Advertisement

Inverse Kinematics and Relative Arm Positioning

  • Adrià ColoméEmail author
  • Carme Torras
Chapter
  • 485 Downloads
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 134)

Abstract

When attempting to perform bimanual robot manipulation, using reliable Inverse Kinematics methods is crucial, but also how to position two robots in order to cooperate. This chapter proposes two enhancements to the current state-of-the-art Closed-Loop Inverse Kinematics (CLIK) algorithms in Sect. 3.1, to then apply them to analyze the workspace and assess the relative positioning of two arms for cooperative manipulation in Sect. 3.2.

References

  1. 1.
    Asfour, T., Berns, K., Dillmann, R.: The humanoid robot ARMAR: design and control. In: IEEE/APS International Conference on Humanoid Robots, pp. 7–8 (2000)Google Scholar
  2. 2.
    Asfour, T., Regenstein, K., Azad, P., Schroder, J., Bierbaum, A., Vahrenkamp, N., Dillmann, R.: ARMAR-III: an integrated humanoid platform for sensory-motor control. In: 2006 6th IEEE-RAS International Conference on Humanoid Robots, pp. 169–175 (2006)Google Scholar
  3. 3.
    Barequet, G., Elber, G.: Optimal bounding cones of vectors in three dimensions. Inf. Process. Lett. 93(2), 83–89 (2005)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bicchi, A., Prattichizzo, D.: Manipulability of cooperating robots with unactuated joints and closed-chain mechanisms. IEEE Trans. Robot. Autom. 16(4), 336–345 (2000)CrossRefGoogle Scholar
  5. 5.
    Buss, S.R.: Introduction to inverse kinematics with jacobian transpose, pseudoinverse and damped least squares methods. IEEE J. Robot. Autom. 17(1–19), 16 (2004)Google Scholar
  6. 6.
    Buss, S.R., Kim, J.-S.: Selectively damped least squares for inverse kinematics. J. Graph. Tools 10(3), 37–49 (2005)CrossRefGoogle Scholar
  7. 7.
    Chan, S.K., Lawrence, P.D.: General inverse kinematics with the error damped pseudoinverse. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 834–839 (1988)Google Scholar
  8. 8.
    Chan, T.F., Dubey, R.V.: A weighted least-norm solution based scheme for avoiding joint limits for redundant joint manipulators. IEEE Trans. Robot. Autom. 11(2), 286–292 (1995)CrossRefGoogle Scholar
  9. 9.
    Chiacchio, P., Chiaverini, S., Sciavicco, L., Siciliano, B.: Global task space manipulability ellipsoids for multiple-arm systems. IEEE Trans. Robot. Autom. 7(5), 678–685 (1991)CrossRefGoogle Scholar
  10. 10.
    Chiaverini, S.: Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators. IEEE Trans. Robot. Autom. 13(3), 398–410 (1997)CrossRefGoogle Scholar
  11. 11.
    Chiaverini, S., Egeland, O., Kanestrom, R.K.: Achieving user-defined accuracy with damped least-squares inverse kinematics. In: IEEE Fifth International Conference on Advanced Robotics (ICAR), pp. 672–677 (1991)Google Scholar
  12. 12.
    Chiaverini, S., Siciliano, B., Egeland, O.: Review of the damped least-squares inverse kinematics with experiments on an industrial robot manipulator. IEEE Trans. Control. Syst. Technol. 2(2), 123–134 (1994)CrossRefGoogle Scholar
  13. 13.
    Colomé, A., Torras, C.: Redundant inverse kinematics: experimental comparative review and two enhancements. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5333–5340 (2012)Google Scholar
  14. 14.
    Colomé, A., Torras, C.: Closed-loop inverse kinematics for redundant robots: comparative assessment and two enhancements. IEEE/ASME Trans. Mechatron. 20(2), 944–955 (2015)CrossRefGoogle Scholar
  15. 15.
    Flacco, F., De Luca, A., Khatib, O.: Prioritized multi-task motion control of redundant robots under hard joint constraints. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3970–3977 (2012)Google Scholar
  16. 16.
    Guizzo, E.: DARPA seeking to revolutionize robotic manipulation (2010)Google Scholar
  17. 17.
    Hsiao, K.: ROS package repository with Barrett WAM/Hand interface. http://code.google.com/p/lis-ros-pkg/wiki/README
  18. 18.
    Orocos Kinematics and Dynamics. Inverse Kinematics with KDLGoogle Scholar
  19. 19.
    Mansard, N., Khatib, O., Kheddar, A.: A unified approach to integrate unilateral constraints in the stack of tasks. IEEE Trans. Robot. 25(3), 670–685 (2009)CrossRefGoogle Scholar
  20. 20.
    Mansard, N., Remazeilles, A., Chaumette, F.: Continuity of varying-feature-set control laws. IRISA Technical report (2009)Google Scholar
  21. 21.
    Mansard, N., Remazeilles, A., Chaumette, F.: Continuity of varying-feature-set control laws. IEEE Trans. Autom. Control 54(11), 2493–2505 (2009)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Nakamura, Y.: Advanced Robotics: Redundancy and Optimization. Addison-Wesley Longman Publishing Co., Inc. (1990)Google Scholar
  23. 23.
    Nakamura, Y., Hanafusa, H.: Inverse kinematic solutions with singularity robustness for robot manipulator control. J. Dyn. Syst. Meas. Control 108(3), 163–171 (1986)CrossRefGoogle Scholar
  24. 24.
    Nakamura, Y., Hanafusa, H., Yoshikawa, T.: Task-priority based redundancy control of robot manipulators. Int. J. Robot. Res. 6(2), 3–15 (1987)CrossRefGoogle Scholar
  25. 25.
    Ott, C., Eiberger, O., Friedl, W., Bauml, B., Hillenbrand, U., Borst, C., Albu-Schaffer, A., Brunner, B., Hirschmuller, H., Kielhofer, S., Konietschke, R., Suppa, M., Wimbock, T., Zacharias, F., Hirzinger, G.: A humanoid two-arm system for dexterous manipulation. In: 6th IEEE-RAS International Conference on Humanoid Robots, pp. 276–283 (2006)Google Scholar
  26. 26.
    Raunhardt, D., Boulic, R.: Progressive clamping. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 4414–4419 (2007)Google Scholar
  27. 27.
    Saff, E., Kuijlaars, A.: Distributing many points on the sphere. Math. Intell. 19(01), 5–11 (1997)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Sasaki, S.: Feasibility studies of kinematics problems in the case of a class of redundant manipulators. Robotica 13(03), 233–241 (1995)CrossRefGoogle Scholar
  29. 29.
    Sciavicco, L., Siciliano, B.: A solution algorithm to the inverse kinematic problem for redundant manipulators. IEEE J. Robot. Autom. 4(4), 403–410 (1988)CrossRefGoogle Scholar
  30. 30.
    Singh, G.K., Claassens, J.: An analytical solution for the inverse kinematics of a redundant 7-DoF manipulator with link offsets. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2976–2982 (2010)Google Scholar
  31. 31.
    Smith, C., Karayiannidis, Y., Nalpantidis, L., Gratal, X., Qi, P., Dimarogonas, D.V., Kragic, D.: Dual arm manipulation—a survey. Robot. Auton. Syst. 60(10), 1340–1353 (2012)CrossRefGoogle Scholar
  32. 32.
    Sugihara, T.: Solvability-unconcerned inverse kinematics by the levenberg-marquardt method. IEEE Trans. Robot. 27(5), 984–991 (2011)CrossRefGoogle Scholar
  33. 33.
    Vahrenkamp, N., Przybylski, M., Asfour, T., Dillmann, R.: Bimanual grasp planning. In: IEEE-RAS 11th International Conference on Humanoid Robots (Humanoids), pp. 493–499 (2011)Google Scholar
  34. 34.
    Wampler, C.W.: Manipulator inverse kinematic solutions based on vector formulations and damped least-squares methods. IEEE Trans. Syst. Man Cybern. 16(1), 93–101 (1986)CrossRefGoogle Scholar
  35. 35.
    Xiang, J., Zhong, C., Wei, W.: General-weighted least-norm control for redundant manipulators. IEEE Trans. Robot. 26(4), 660–669 (2010)CrossRefGoogle Scholar
  36. 36.
    Yoshikawa, T.: Dynamic manipulability of robot manipulators. In: IEEE International Conference on Robotics and Automation, vol. 2, pp. 1033–1038 (1985)Google Scholar
  37. 37.
    Zacharias, F., Borst, C., Hirzinger, G.: Capturing robot workspace structure: representing robot capabilities. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3229–3236 (2007)Google Scholar
  38. 38.
    Zghal, H., Dubey, R.V., Euler, J.A.: Efficient gradient projection optimization for manipulators with multiple degrees of redundancy. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1006–1011 (1990)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institut de Robòtica i Informàtica Industrial (UPC-CSIC)BarcelonaSpain

Personalised recommendations