefGoogle Scholar
  14. Chen X, Ba Y, Ma L et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18:997–1006CrossRefGoogle Scholar
  15. Chen Q, Si Q, Xiao S, Xie Q, Lin J, Wang C, Chen L, Chen Q, Wang L (2013) Prognostic significance of serum miR-17-5p in lung cancer. Med Oncol 30:353PubMedCrossRefGoogle Scholar
  16. Chen X, Xu Y, Liao X et al (2016) Plasma miRNAs in predicting radiosensitivity in non-small cell lung cancer. Tumor Biol 37:11927–11936CrossRefGoogle Scholar
  17. Chin J, Syrek Jensen T, Ashby L, Hermansen J, Hutter JD, Conway PH (2015) Screening for lung cancer with low-dose CT—translating science into medicare coverage policy. N Engl J Med 372:2083–2085PubMedCrossRefGoogle Scholar
  18. Corsten MF, Dennert R, Jochems S, Kuznetsova T, Devaux Y, Hofstra L, Wagner DR, Staessen JA, Heymans S, Schroen B (2010) Circulating microRNA-208b and microRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet 3:499–506PubMedCrossRefGoogle Scholar
  19. Cui E, Li H, Hua F, Wang B, Mao W, Feng X, Li J, Wang X (2012) Serum microRNA 125b as a diagnostic or prognostic biomarker for advanced NSCLC patients receiving cisplatin-based chemotherapy. Acta Pharmacol Sin 34:309–313PubMedPubMedCentralCrossRefGoogle Scholar
  20. Ding Y, Ma Q, Liu F, Zhao L, Wei W (2016) The potential use of salivary miRNAs as promising biomarkers for detection of cancer: a meta-analysis. PLoS ONE 11:1–12Google Scholar
  21. Do Canto LM, Marian C, Willey S, Sidawy M, Da Cunha PA, Rone JD, Li X, Gusev Y, Haddad BR (2016) MicroRNA analysis of breast ductal fluid in breast cancer patients. Int J Oncol 48:2071–2078PubMedPubMedCentralCrossRefGoogle Scholar
  22. Eldh M, Lötvall J, Malmhäll C, Ekström K (2012) Importance of RNA isolation methods for analysis of exosomal RNA: evaluation of different methods. Mol Immunol 50:278–286PubMedCrossRefGoogle Scholar
  23. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386CrossRefGoogle Scholar
  24. Fortunato O, Boeri M, Verri C, Conte D, Mensah M, Suatoni P, Pastorino U, Sozzi G (2014) Assessment of circulating microRNAs in plasma of lung cancer patients. Molecules 19:3038–3054PubMedPubMedCentralCrossRefGoogle Scholar
  25. Franchina T, Amodeo V, Bronte G, Savio G, Ricciardi GRR, Picciotto M, Russo A, Giordano A, Adamo V (2014) Circulating miR-22, miR-24 and miR-34a as novel predictive biomarkers to pemetrexed-based chemotherapy in advanced non-small cell lung cancer. J Cell Physiol 229:97–99PubMedGoogle Scholar
  26. Fromm B, Billipp T, Peck LE et al (2015) A uniform system for the annotation of vertebrate microRNA genes and the evolution of the human microRNAome. Annu Rev Genet 49:213–242PubMedPubMedCentralCrossRefGoogle Scholar
  27. Gao W, Lu X, Liu L, Xu J, Feng D, Shu Y (2012) miRNA-21: a biomarker predictive for platinum-based adjuvant chemotherapy response in patients with non-small cell lung cancer. Cancer Biol Ther 13:330–340PubMedCrossRefGoogle Scholar
  28. Goldstraw P, Chansky K, Crowley J et al (2016) The IASLC lung cancer staging project: proposals for revision of the TNM stage groupings in the forthcoming (eighth) edition of the TNM Classification for lung cancer. J Thorac Oncol 11:39–51PubMedCrossRefGoogle Scholar
  29. Gui Y, Liu H, Zhang L, Lv W, Hu X (2015) Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease. Oncotarget 6:37043–37053PubMedPubMedCentralCrossRefGoogle Scholar
  30. Han L, Witmer PD, Casey E, Valle D, Sukumar S (2007) DNA methylation regulates microRNA expression. Cancer Biol Ther 6:1284–1288PubMedGoogle Scholar
  31. Hayes J, Peruzzi PP, Lawler S (2014) MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med 20:460–469PubMedCrossRefGoogle Scholar
  32. He L, He X, Lim LP et al (2007) A microRNA component of the p53 tumour suppressor network. Nature 447:1130–1134PubMedPubMedCentralCrossRefGoogle Scholar
  33. He WJ, Li WH, Jiang B, Wang YF, Xia YX, Wang L (2015) MicroRNAs level as an initial screening method for early-stage lung cancer: a bivariate diagnostic random-effects meta-analysis. Int J Clin Exp Med 8:12317–12326PubMedPubMedCentralGoogle Scholar
  34. Herbst RS, Heymach JV, Lippman SM (2008) Lung cancer. N Engl J Med 359:1367–1380PubMedCrossRefGoogle Scholar
  35. Hu Z, Chen X, Zhao Y et al (2010) Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. J Clin Oncol 28:1721–1726PubMedCrossRefGoogle Scholar
  36. Hu H, Xu Z, Li C, Xu C, Lei Z, Zhang HT, Zhao J (2016) MiR-145 and miR-203 represses TGF-β-induced epithelial-mesenchymal transition and invasion by inhibiting SMAD3 in non-small cell lung cancer cells. Lung Cancer 97:87–94PubMedCrossRefGoogle Scholar
  37. Hunter MP, Ismail N, Zhang X et al (2008) Detection of microRNA expression in human peripheral blood microvesicles. PLoS One. 3(11):e3694. Scholar
  38. Jensen SG, Lamy P, Rasmussen MH, Ostenfeld MS, Dyrskjøt L, Ørntoft TF, Andersen CL (2011) Evaluation of two commercial global miRNA expression profiling platforms for detection of less abundant miRNAs. BMC Genomics.
  39. Johnson CD, Esquela-Kerscher A, Stefani G et al (2007) The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res 67:7713–7722PubMedCrossRefPubMedCentralGoogle Scholar
  40. Joosse SA, Pantel K (2015) Tumor-educated platelets as liquid biopsy in cancer patients. Cancer Cell 28:552–554PubMedCrossRefGoogle Scholar
  41. Jung M, Schaefer A, Steiner I, Kempkensteffen C, Stephan C, Erbersdobler A, Jung K (2010) Robust microRNA stability in degraded RNA preparations from human tissue and cell samples. Clin Chem 56:998–1006PubMedCrossRefGoogle Scholar
  42. Kannan M, Atreya C (2010) Differential profiling of human red blood cells during storage for 52 selected microRNAs. Transfusion 50:1581–1588PubMedCrossRefGoogle Scholar
  43. Khalil F, Ali-labib R, Hassan I, Moustafa H (2017) MicroRNA-155 expression in exhaled breath condensate of patients with lung cancer. Egypt J Chest Dis Tuberc 66:687–691CrossRefGoogle Scholar
  44. Kim DJ, Linnstaedt S, Palma J et al (2012a) Plasma components affect accuracy of circulating cancer-related microRNA quantitation. J Mol Diagnostics 14:71–80CrossRefGoogle Scholar
  45. Kim YK, Yeo J, Kim B, Ha M, Kim VN (2012b) Short structured RNAs with low GC content are selectively lost during extraction from a small number of cells. Mol Cell 46:893–895PubMedCrossRefGoogle Scholar
  46. Kirschner MB, Kao SC, Edelman JJ, Armstrong NJ, Vallely MP, van Zandwijk N, Reid G (2011) Haemolysis during sample preparation alters microRNA content of plasma. PLoS One. 8(9):e24145. Scholar
  47. Kroh EM, Parkin RK, Mitchell PS, Tewari M (2010) Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods 50:298–301PubMedPubMedCentralCrossRefGoogle Scholar
  48. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11:597–610PubMedCrossRefGoogle Scholar
  49. Le HB, Zhu WY, Chen DD, He JY, Huang YY, Liu XG, Zhang YK (2012) Evaluation of dynamic change of serum miR-21 and miR-24 in pre- and post-operative lung carcinoma patients. Med Oncol 29:3190–3197PubMedCrossRefGoogle Scholar
  50. Leidinger P, Galata V, Backes C, Stähler C, Rheinheimer S, Huwer H, Meese E, Keller A (2015) Longitudinal study on circulating miRNAs in patients after lung cancer resection. Oncotarget 6:16674–16685PubMedPubMedCentralCrossRefGoogle Scholar
  51. Leng Q, Lin Y, Jiang F, Lee C-J, Zhan M, Fang H, Wang Y, Jiang F (2017) A plasma miRNA signature for lung cancer early detection 8:111902–111911Google Scholar
  52. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20CrossRefGoogle Scholar
  53. Li Y, Li W, Ouyang Q, Hu S, Tang J (2011) Detection of lung cancer with blood microRNA-21 expression levels in Chinese population. Oncol Lett 2:991–994PubMedPubMedCentralGoogle Scholar
  54. Li C, Hashimi SM, Good DA, Cao S, Duan W, Plummer PN, Mellick AS, Wei MQ (2012) Apoptosis and microRNA aberrations in cancer. Clin Exp Pharmacol Physiol 39:739–746PubMedCrossRefGoogle Scholar
  55. Li Z-H, Zhang H, Yang Z-G, Wen G-Q, Cui Y-B, Shao G-G (2013) Prognostic significance of serum microRNA-210 levels in nonsmall-cell lung cancer. J Int Med Res 41:1437–1444PubMedCrossRefGoogle Scholar
  56. Li B, Ren S, Li X et al (2014a) MiR-21 overexpression is associated with acquired resistance of EGFR-TKI in non-small cell lung cancer. Lung Cancer 83:146–153PubMedCrossRefGoogle Scholar
  57. Li J, Li X, Ren S et al (2014b) miR-200c overexpression is associated with better efficacy of EGFR-TKIs in non-small cell lung cancer patients with EGFR wild-type. Oncotarget 5:7902–7916PubMedPubMedCentralGoogle Scholar
  58. Li W, Wang Y, Zhang Q et al (2015) MicroRNA-486 as a biomarker for early diagnosis and recurrence of non-small cell lung cancer. PLoS One. 10(8):e0134220. Scholar
  59. Lin Q, Chen T, Lin Q, Lin G, Lin J, Chen G, Guo L (2013) Serum miR-19a expression correlates with worse prognosis of patients with non-small cell lung cancer. J Surg Oncol 107:767–771PubMedCrossRefGoogle Scholar
  60. Lu J, Getz G, Miska EA et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838CrossRefGoogle Scholar
  61. Lujambio A, Calin GA, Villanueva A et al (2008) A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci U S A 105:13556–13561PubMedPubMedCentralCrossRefGoogle Scholar
  62. Ma W, Ma C, Zhou N, Li X, Zhang Y (2016) Up- regulation of miR-328-3p sensitizes non-small cell lung cancer to radiotherapy. Sci Rep 6:31651PubMedPubMedCentralCrossRefGoogle Scholar
  63. MacFarlane L-A, Murphy PR (2010) MicroRNA: biogenesis, function and role in cancer. Curr Genomics 11:537–561PubMedPubMedCentralCrossRefGoogle Scholar
  64. Martin J, Ginsberg RJ, Venkatraman ES, Bains MS, Downey RJ, Korst RJ, Kris MG, Rusch VW (2002) Long-term results of combined-modality therapy in resectable non-small-cell lung cancer. J Clin Oncol 20:1989–1995PubMedCrossRefGoogle Scholar
  65. Martini N, Bains MS, Burt ME, Zakowski MF, McCormack P, Rusch VW, Ginsberg RJ (1995) Incidence of local recurrence and second primary tumors in resected stage I lung cancer. J Thorac Cardiovasc Surg 109:120–129PubMedCrossRefGoogle Scholar
  66. McDonald JS, Milosevic D, Reddi HV, Grebe SK, Algeciras-Schimnich A (2011) Analysis of circulating microRNA: preanalytical and analytical challenges. Clin Chem 57:833–840PubMedCrossRefGoogle Scholar
  67. Mestdagh P, Van Vlierberghe P, De Weer A, Muth D, Westermann F, Speleman F, Vandesompele J (2009) A novel and universal method for microRNA RT-qPCR data normalization. Genome Biol. Scholar
  68. Mitchell PS, Parkin RK, Kroh EM et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci 105:10513–10518PubMedCrossRefGoogle Scholar
  69. Moldovan L, Batte K, Wang Y, Wisler J, Piper M (2013) Analyzing the circulating microRNAs in exosomes/extracellular vesicles from serum or plasma by qRT-PCR. Circulating MicroRNAs 1024:1–15CrossRefGoogle Scholar
  70. Müller V, Gade S, Steinbach B et al (2014) Changes in serum levels of miR-21, miR-210, and miR-373 in HER2-positive breast cancer patients undergoing neoadjuvant therapy: a translational research project within the Geparquinto trial. Breast Cancer Res Treat 147:61–68PubMedCrossRefGoogle Scholar
  71. Nadal E, Truini A, Nakata A, Lin J, Reddy RM, Chang AC, Ramnath N, Gotoh N, Beer DG, Chen G (2015) A Novel serum 4-microRNA signature for lung cancer detection. Sci Rep.
  72. Nicholson AG, Chansky K, Crowley J, Beyruti R, Kubota K, Turrisi A, Eberhardt WEE, Van Meerbeeck J, Rami-Porta R (2016) The international association for the study of lung cancer lung cancer staging project: proposals for the revision of the clinical and pathologic staging of small cell lung cancer in the forthcoming eighth edition of the tnm classification for lung cancer. J Thorac Oncol 11:300–311Google Scholar
  73. Nishikawa E, Osada H, Okazaki Y et al (2011) MiR-375 is activated by ASH1 and inhibits YAP1 in a lineage-dependent manner in lung cancer. Cancer Res 71:6165–6173PubMedCrossRefGoogle Scholar
  74. Ohtsuka M, Ling H, Doki Y, Mori M, Calin G (2015) MicroRNA processing and human cancer. J Clin Med 4:1651–1667PubMedPubMedCentralCrossRefGoogle Scholar
  75. Osada H, Takahashi T (2011) let-7 and miR-17-92: small-sized major players in lung cancer development. Cancer Sci 102:9–17PubMedCrossRefGoogle Scholar
  76. Padda SK, Burt BM, Trakul N, Wakelee HA (2014) Early-stage non-small cell lung cancer: surgery, stereotactic radiosurgery, and individualized adjuvant therapy. Semin Oncol 41:40–56PubMedCrossRefGoogle Scholar
  77. Pasquinelli AE, Reinhart BJ, Slack F et al (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408:86–89PubMedPubMedCentralCrossRefGoogle Scholar
  78. Peltier HJ, Latham GJ (2008) Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. RNA 14:844–852PubMedPubMedCentralCrossRefGoogle Scholar
  79. Peng Y, Croce CM (2016) The role of MicroRNAs in human cancer. Sig Transduct Target Ther 1:15004CrossRefGoogle Scholar
  80. Pöttgen C, Eberhardt W, Grannass A et al (2007) Prophylactic cranial irradiation in operable stage IIIA non small-cell lung cancer treated with neoadjuvant chemoradiotherapy: results from a German multicenter randomized trial. J Clin Oncol 25:4987–4992PubMedCrossRefGoogle Scholar
  81. Pritchard CC, Cheng HH, Tewari M (2012) MicroRNA profiling: approaches and considerations. Nat Rev Genet 13:358–369PubMedPubMedCentralCrossRefGoogle Scholar
  82. Robles AI, Arai E, Mathé EA et al (2015) An integrated prognostic classifier for stage I lung adenocarcinoma based on mRNA, microRNA, and DNA methylation biomarkers. J Thorac Oncol 10:1037–1048PubMedPubMedCentralCrossRefGoogle Scholar
  83. Saito Y, Jones PA (2006) Epigenetic activation of tumor suppressor microRNAs in human cancer cells. Cell Cycle 5:2220–2222PubMedCrossRefGoogle Scholar
  84. Sakashita S, Sakashita M, Sound Tsao M (2014) Genes and pathology of non-small cell lung carcinoma. Semin Oncol 41:28–39PubMedCrossRefGoogle Scholar
  85. Salim H, Akbar NS, Zong D, Vaculova AH, Lewensohn R, Moshfegh A, Viktorsson K, Zhivotovsky B (2012) miRNA-214 modulates radiotherapy response of non-small cell lung cancer cells through regulation of p38MAPK, apoptosis and senescence. Br J Cancer 107:1361–1373PubMedPubMedCentralCrossRefGoogle Scholar
  86. Sanfiorenzo C, Ilie MI, Belaid A, Barlési F, Mouroux J, Marquette CH, Brest P, Hofman P (2013) Two panels of plasma microRNAs as non-invasive biomarkers for prediction of recurrence in resectable NSCLC. PLoS One. Scholar
  87. Schwarzenbach H, Hoon DSB, Pantel K (2011) Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 11:426–437PubMedCrossRefGoogle Scholar
  88. Schwarzenbach H, Da Silva AM, Calin G, Pantel K (2015) Data normalization strategies for microRNA quantification. Clin Chem 61:1333–1342PubMedPubMedCentralCrossRefGoogle Scholar
  89. Sculier J-P, Moro-Sibilot D (2009) First- and second-line therapy for advanced nonsmall cell lung cancer. Eur Respir J Off J Eur Soc Clin Respir Physiol 33:915–930Google Scholar
  90. Shah JS, Soon PS, Marsh DJ (2016) Comparison of methodologies to detect low levels of hemolysis in serum for accurate assessment of serum microRNAs. PLoS One 11(4):e0153200. Scholar
  91. Shen J, Liu Z, Todd NW et al (2011) Diagnosis of lung cancer in individuals with solitary pulmonary nodules by plasma microRNA biomarkers. BMC Cancer 11:374PubMedPubMedCentralCrossRefGoogle Scholar
  92. Shen Y, Tang D, Yao R, Wang M, Wang Y, Yao Y, Li X, Zhang H (2013) MicroRNA expression profiles associated with survival, disease progression, and response to gefitinib in completely resected non-small-cell lung cancer with EGFR mutation. Med Oncol.
  93. Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68:7–30PubMedCrossRefGoogle Scholar
  94. Siravegna G, Marsoni S, Siena S, Bardelli A (2017) Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol 14:531–548PubMedCrossRefGoogle Scholar
  95. Song J, Bai Z, Han W, Zhang J, Meng H, Bi J, Ma X, Han S, Zhang Z (2012) Identification of suitable reference genes for qPCR analysis of serum microRNA in gastric cancer patients. Dig Dis Sci 57:897–904PubMedCrossRefGoogle Scholar
  96. Sozzi G, Boeri M, Rossi M et al (2014) Clinical utility of a plasma-based miRNA signature classifier within computed tomography lung cancer screening: a correlative MILD trial study. J Clin Oncol 32:768–773PubMedPubMedCentralCrossRefGoogle Scholar
  97. Strebhardt K, Ullrich A (2008) Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer 8:473–480PubMedCrossRefGoogle Scholar
  98. Sun Y, Hawkins PG, Bi N et al (2017) Serum microRNA signature predicts response to high-dose radiation therapy in locally advanced non-small cell lung cancer. Int J Radiat Oncol Biol Phys 100:107–114PubMedPubMedCentralCrossRefGoogle Scholar
  99. Takeyama Y, Sato M, Horio M et al (2010) Knockdown of ZEB1, a master epithelial-to-mesenchymal transition (EMT) gene, suppresses anchorage-independent cell growth of lung cancer cells. Cancer Lett 296:216–224PubMedPubMedCentralCrossRefGoogle Scholar
  100. ten Haaf K, Jeon J, Tammemägi MC, Han SS, Kong CY, Plevritis SK, Feuer EJ, de Koning HJ, Steyerberg EW, Meza R (2017) Risk prediction models for selection of lung cancer screening candidates: a retrospective validation study. PLoS Med 14:1–24Google Scholar
  101. Tian F, Han Y, Yan X, Zhong D, Yang G, Lei J, Li X, Wang X (2016) Upregulation of microRNA-451 increases the sensitivity of A549 cells to radiotherapy through enhancement of apoptosis. Thorac Cancer 7:226–231PubMedCrossRefGoogle Scholar
  102. Tiberio P, Callari M, Angeloni V, Daidone MG, Appierto V (2015) Challenges in using circulating miRNAs as cancer biomarkers. Biomed Res Int. Scholar
  103. Tokumaru S, Suzuki M, Yamada H, Nagino M, Takahashi T (2008) let-7 regulates Dicer expression and constitutes a negative feedback loop. Carcinogenesis 29:2073–2077PubMedCrossRefGoogle Scholar
  104. Travis WD, Brambilla E, Riely GJ (2013) New pathologic classification of lung cancer: relevance for clinical practice and clinical trials. J Clin Oncol 31:992–1001PubMedCrossRefGoogle Scholar
  105. Urquidi V, Netherton M, Gomes-Giacoia E, Serie DJ, Eckel-Passow J, Rosser CJ, Goodison S (2016) A microRNA biomarker panel for the non-invasive detection of bladder cancer. Oncotarget 7(52):86290–86299PubMedPubMedCentralCrossRefGoogle Scholar
  106. Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: MicroRNAs can up-regulate translation. Science 80(318):1931–1934CrossRefGoogle Scholar
  107. Veronesi G, Bellomi M, Mulshine JL et al (2008) Lung cancer screening with low-dose computed tomography: a non-invasive diagnostic protocol for baseline lung nodules. Lung Cancer 61:340–349PubMedCrossRefGoogle Scholar
  108. Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13:423–435PubMedPubMedCentralCrossRefGoogle Scholar
  109. Wang G-K, Zhu J-Q, Zhang J-T, Li Q, Li Y, He J, Qin Y-W, Jing Q (2010) Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J 31:659–666PubMedCrossRefGoogle Scholar
  110. Wang K, Yuan Y, Cho JH, McClarty S, Baxter D, Galas DJ (2012) Comparing the MicroRNA spectrum between serum and plasma. PLoS One 7(7):e41561. Scholar
  111. Wang Y, Gu J, Roth JA, Hildebrandt MAT, Lippman SM, Ye Y, Minna JD, Wu X (2013) Pathway-based serum microRNA profiling and survival in patients with advanced stage non-small cell lung cancer. Cancer Res 73:4801–4809PubMedPubMedCentralCrossRefGoogle Scholar
  112. Wang H, Wu S, Zhao L, Zhao J, Liu J, Wang Z (2015a) Clinical use of microRNAs as potential non-invasive biomarkers for detecting non-small cell lung cancer: a meta-analysis. Respirology 20:56–65PubMedCrossRefGoogle Scholar
  113. Wang S, Su X, Bai H et al (2015b) Identification of plasma microRNA profiles for primary resistance to EGFR-TKIs in advanced non-small cell lung cancer (NSCLC) patients with EGFR activating mutation. J Hematol Oncol.
  114. Wang Y, Zhao H, Gao X et al (2016) Identification of a three-miRNA signature as a blood-borne diagnostic marker for early diagnosis of lung adenocarcinoma. Oncotarget 7:26070–26086PubMedPubMedCentralGoogle Scholar
  115. Westeel V, Choma D, Clément F, Woronoff-Lemsi MC, Pugin JF, Dubiez A, Depierre A (2000) Relevance of intensive postoperative follow-up after surgery for non-small cell lung cancer. Ann Thorac Surg 70:1185–1190PubMedCrossRefGoogle Scholar
  116. Wu R, Jiang Y, Wu Q, Li Q, Cheng D, Xu L, Zhang C, Zhang M, Ye L (2014) Diagnostic value of microRNA-21 in the diagnosis of lung cancer: evidence from a meta-analysis involving 11 studies. Tumor Biol 35:8829–8836CrossRefGoogle Scholar
  117. Xie Y, Todd NW, Liu Z, Zhan M, Fang H, Peng H, Alattar M, Deepak J, Stass SA, Jiang F (2011) Altered miRNA expression in sputum for diagnosis of non-small cell lung cancer. Lung Cancer 67:170–176PubMedCrossRefGoogle Scholar
  118. Xu X, Yu S, Sun W et al (2018) miRNA signature predicts the response of patients with advanced lung adenocarcinoma to platinum-based treatment. J Cancer Res Clin Oncol 144:431–438PubMedCrossRefGoogle Scholar
  119. Yanaihara N, Caplen N, Bowman E et al (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9:189–198PubMedCrossRefGoogle Scholar
  120. Yu SL, Chen HY, Chang GC et al (2008) MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cell 13:48–57PubMedCrossRefGoogle Scholar
  121. Yu L, Todd NW, Xing L, Xie Y, Zhang H, Liu Z, Fang H, Zhang J, Katz RL, Jiang F (2010) Early detection of lung adenocarcinoma in sputum by a panel of microRNA markers. Int J Cancer 127:2870–2878PubMedPubMedCentralCrossRefGoogle Scholar
  122. Zhang JG, Wang JJ, Zhao F, Liu Q, Jiang K, Yang GH (2010) MicroRNA-21 (miR-21) represses tumor suppressor PTEN and promotes growth and invasion in non-small cell lung cancer (NSCLC). Clin Chim Acta 411:846–852PubMedCrossRefGoogle Scholar
  123. Zhang H, Su Y, Xu F, Kong J, Yu H, Qian B (2013) Circulating microRNAs in relation to EGFR status and survival of lung adenocarcinoma in female non-smokers. PLoS One. 8(11):e81408. Scholar
  124. Zhang H, Mao F, Shen T, Luo Q, Ding Z, Qian L, Huang J (2017) Plasma miR-145, miR-20a, miR-21 and miR-223 as novel biomarkers for screening early-stage non-small cell lung cancer. Oncol Lett 13:669–676PubMedCrossRefGoogle Scholar
  125. Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo YY (2008) MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 18:350–359PubMedCrossRefGoogle Scholar
  126. Zhu J, Qi Y, Wu J, Shi M, Feng J, Chen L (2016a) Evaluation of plasma microRNA levels to predict insensitivity of patients with advanced lung adenocarcinomas to pemetrexed and platinum. Oncol Lett 12:4829–4837PubMedPubMedCentralCrossRefGoogle Scholar
  127. Zhu WY, Zhou KY, Zha Y, Chen DD, He JY, Ma HJ, Liu XG, Le HB, Zhang YK (2016b) Diagnostic value of serum miR-182, miR-183, miR-210, and miR-126 levels in patients with early-stage non-small cell lung cancer. PLoS ONE 11:1–16Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sabrina Müller
    • 1
  • Florian Janke
    • 1
  • Steffen Dietz
    • 1
  • Holger Sültmann
    • 1
    Email author
  1. 1.Division Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), and Translational Lung Research Center (TLRC), German Center for Lung Research (DZL)HeidelbergGermany

Personalised recommendations