Inverse Kinematics and Relative Arm Positioning
Chapter
First Online:
- 485 Downloads
Abstract
When attempting to perform bimanual robot manipulation, using reliable Inverse Kinematics methods is crucial, but also how to position two robots in order to cooperate. This chapter proposes two enhancements to the current state-of-the-art Closed-Loop Inverse Kinematics (CLIK) algorithms in Sect. 3.1, to then apply them to analyze the workspace and assess the relative positioning of two arms for cooperative manipulation in Sect. 3.2.
References
- 1.Asfour, T., Berns, K., Dillmann, R.: The humanoid robot ARMAR: design and control. In: IEEE/APS International Conference on Humanoid Robots, pp. 7–8 (2000)Google Scholar
- 2.Asfour, T., Regenstein, K., Azad, P., Schroder, J., Bierbaum, A., Vahrenkamp, N., Dillmann, R.: ARMAR-III: an integrated humanoid platform for sensory-motor control. In: 2006 6th IEEE-RAS International Conference on Humanoid Robots, pp. 169–175 (2006)Google Scholar
- 3.Barequet, G., Elber, G.: Optimal bounding cones of vectors in three dimensions. Inf. Process. Lett. 93(2), 83–89 (2005)MathSciNetCrossRefGoogle Scholar
- 4.Bicchi, A., Prattichizzo, D.: Manipulability of cooperating robots with unactuated joints and closed-chain mechanisms. IEEE Trans. Robot. Autom. 16(4), 336–345 (2000)CrossRefGoogle Scholar
- 5.Buss, S.R.: Introduction to inverse kinematics with jacobian transpose, pseudoinverse and damped least squares methods. IEEE J. Robot. Autom. 17(1–19), 16 (2004)Google Scholar
- 6.Buss, S.R., Kim, J.-S.: Selectively damped least squares for inverse kinematics. J. Graph. Tools 10(3), 37–49 (2005)CrossRefGoogle Scholar
- 7.Chan, S.K., Lawrence, P.D.: General inverse kinematics with the error damped pseudoinverse. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 834–839 (1988)Google Scholar
- 8.Chan, T.F., Dubey, R.V.: A weighted least-norm solution based scheme for avoiding joint limits for redundant joint manipulators. IEEE Trans. Robot. Autom. 11(2), 286–292 (1995)CrossRefGoogle Scholar
- 9.Chiacchio, P., Chiaverini, S., Sciavicco, L., Siciliano, B.: Global task space manipulability ellipsoids for multiple-arm systems. IEEE Trans. Robot. Autom. 7(5), 678–685 (1991)CrossRefGoogle Scholar
- 10.Chiaverini, S.: Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators. IEEE Trans. Robot. Autom. 13(3), 398–410 (1997)CrossRefGoogle Scholar
- 11.Chiaverini, S., Egeland, O., Kanestrom, R.K.: Achieving user-defined accuracy with damped least-squares inverse kinematics. In: IEEE Fifth International Conference on Advanced Robotics (ICAR), pp. 672–677 (1991)Google Scholar
- 12.Chiaverini, S., Siciliano, B., Egeland, O.: Review of the damped least-squares inverse kinematics with experiments on an industrial robot manipulator. IEEE Trans. Control. Syst. Technol. 2(2), 123–134 (1994)CrossRefGoogle Scholar
- 13.Colomé, A., Torras, C.: Redundant inverse kinematics: experimental comparative review and two enhancements. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5333–5340 (2012)Google Scholar
- 14.Colomé, A., Torras, C.: Closed-loop inverse kinematics for redundant robots: comparative assessment and two enhancements. IEEE/ASME Trans. Mechatron. 20(2), 944–955 (2015)CrossRefGoogle Scholar
- 15.Flacco, F., De Luca, A., Khatib, O.: Prioritized multi-task motion control of redundant robots under hard joint constraints. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3970–3977 (2012)Google Scholar
- 16.Guizzo, E.: DARPA seeking to revolutionize robotic manipulation (2010)Google Scholar
- 17.Hsiao, K.: ROS package repository with Barrett WAM/Hand interface. http://code.google.com/p/lis-ros-pkg/wiki/README
- 18.Orocos Kinematics and Dynamics. Inverse Kinematics with KDLGoogle Scholar
- 19.Mansard, N., Khatib, O., Kheddar, A.: A unified approach to integrate unilateral constraints in the stack of tasks. IEEE Trans. Robot. 25(3), 670–685 (2009)CrossRefGoogle Scholar
- 20.Mansard, N., Remazeilles, A., Chaumette, F.: Continuity of varying-feature-set control laws. IRISA Technical report (2009)Google Scholar
- 21.Mansard, N., Remazeilles, A., Chaumette, F.: Continuity of varying-feature-set control laws. IEEE Trans. Autom. Control 54(11), 2493–2505 (2009)MathSciNetCrossRefGoogle Scholar
- 22.Nakamura, Y.: Advanced Robotics: Redundancy and Optimization. Addison-Wesley Longman Publishing Co., Inc. (1990)Google Scholar
- 23.Nakamura, Y., Hanafusa, H.: Inverse kinematic solutions with singularity robustness for robot manipulator control. J. Dyn. Syst. Meas. Control 108(3), 163–171 (1986)CrossRefGoogle Scholar
- 24.Nakamura, Y., Hanafusa, H., Yoshikawa, T.: Task-priority based redundancy control of robot manipulators. Int. J. Robot. Res. 6(2), 3–15 (1987)CrossRefGoogle Scholar
- 25.Ott, C., Eiberger, O., Friedl, W., Bauml, B., Hillenbrand, U., Borst, C., Albu-Schaffer, A., Brunner, B., Hirschmuller, H., Kielhofer, S., Konietschke, R., Suppa, M., Wimbock, T., Zacharias, F., Hirzinger, G.: A humanoid two-arm system for dexterous manipulation. In: 6th IEEE-RAS International Conference on Humanoid Robots, pp. 276–283 (2006)Google Scholar
- 26.Raunhardt, D., Boulic, R.: Progressive clamping. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 4414–4419 (2007)Google Scholar
- 27.Saff, E., Kuijlaars, A.: Distributing many points on the sphere. Math. Intell. 19(01), 5–11 (1997)MathSciNetCrossRefGoogle Scholar
- 28.Sasaki, S.: Feasibility studies of kinematics problems in the case of a class of redundant manipulators. Robotica 13(03), 233–241 (1995)CrossRefGoogle Scholar
- 29.Sciavicco, L., Siciliano, B.: A solution algorithm to the inverse kinematic problem for redundant manipulators. IEEE J. Robot. Autom. 4(4), 403–410 (1988)CrossRefGoogle Scholar
- 30.Singh, G.K., Claassens, J.: An analytical solution for the inverse kinematics of a redundant 7-DoF manipulator with link offsets. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2976–2982 (2010)Google Scholar
- 31.Smith, C., Karayiannidis, Y., Nalpantidis, L., Gratal, X., Qi, P., Dimarogonas, D.V., Kragic, D.: Dual arm manipulation—a survey. Robot. Auton. Syst. 60(10), 1340–1353 (2012)CrossRefGoogle Scholar
- 32.Sugihara, T.: Solvability-unconcerned inverse kinematics by the levenberg-marquardt method. IEEE Trans. Robot. 27(5), 984–991 (2011)CrossRefGoogle Scholar
- 33.Vahrenkamp, N., Przybylski, M., Asfour, T., Dillmann, R.: Bimanual grasp planning. In: IEEE-RAS 11th International Conference on Humanoid Robots (Humanoids), pp. 493–499 (2011)Google Scholar
- 34.Wampler, C.W.: Manipulator inverse kinematic solutions based on vector formulations and damped least-squares methods. IEEE Trans. Syst. Man Cybern. 16(1), 93–101 (1986)CrossRefGoogle Scholar
- 35.Xiang, J., Zhong, C., Wei, W.: General-weighted least-norm control for redundant manipulators. IEEE Trans. Robot. 26(4), 660–669 (2010)CrossRefGoogle Scholar
- 36.Yoshikawa, T.: Dynamic manipulability of robot manipulators. In: IEEE International Conference on Robotics and Automation, vol. 2, pp. 1033–1038 (1985)Google Scholar
- 37.Zacharias, F., Borst, C., Hirzinger, G.: Capturing robot workspace structure: representing robot capabilities. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3229–3236 (2007)Google Scholar
- 38.Zghal, H., Dubey, R.V., Euler, J.A.: Efficient gradient projection optimization for manipulators with multiple degrees of redundancy. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1006–1011 (1990)Google Scholar
Copyright information
© Springer Nature Switzerland AG 2020