Advertisement

Introduction

  • Adrià ColoméEmail author
  • Carme Torras
Chapter
  • 464 Downloads
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 134)

Abstract

Robots must be precise, safe and learn fast, being sample-efficient. This chapter presents the difficulties to achieve such endeavour and sets the objectives of this monograph.

References

  1. 1.
    Bellman, R.E.: Dynamic Programming. Princeton University Press (1957)Google Scholar
  2. 2.
    Bernstein, N.: The Co-ordination and Regulation of Movements. Oxford Pergamon Press (1967)Google Scholar
  3. 3.
    Billard, A., Calinon, S., Dillmann, R., Schaal, S.: Robot programming by demonstration. In: Handbook of Robotics. Springer (2008)Google Scholar
  4. 4.
    Colomé, A., Alenyà, G., Torras, C.: Handling high parameter dimensionality in reinforcement learning with dynamic motor primitives. In: ICRA Workshop on Novel Methods for Learning and Optimization of Control Policies and Trajectories for Robotics (2013)Google Scholar
  5. 5.
    Colomé, A., Neumann, G., Peters, J., Torras, C.: Dimensionality reduction for probabilistic movement primitives. In: IEEE-RAS 14th International Conference on Humanoid Robots (Humanoids), pp. 794–800 (2014)Google Scholar
  6. 6.
    Colomé, A., Pardo, D., Alenyà, G., Torras, C.: External force estimation during compliant robot manipulation. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3535–3540 (2013)Google Scholar
  7. 7.
    Colomé, A., Pardo, D., Alenyà, G., Torras, C.: External force estimation for textile grasp detection. In: IROS Workshop Beyond Robot Grasping: Modern Approaches for Learning Dynamic Manipulation (2012)Google Scholar
  8. 8.
    Colomé, A., Planells, A., Torras, C.: A friction-model-based framework for Reinforcement Learning of robotic tasks in non-rigid environments. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 5649–5654 (2015)Google Scholar
  9. 9.
    Colomé, A., Torras, C.: Dimensionality reduction and motion coordination in learning trajectories with Dynamic Movement Primitives. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1414–1420 (2014)Google Scholar
  10. 10.
    Colomé, A., Torras, C.: Positioning two redundant arms for cooperative manipulation of objects. In: 6th International Workshop on Computational Kinematics, pp. 121–129 (2013)Google Scholar
  11. 11.
    Colomé, A., Torras, C.: Closed-loop inverse kinematics for redundant robots: comparative assessment and two enhancements. IEEE/ASME Trans. Mechatron. 20(2), 944–955 (2015)CrossRefGoogle Scholar
  12. 12.
    Colomé, A., Torras, C.: Dimensionality reduction for dynamic movement primitives and application to bimanual manipulation of clothes. IEEE Trans. Robot. 34(3), 602–615 (2018)CrossRefGoogle Scholar
  13. 13.
    Deisenroth, M.P., Neumann, G., Peters, J.: A survey on policy search for robotics. Found. Trends Robot. 2(1–2), 1–142 (2013)Google Scholar
  14. 14.
    Husain, F., Colomé, A., Dellen, B., Alenyà, G., Torras, C.: Realtime tracking and grasping of a moving object from range video. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2617–2622 (2014)Google Scholar
  15. 15.
    Ijspeert, A.J., Nakanishi, J., Schaal, S.: Movement imitation with nonlinear dynamical systems in humanoid robots. In: IEEE International Conference on Robotics and Automation (ICRA), vol. 2, pp. 1398–1403 (2002)Google Scholar
  16. 16.
    Inner Body. Muscular system. http://www.innerbody.com/image/musfov.html
  17. 17.
    Jevtic, A., Colomé, A., Alenyà, G., Torras, C.: Learning robot motion through user intervention and policy search. In: ICRA Workshop on Nature Versus Nurture in Robotics (2016)Google Scholar
  18. 18.
    Jevtic, A., Colomé, A., Alenyà, G., Torras, C.: User evaluation of an interactive learning framework for single-arm and dual-arm robots. In: 8th International Conference on Social Robotics, pp. 52–61 (2016)CrossRefGoogle Scholar
  19. 19.
    Khansari-Zadeh, S.M., Billard, A.: Learning stable nonlinear dynamical systems with gaussian mixture models. IEEE Trans. Robot. 27(5), 943–957 (2011)CrossRefGoogle Scholar
  20. 20.
    Kober, J., Mülling, K., Krömer, O., Lampert, C.H., Schlkopf, B., Peters, J.: Movement templates for learning of hitting and batting. In: IEEE International Conference on Robotics and Automation, pp. 853–858 (2010)Google Scholar
  21. 21.
    Pfeiffer, S., Angulo, C.: Gesture learning and execution in a humanoid robot via dynamic movement primitives. Pattern Recognit. Lett. Part 1 67, 100–107 (2015)CrossRefGoogle Scholar
  22. 22.
    Rozo, L., Jiménez, P., Torras, C.: Robot learning from demonstration of force-based tasks with multiple solution trajectories. In: 15th International Conference on Advanced Robotics (ICAR), pp. 124–129 (2011)Google Scholar
  23. 23.
    Rozo, L., Calinon, S., Caldwell, D.G., Jiménez, P., Torras, C.: Learning physical collaborative robot behaviors from human demonstrations. IEEE Trans. Robot. 32(3), 513–527 (2016)CrossRefGoogle Scholar
  24. 24.
    Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G.: Robotics: Modelling, Planning and Control. Springer Science & Business Media (2010)Google Scholar
  25. 25.
    Sutton, R.S., Barto, A.: Reinforcement Learning: An Introduction. MIT Press (1998)Google Scholar
  26. 26.
    Townsend, W.T., Salisbury, J.K.: Mechanical Design for Whole-Arm Manipulation, pp. 153–164. Springer, Berlin (1993)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institut de Robòtica i Informàtica Industrial (UPC-CSIC)BarcelonaSpain

Personalised recommendations