Advertisement

Geographical Patterns of Functional Diversity of South American Anurans

  • Tiago S. Vasconcelos
  • Fernando R. da Silva
  • Tiago G. dos Santos
  • Vitor H. M. Prado
  • Diogo B. Provete
Chapter

Abstract

A critical step in designing efficient spatial prioritization plans is to find the best network of sites that preserve multiple biodiversity facets. Conservation biogeography has increasingly been using functional diversity (FD) as an alternative metric to describe how trait diversity is distributed throughout space. FD can be promptly related to the function played by species in a community, better than taxonomic diversity. Here, we mapped multiple dimensions of functional diversity of South American anurans that describe functional richness (FRich), evenness (FEve), dispersion (FDis), and rarity (Frar) at the regional scale, as well as geographical restrictiveness and body size. FRich was higher in the Amazon basin, Guianas, Tropical Andes, and the central portion of the Atlantic Forest, whereas lower values appear in Patagonia and the Atacama Desert. FEve and FDis were homogeneously distributed throughout the continent, with lowest values in southern Patagonia, Pacific slope of the southern Tropical Andes, and Atacama Desert, while the highest values were found in the Atlantic slope of the southern Tropical Andes. Patterns of functional distinctiveness and uniqueness were similar and highlighted northwestern Argentina and areas with many endemic and functionally unique species. Frar at the regional scale highlighted the Andes, Patagonia, and the Atlantic Forest.

Keywords

Body size Functional biogeography Functional rarity Life-history traits Conservation biogeography South America 

Notes

Acknowledgments

The authors have been continuously supported by research grants and/or fellowships from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2011/18510-0; 2013/50714-0; 2016/13949-7), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 2037/2014-9; 431012/2016-4; 308687/2016-17; 114613/2018-4), and University Research and Scientific Production Support Program of the Goias State University (PROBIP/UEG). Phillip T. Soares provided essential help assembling the trait database. Prof. Dr. Bruno Vilela de Moraes e Silva (UFBA) read critically the first version of this manuscript and provided insightful comments that improved it.

References

  1. Amado TF, Bidau CJ, Olalla-Tárraga MÁ (2019) Geographic variation of body size in New World anurans: energy and water in a balance. Ecography 42(3):456–466.  https://doi.org/10.1111/ecog.03889CrossRefGoogle Scholar
  2. Antonelli A, Nylander JA, Persson C, Sanmartin I (2009) Tracing the impact of the Andean uplift on Neotropical plant evolution. Proc Natl Acad Sci U S A 106(24):9749–9754.  https://doi.org/10.1073/pnas.0811421106CrossRefPubMedPubMedCentralGoogle Scholar
  3. Antonelli A, Zizka A, Carvalho FA, Scharn R, Bacon CD, Silvestro D, Condamine FL (2018a) Amazonia is the primary source of Neotropical biodiversity. Proc Natl Acad Sci U S A 115(23):6034–6039.  https://doi.org/10.1073/pnas.1713819115CrossRefPubMedPubMedCentralGoogle Scholar
  4. Antonelli A, Kissling WD, Flantua SGA, Bermúdez MA, Mulch A, Muellner-Riehl AN, Kreft H, Linder HP, Badgley C, Fjeldså J, Fritz SA, Rahbek C, Herman F, Hooghiemstra H, Hoorn C (2018b) Geological and climatic influences on mountain biodiversity. Nat Geosci 11(10):718–725.  https://doi.org/10.1038/s41561-018-0236-zCrossRefGoogle Scholar
  5. Badgley C, Smiley TM, Terry R, Davis EB, DeSantis LR, Fox DL, Hopkins SS, Jezkova T, Matocq MD, Matzke N, McGuire JL, Mulch A, Riddle BR, Roth VL, Samuels JX, Stromberg CA, Yanites BJ (2017) Biodiversity and topographic complexity: modern and geohistorical perspectives. Trends Ecol Evol 32(3):211–226.  https://doi.org/10.1016/j.tree.2016.12.010CrossRefPubMedPubMedCentralGoogle Scholar
  6. Both C, Cechin SZ, Melo AS, Hartz SM (2011) What controls tadpole richness and guild composition in ponds in subtropical grasslands? Austral Ecol 36(5):530–536.  https://doi.org/10.1111/j.1442-9993.2010.02183.xCrossRefGoogle Scholar
  7. Chase JM, Leibold MA (2003) Ecological Niches, linking classical and contemporary approaches. Interspecific interactions. Chicago University Press, ChicagoCrossRefGoogle Scholar
  8. Cornelissen J, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich D, Reich P, Ter Steege H, Morgan H, Van Der Heijden M (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51(4):335–380CrossRefGoogle Scholar
  9. Da Silva FR, Almeida-Neto M, do Prado VHM, Haddad CFB, de Cerqueira Rossa-Feres D (2012) Humidity levels drive reproductive modes and phylogenetic diversity of amphibians in the Brazilian Atlantic Forest. J Biogeogr 39(9):1720–1732.  https://doi.org/10.1111/j.1365-2699.2012.02726.xCrossRefGoogle Scholar
  10. Ernst R, Linsenmair KE, Rödel M-O (2006) Diversity erosion beyond the species level: dramatic loss of functional diversity after selective logging in two tropical amphibian communities. Biol Conserv 133(2):143–155.  https://doi.org/10.1016/j.biocon.2006.05.028CrossRefGoogle Scholar
  11. Ernst R, Linsenmair KE, Thomas R, Rödel M-O (2007) Amphibian communities in disturbed forests: lessons from the Neo- and Afrotropics. In: Tscharntke T, Leuschner C, Zeller M, Guhardja E, Bidin A (eds) The stability of tropical rainforest margins, linking ecological, economic and social constraints of land use and conservation, Environmental Science and Engineering. Springer, Berlin, pp 59–85.  https://doi.org/10.1007/978-3-540-30290-2_4CrossRefGoogle Scholar
  12. Ernst R, Keller A, Landburg G, Grafe TU, Linsenmair KE, Rödel M-O, Dziock F (2012) Common ancestry or environmental trait filters: cross-continental comparisons of trait-habitat relationships in tropical anuran amphibian assemblages. Glob Ecol Biogeogr 21(7):704–715.  https://doi.org/10.1111/j.1466-8238.2011.00719.xCrossRefGoogle Scholar
  13. Froese R, Pauly D (2000) FishBase 2000: concepts, design and data sources. ICLARM, Los Baños/Laguna/PhilippinesGoogle Scholar
  14. Gallmetzer N, Schulze CH (2015) Impact of oil palm agriculture on understory amphibians and reptiles: a Mesoamerican perspective. Global Ecology and Conservation 4:95–109.  https://doi.org/10.1016/j.gecco.2015.05.008CrossRefGoogle Scholar
  15. Garnier E, Cortez J, Billès G, Navas M-L, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint J-P (2004) Plant functional markers capture ecosystem properties during secondary succession. Ecology 85(9):2630–2637.  https://doi.org/10.1890/03-0799CrossRefGoogle Scholar
  16. Gomez-Mestre I, Pyron RA, Wiens JJ (2012) Phylogenetic analyses reveal unexpected patterns in the evolution of reproductive modes in frogs. Evolution 66(12):3687–3700.  https://doi.org/10.1111/j.1558-5646.2012.01715.xCrossRefPubMedGoogle Scholar
  17. Gouveia SF, Bovo RP, Rubalcaba JG, Da Silva FR, Maciel NM, Andrade DV, Martinez PA (2019) Biophysical modeling of water economy can explain geographic gradient of body size in anurans. Am Nat 193(1):51–58.  https://doi.org/10.1086/700833CrossRefPubMedGoogle Scholar
  18. Graham CH, Carnaval AC, Cadena CD, Zamudio KR, Roberts TE, Parra JL, McCain CM, Bowie RCK, Moritz C, Baines SB, Schneider CJ, VanDerWal J, Rahbek C, Kozak KH, Sanders NJ (2014) The origin and maintenance of montane diversity: integrating evolutionary and ecological processes. Ecography 37(8):711–719.  https://doi.org/10.1111/ecog.00578CrossRefGoogle Scholar
  19. Grenié M, Denelle P, Tucker CM, Munoz F, Violle C, Merow C (2017) Funrar: an R package to characterize functional rarity. Divers Distrib 23(12):1365–1371.  https://doi.org/10.1111/ddi.12629CrossRefGoogle Scholar
  20. Guedes TB, Azevedo JAR, Bacon C, Provete DB, Antonelli A (2019) Diversity, endemism, and evolutionary history of montane biotas outside the Andean region. In: Rull V, Carnaval A (eds) Neotropical diversification. Springer, BerlinGoogle Scholar
  21. Hoorn C, Wesselingh FP, Steege H, Bermudez MA, Mora A, Sevink J, Sanmartín I, Sanchez-Meseguer A, Anderson CL, Figueiredo JP, Jaramillo C, Riff D, Negri FR, Hooghiemstra H, Lundberg J, Stadler T, Särkinen T, Antonelli A (2010) Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330:927–931CrossRefGoogle Scholar
  22. Hortal J, Bello FD, Diniz-Filho JAF, Lewinsohn TM, Lobo JM, Ladle RJ (2015) Seven shortfalls that beset large-scale knowledge on biodiversity. Annual Review of Ecology, Evolution, and Systematics 46(1):523–549.  https://doi.org/10.1146/annurev-ecolsys-112414-054400CrossRefGoogle Scholar
  23. Hutter CR, Guayasamin JM, Wiens JJ (2013) Explaining Andean megadiversity: the evolutionary and ecological causes of glassfrog elevational richness patterns. Ecol Lett 16(9):1135–1144.  https://doi.org/10.1111/ele.12148CrossRefPubMedGoogle Scholar
  24. Hutter CR, Lambert SM, Wiens JJ (2017) Rapid diversification and time explain amphibian richness at different scales in the Tropical Andes, Earth’s most biodiverse hotspot. Am Nat 190(6):828–843.  https://doi.org/10.1086/694319CrossRefPubMedGoogle Scholar
  25. Jones KE, Bielby J, Cardillo M, Fritz SA, O’Dell J, Orme CDL, Safi K, Sechrest W, Boakes EH, Carbone C, Connolly C, Cutts MJ, Foster JK, Grenyer R, Habib M, Plaster CA, Price SA, Rigby EA, Rist J, Teacher A, Bininda-Emonds ORP, Gittleman JL, Mace GM, Purvis A, Michener WK (2009) PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90(9):2648–2648.  https://doi.org/10.1890/08-1494.1CrossRefGoogle Scholar
  26. Kruk C, Huszar VL, Peeters ET, Bonilla S, Costa L, Lürling M, Reynolds CS, Scheffer M (2010) A morphological classification capturing functional variation in phytoplankton. Freshw Biol 55(3):614–627CrossRefGoogle Scholar
  27. Kuebbing SE, Maynard DS, Bradford MA, Huenneke L (2017) Linking functional diversity and ecosystem processes: a framework for using functional diversity metrics to predict the ecosystem impact of functionally unique species. J Ecol 106:687.  https://doi.org/10.1111/1365-2745.12835CrossRefGoogle Scholar
  28. Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91(1):299–305CrossRefGoogle Scholar
  29. Laliberté E, Legendre P, Shipley B (2014) FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12Google Scholar
  30. Lefcheck JS, Bastazini VAG, Griffin JN (2014) Choosing and using multiple traits in functional diversity research. Environ Conserv 42(02):104–107.  https://doi.org/10.1017/s0376892914000307CrossRefGoogle Scholar
  31. Legendre P, Legendre L (2012) Numerical ecology, 3rd edn. Elsevier Limited, OxfordGoogle Scholar
  32. Legras G, Gaertner J-C (2018) Assessing functional evenness with the FEve index: a word of warning. Ecol Indic 90:257–260.  https://doi.org/10.1016/j.ecolind.2018.03.020CrossRefGoogle Scholar
  33. Legras G, Loiseau N, Gaertner JC (2018) Functional richness: overview of indices and underlying concepts. Acta Oecol 87:34–44.  https://doi.org/10.1016/j.actao.2018.02.007CrossRefGoogle Scholar
  34. Lescano JN, Miloch D, Leynaud GC (2018) Functional traits reveal environmental constraints on amphibian community assembly in a subtropical dry forest. Austral Ecol 43:623.  https://doi.org/10.1111/aec.12607CrossRefGoogle Scholar
  35. Lion MB, Mazzochini GG, Garda AA, Lee TM, Bickford D, Costa GC, Fonseca CR, Algar A (2019) Global patterns of terrestriality in amphibian reproduction. Glob Ecol Biogeogr 28:744.  https://doi.org/10.1111/geb.12886CrossRefGoogle Scholar
  36. Lipinski VM, Iop S, Schuch AP, Santos TG (2018) Enhanced phylogenetic diversity of anuran communities: a result of species loss in an agricultural environment. In: Sudarshana P (ed) Tropical forests – new edition. Intech open, LondonGoogle Scholar
  37. Litchman E, Klausmeier CA (2008) Trait-based community ecology of phytoplankton. Annu Rev Ecol Evol Syst 39(1):615–639.  https://doi.org/10.1146/annurev.ecolsys.39.110707.173549CrossRefGoogle Scholar
  38. Litchman E, Ohman MD, Kiørboe T (2013) Trait-based approaches to zooplankton communities. J Plankton Res 35(3):473–484CrossRefGoogle Scholar
  39. Lomolino MV, Riddle BR, Wittaker RJ (2016) Biogeography, 5th edn. Sinauer, Sunderland, MAGoogle Scholar
  40. Májeková M, Paal T, Plowman NS, Bryndova M, Kasari L, Norberg A, Weiss M, Bishop TR, Luke SH, Sam K, Le Bagousse-Pinguet Y, Leps J, Gotzenberger L, de Bello F (2016) Evaluating functional diversity: missing trait data and the importance of species abundance structure and data transformation. PLoS One 11(2):e0149270.  https://doi.org/10.1371/journal.pone.0149270CrossRefPubMedPubMedCentralGoogle Scholar
  41. Mason NWH, de Bello F (2013) Functional diversity: a tool for answering challenging ecological questions. J Veg Sci 24(5):777–780.  https://doi.org/10.1111/Jvs.12097CrossRefGoogle Scholar
  42. Mason NWH, Mouillot D, Lee WG, Wilson JB (2005) Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111(1):112–118.  https://doi.org/10.1111/j.0030-1299.2005.13886.xCrossRefGoogle Scholar
  43. Mason NWH, de Bello F, Mouillot D, Pavoine S, Dray S (2013) A guide for using functional diversity indices to reveal changes in assembly processes along ecological gradients. J Veg Sci 24(5):794–806.  https://doi.org/10.1111/jvs.12013CrossRefGoogle Scholar
  44. McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends in Ecology and Evolution 21(4):178–185CrossRefGoogle Scholar
  45. McPherson JM, Yeager LA, Baum JK, Price S (2018) A simulation tool to scrutinise the behaviour of functional diversity metrics. Methods Ecol Evol 9(1):200–206.  https://doi.org/10.1111/2041-210x.12855CrossRefGoogle Scholar
  46. Merckx VS, Hendriks KP, Beentjes KK, Mennes CB, Becking LE, Peijnenburg KT, Afendy A, Arumugam N, de Boer H, Biun A, Buang MM, Chen PP, Chung AY, Dow R, Feijen FA, Feijen H, Feijen-van Soest C, Geml J, Geurts R, Gravendeel B, Hovenkamp P, Imbun P, Ipor I, Janssens SB, Jocque M, Kappes H, Khoo E, Koomen P, Lens F, Majapun RJ, Morgado LN, Neupane S, Nieser N, Pereira JT, Rahman H, Sabran S, Sawang A, Schwallier RM, Shim PS, Smit H, Sol N, Spait M, Stech M, Stokvis F, Sugau JB, Suleiman M, Sumail S, Thomas DC, van Tol J, Tuh FY, Yahya BE, Nais J, Repin R, Lakim M, Schilthuizen M (2015) Evolution of endemism on a young tropical mountain. Nature 524(7565):347–350.  https://doi.org/10.1038/nature14949CrossRefPubMedPubMedCentralGoogle Scholar
  47. Mittermeier RA, Gil PR, Hoffmann M, Pilgrim J, Brooks T, Mittermeier CG, Lamourex J, Fonseca GAB (2005) Hotspots revisited. Earth’s biologically richest and most endangered terrestrial ecorregions. CEMEX, Ciudad de MéxicoGoogle Scholar
  48. Moretti M, Dias ATC, de Bello F, Altermatt F, Chown SL, Azcárate FM, Bell JR, Fournier B, Hedde M, Hortal J, Ibanez S, Öckinger E, Sousa JP, Ellers J, Berg MP, Fox C (2017) Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Funct Ecol 31(3):558–567.  https://doi.org/10.1111/1365-2435.12776CrossRefGoogle Scholar
  49. Müller H, Liedtke HC, Menegon M, Beck J, Ballesteros-Mejia L, Nagel P, Loader SP (2013) Forests as promoters of terrestrial life-history strategies in East African amphibians. Biol Lett 9(3):20121146.  https://doi.org/10.1098/rsbl.2012.1146CrossRefPubMedPubMedCentralGoogle Scholar
  50. Myhrvold NP, Baldridge E, Chan B, Sivam D, Freeman DL, Ernest SKM (2015) An amniote life-history database to perform comparative analyses with birds, mammals, and reptiles. Ecology 96(11):3109–3000.  https://doi.org/10.1890/15-0846r.1CrossRefGoogle Scholar
  51. Newbold T, Butchart SH, Sekercioglu CH, Purves DW, Scharlemann JP (2012) Mapping functional traits: comparing abundance and presence-absence estimates at large spatial scales. PLoS One 7(8):e44019.  https://doi.org/10.1371/journal.pone.0044019CrossRefPubMedPubMedCentralGoogle Scholar
  52. Nowakowski AJ, Thompson ME, Donnelly MA, Todd BD (2017) Amphibian sensitivity to habitat modification is associated with population trends and species traits. Glob Ecol Biogeogr 26(6):700–712.  https://doi.org/10.1111/geb.12571CrossRefGoogle Scholar
  53. Oliveira BF, Scheffers BR (2018) Vertical stratification influences global patterns of biodiversity. Ecography 42(2):249–249.  https://doi.org/10.1111/ecog.03636CrossRefGoogle Scholar
  54. Oliveira BF, Machac A, Costa GC, Brooks TM, Davidson AD, Rondinini C, Graham CH (2016) Species and functional diversity accumulate differently in mammals. Glob Ecol Biogeogr 25:1119.  https://doi.org/10.1111/geb.12471CrossRefGoogle Scholar
  55. Oliveira BF, Sao-Pedro VA, Santos-Barrera G, Penone C, Costa GC (2017) AmphiBIO, a global database for amphibian ecological traits. Sci Data 4:170123.  https://doi.org/10.1038/sdata.2017.123CrossRefPubMedPubMedCentralGoogle Scholar
  56. Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D’amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51(11):933–938CrossRefGoogle Scholar
  57. Ouchi-Melo LS, Meynard CN, Gonçalves-Souza T, de Cerqueira R-FD (2018) Integrating phylogenetic and functional biodiversity facets to guide conservation: a case study using anurans in a global biodiversity hotspot. Biodivers Conserv 27(12):3247–3266CrossRefGoogle Scholar
  58. Pavoine S, Vallet J, Dufour A-B, Gachet S, Daniel H (2009) On the challenge of treating various types of variables: application for improving the measurement of functional diversity. Oikos 118(3):391–402.  https://doi.org/10.1111/j.1600-0706.2008.16668.xCrossRefGoogle Scholar
  59. Pebesma E (2018) Simple features for R: standardized support for spatial vector data. The R Journal. https://journal.r-project.org/archive/2018/RJ-2018-009/
  60. Pérez-Harguindeguy N, Diaz S, Gamier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte M, Comwell W, Craine J, Gurvich D (2013) New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61:167–234CrossRefGoogle Scholar
  61. Peters RH (1986) The ecological implications of body size. Cambridge University Press, CambridgeGoogle Scholar
  62. Queiroz CS, da Silva FR, Rossa-Feres DC (2015) The relationship between pond habitat depth and functional tadpole diversity in an agricultural landscape. R Soc Open Sci 2(7):150165.  https://doi.org/10.1098/rsos.150165CrossRefGoogle Scholar
  63. Rangel TF, Edwards NR, Holden PB, Diniz-Filho JAF, Gosling WD, Coelho MTP, Cassemiro FAS, Rahbek C, Colwell RK (2018) Modeling the ecology and evolution of biodiversity: biogeographical cradles, museums, and graves. Science 361(6399):eaar5452.  https://doi.org/10.1126/science.aar5452CrossRefGoogle Scholar
  64. Reynolds CS, Huszar V, Kruk C, Naselli-Flores L, Melo S (2002) Towards a functional classification of the freshwater phytoplankton. J Plankton Res 24(5):417–428.  https://doi.org/10.1093/plankt/24.5.417CrossRefGoogle Scholar
  65. Riemann JC, Ndriantsoa Serge H, Rödel M-O, Glos J (2017) Functional diversity in a fragmented landscape — Habitat alterations affect functional trait composition of frog assemblages in Madagascar. Global Ecology and Conservation 10:173–183.  https://doi.org/10.1016/j.gecco.2017.03.005CrossRefGoogle Scholar
  66. Rosado BHP, Figueiredo MSL, de Mattos EA, Grelle CEV (2016) Eltonian shortfall due to the Grinnellian view: functional ecology between the mismatch of niche concepts. Ecography 39(11):1034–1041.  https://doi.org/10.1111/ecog.01678CrossRefGoogle Scholar
  67. Rubalcaba JG, Gouveia SF, Olalla-Tárraga MA, Algar A (2019) A mechanistic model to scale up biophysical processes into geographical size gradients in ectotherms. Glob Ecol Biogeogr 28:793.  https://doi.org/10.1111/geb.12893CrossRefGoogle Scholar
  68. Schleuter D, Daufresne M, Massol F, Argillier C (2010) A user’s guide to functional diversity indices. Ecol Monogr 80(3):469–484.  https://doi.org/10.1890/08-2225.1CrossRefGoogle Scholar
  69. Sepulchre P, Sloan LC, Fluteau F (2011) Modelling the response of Amazonian climate to the uplift of the Andean mountain range. In: Hoorn C, Wesselingh F (eds) Amazonia: landscape and species evolution: a look into the past. Wiley, New YorkGoogle Scholar
  70. Slavenko A, Meiri S (2015) Mean body sizes of amphibian species are poorly predicted by climate. J Biogeogr 42(7):1246–1254.  https://doi.org/10.1111/jbi.12516CrossRefGoogle Scholar
  71. Strauß A, Reeve E, Randrianiaina R-D, Vences M, Glos J (2010) The world’s richest tadpole communities show functional redundancy and low functional diversity: ecological data on Madagascar’s stream-dwelling amphibian larvae. BMC Ecol 10(1):12.  https://doi.org/10.1186/1472-6785-10-12CrossRefPubMedPubMedCentralGoogle Scholar
  72. Strauß A, Guilhaumon F, Randrianiaina RD, Wollenberg Valero KC, Vences M, Glos J (2016) Opposing patterns of seasonal change in functional and phylogenetic diversity of tadpole assemblages. PLoS One 11(3):e0151744.  https://doi.org/10.1371/journal.pone.0151744CrossRefPubMedPubMedCentralGoogle Scholar
  73. Trakimas G, Whittaker RJ, Borregaard MK (2016) Do biological traits drive geographical patterns in European amphibians? Glob Ecol Biogeogr 25:1228.  https://doi.org/10.1111/geb.12479CrossRefGoogle Scholar
  74. Trimble MJ, van Aarde RJ (2014) Amphibian and reptile communities and functional groups over a land-use gradient in a coastal tropical forest landscape of high richness and endemicity. Anim Conserv 17(5):441–453.  https://doi.org/10.1111/acv.12111CrossRefGoogle Scholar
  75. Trochet A, Moulherat S, Calvez O, Stevens V, Clobert J, Schmeller D (2014) A database of life-history traits of European amphibians. Biodivers Data J 2:e4123CrossRefGoogle Scholar
  76. Tsianou MA, Kallimanis AS (2015) Different species traits produce diverse spatial functional diversity patterns of amphibians. Biodivers Conserv 25(1):117–132.  https://doi.org/10.1007/s10531-015-1038-xCrossRefGoogle Scholar
  77. Tsianou MA, Kallimanis AS (2018) Trait selection matters! A study on European amphibian functional diversity patterns. Ecological Research 34:1–10.  https://doi.org/10.1111/1440-1703.1002CrossRefGoogle Scholar
  78. Vasconcelos TS, Prado VHM, da Silva FR, Haddad CFB (2014) Biogeographic distribution patterns and their correlates in the diverse frog fauna of the Atlantic Forest hotspot. PLoS One 9(8):e104130.  https://doi.org/10.1371/journal.pone.0104130CrossRefPubMedPubMedCentralGoogle Scholar
  79. Villalobos F, Dobrovolski R, Provete DB, Gouveia SF (2013) Is rich and rare the common share? Describing biodiversity patterns to inform conservation practices for South American anurans. PLoS One 8(2):e56073.  https://doi.org/10.1371/journal.pone.0056073CrossRefPubMedPubMedCentralGoogle Scholar
  80. Villéger S, Mason NW, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89(8):2290–2301CrossRefGoogle Scholar
  81. Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116(5):882–892.  https://doi.org/10.1111/j.2007.0030-1299.15559.xCrossRefGoogle Scholar
  82. Violle C, Reich PB, Pacala SW, Enquist BJ, Kattge J (2014) The emergence and promise of functional biogeography. Proc Natl Acad Sci U S A 111(38):13690–13696.  https://doi.org/10.1073/pnas.1415442111CrossRefPubMedPubMedCentralGoogle Scholar
  83. Violle C, Borgy B, Choler P (2015) Trait databases: misuses and precautions. J Veg Sci 26:826–827.  https://doi.org/10.1111/jvs.12325CrossRefGoogle Scholar
  84. Violle C, Thuiller W, Mouquet N, Munoz F, Kraft NJ, Cadotte MW, Livingstone SW, Mouillot D (2017) Functional rarity: the ecology of outliers. Trends in Ecology and Evolution 32(5):356–367CrossRefGoogle Scholar
  85. Vonhof HB, Kaandorp RJG (2011) Climate variation in Amazonia during the Neogene and the quaternary. In: Hoorn C, Wesselingh F (eds) Amazonia: landscape and species evolution: a look into the past. Wiley, New YorkGoogle Scholar
  86. Wickham H (2016) ggplot2: elegant graphics for data analysis, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  87. Wiens JJ, Pyron RA, Moen DS (2011) Phylogenetic origins of local-scale diversity patterns and the causes of Amazonian megadiversity. Ecol Lett 14(7):643–652.  https://doi.org/10.1111/j.1461-0248.2011.01625.xCrossRefPubMedGoogle Scholar
  88. Wilman H, Belmaker J, Simpson J, de la Rosa C, Rivadeneira MM, Jetz W (2014) EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95(7):2027–2027CrossRefGoogle Scholar
  89. Zhu L, Fu B, Zhu H, Wang C, Jiao L, Zhou J (2017) Trait choice profoundly affected the ecological conclusions drawn from functional diversity measures. Sci Rep 7(1):3643.  https://doi.org/10.1038/s41598-017-03812-8CrossRefPubMedPubMedCentralGoogle Scholar
  90. Zuloaga J, Currie DJ, Kerr JT, Pither J (2019) The origins and maintenance of global species endemism. Glob Ecol Biogeogr 28(2):170–183.  https://doi.org/10.1111/geb.12834CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tiago S. Vasconcelos
    • 1
  • Fernando R. da Silva
    • 2
  • Tiago G. dos Santos
    • 3
  • Vitor H. M. Prado
    • 4
  • Diogo B. Provete
    • 5
  1. 1.Department of Biological SciencesSão Paulo State University (UNESP)BauruBrazil
  2. 2.Federal University of São Carlos (UFScar)SorocabaBrazil
  3. 3.Federal University of Pampa (UNIPAMPA)São GabrielBrazil
  4. 4.Goiás State University (UEG)AnápolisBrazil
  5. 5.Federal University of Mato Grosso do Sul (UFMS)Campo GrandeBrazil

Personalised recommendations