Advertisement

An Introduction to the Biogeography of South American Anurans

  • Tiago S. Vasconcelos
  • Fernando R. da Silva
  • Tiago G. dos Santos
  • Vitor H. M. Prado
  • Diogo B. Provete
Chapter

Abstract

South America has undergone complex environmental and geological events that ultimately made it the most climatically and biodiverse continent on the planet, including anuran amphibians. Though biogeographical studies with anurans in South America have been continuously performed during the last decades, most of them focus on specific clades and/or regions. Moreover, no systematic compilation has been performed since the first synthesis of patterns of amphibian distribution, conducted by William E. Duellman by the end of the twentieth century. Here, we perform a systematic species survey of anurans in South America that allow us to revisit previously documented biogeographic patterns of species distribution (e.g., geographical patterns of species richness, species range size) and uncover novel biogeographic patterns, such as mapping anuran phylogenetic and functional diversity metrics across the continent. In summary, this book is made up of seven chapters spanning a wide range of topics that integrate herpetology, biogeography, ecology, and conservation biology. This chapter provides an overview of South American anurans and details the methodology used to generate the species list used in all subsequent chapters, as well as how different environmental variables were gathered and processed to be assessed as potential predictors of the biodiversity metrics explored through this book.

Keywords

Anura Biogeography Lissamphibia Macroecology Neotropics South America 

Notes

Acknowledgments

The authors have been continuously supported by research grants and/or fellowships from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2011/18510-0; 2013/50714-0; 2016/13949-7), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 2037/2014-9; 431012/2016-4; 308687/2016-17; 114613/2018-4), and University Research and Scientific Production Support Program of the Goias State University (PROBIP/UEG).

References

  1. AmphibiaWeb (2019) University of California, Berkeley. https://amphibiaweb.org. Accessed 27 Mar 2019
  2. Antonelli A, Nylander JAA, Persson C et al (2009) Tracing the impact of the Andean uplift on Neotropical plant evolution. PNAS 106:9749–9754.  https://doi.org/10.1073/pnas.0811421106CrossRefGoogle Scholar
  3. Antonelli A, Zizka A, Carvalho FA et al (2018) Amazonia is the primary source of Neotropical biodiversity. PNAS 115:6034–6039.  https://doi.org/10.1073/pnas.1713819115CrossRefGoogle Scholar
  4. Bacon CD, Silvestro D, Jaramillo C et al (2015) Biological evidence supports an early and complex emergence of the Isthmus of Panama. PNAS 112:6110–6115CrossRefGoogle Scholar
  5. Buckley LB, Jetz W (2007) Environmental and historical constraints on global patterns of amphibian richness. P Roy Soc B-Biol Sci 274:1167–1173CrossRefGoogle Scholar
  6. Carnaval AC, Moritz C (2008) Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic forest. J Biogeogr 35:1187–1201CrossRefGoogle Scholar
  7. Carnaval AC, Hickerson MJ, Haddad CFB et al (2009) Stability predicts genetic diversity in the Brazilian Atlantic Forest hotspot. Science 323:785–789CrossRefGoogle Scholar
  8. Carroll R (2009) The rise of amphibians: 365 million years of evolution. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  9. Currie DJ, Paquin V (1987) Large-scale biogeographical patterns of species richness of trees. Nature 329:326–327CrossRefGoogle Scholar
  10. da Silva FR, Almeida-Neto M, Prado VHM et al (2012) Humidity levels drive reproductive modes and phylogenetic diversity of amphibians in the Brazilian Atlantic Forest. J Biogeogr 39:1720–1732CrossRefGoogle Scholar
  11. Diniz-Filho JAJ, Bini LM, Pinto MP et al (2006) Anuran species richness, complementarity and conservation conflicts in Brazilian Cerrado. Acta Oecol 29:9–15.  https://doi.org/10.1016/j.actao.2005.07.004CrossRefGoogle Scholar
  12. Diniz-Filho JAF, Bini LM, Vieira CM et al (2008) Spatial patterns of terrestrial vertebrates species richness in the Brazilian Cerrado. Zool Stud 47:146–157Google Scholar
  13. Duellman WE (1999) Distribution patterns of amphibians in South America. In: Duellman WE (ed) Patterns of distribution of amphibians. The Johns Hopkins University Press, Baltimore/London, pp 255–327Google Scholar
  14. Duellman WE, Trueb L (1994) Biology of amphibians. The John Hopkins University Press, BaltimoreGoogle Scholar
  15. Ficetola GF, Rondinini C, Bonardi A et al (2014) An evaluation of the robustness of global amphibian range maps. J Biogeogr 41:211–221.  https://doi.org/10.1111/jbi.12206CrossRefGoogle Scholar
  16. Fouquet A, Cassini CS, Haddad CFB et al (2013) Species delimitation, patterns of diversification and historical biogeography of the Neotropical frog genus Adenomera (Anura, Leptodactylidae). J Biogeogr 41:855–870CrossRefGoogle Scholar
  17. Fritz SA, Rahbek C (2012) Global patterns of amphibian phylogenetic diversity. J Biogeogr 39:1373–1382CrossRefGoogle Scholar
  18. Frost DR (2019) Amphibian species of the world: an online reference. Version 6.0. American Museum of Natural History, New York. http://research.amnh.org/herpetology/amphibia/index.html. Accessed 27 Mar 2019Google Scholar
  19. García-Roselló E, Guisande C, Manjarréz-Hernández A et al (2014) Can we derive macroecological patterns from primary Global Biodiversity Information Facility data? Glob Ecol Biogeogr 24(335–347):2014Google Scholar
  20. Gehara M, Crawford AJ, Orrico VGD et al (2014) High levels of diversity uncovered in a widespread nominal taxon: continental phylogeography of the Neotropical tree frog Dendropsophus minutus. PLoS One 9:e103958CrossRefGoogle Scholar
  21. Graham CH, Hijmans RJ (2006) A comparison of methods for mapping species range and species richness. Glob Ecol Biogeogr 15:578–587CrossRefGoogle Scholar
  22. Godinho MBC, da Silva FR (2018) The influence of riverine barriers, climate, and topography on the biogeographic regionalization of Amazonian anurans. Sci Rep 8:3427.  https://doi.org/10.1038/s41598-018-21879-9CrossRefPubMedPubMedCentralGoogle Scholar
  23. Haddad CFB, Toledo LF, Prado CPA et al (2013) Guide to the amphibians of the Atlantic Forest: diversity and biology. Anolis Book, Sao PauloGoogle Scholar
  24. Hawkins BA (2010) Multiregional comparison of the ecological and phylogenetic structure of butterfly species richness gradients. J Biogeogr 37:647–656CrossRefGoogle Scholar
  25. Hawkins BA, Rueda M, Rodriguez MA (2008) What do range maps and surveys tell us about diversity patterns? Folia Geobot 43:345–355CrossRefGoogle Scholar
  26. Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolutions interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978.  https://doi.org/10.1002/joc.1276CrossRefGoogle Scholar
  27. IUCN (2016) The IUCN red list of threatened species. Version 2016-1. http://www.iucnredlist.org. Accessed 30 Nov 2016
  28. IUCN (2019) The IUCN red list of threatened species. Version 2019-1. http://www.iucnredlist.org. Accessed 21 Mar 2019
  29. Lomolino MV, Riddle BR, Whittaker RJ (2017) Biogeography: biological diversity across space and time, 5th edn. Sinauer Associates Inc, SunderlandGoogle Scholar
  30. Oliveira BF, Sao-Pedro VA, Santos-Barrera G et al (2017) AmphiBIO, a global database for amphibian ecological traits. Sci Data 4:170123.  https://doi.org/10.1038/sdata.2017.123CrossRefPubMedPubMedCentralGoogle Scholar
  31. Olson DM, Dinerstein E, Wikramanayake ED et al (2001) Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51:933–938CrossRefGoogle Scholar
  32. Rangel TF, Edwards NR, Holden PB et al (2018) Modeling the ecology and evolution of biodiversity: biogeographical cradles, museums, and graves. Science 361:eaar5452.  https://doi.org/10.1126/science.aar5452CrossRefGoogle Scholar
  33. Ruggiero A, Hawkins BA (2008) Why do mountains support so many species of birds? Ecography 31:306–315.  https://doi.org/10.1111/j.2008.0906-7590.05333.xCrossRefGoogle Scholar
  34. Simard M, Pinto N, Fisher JB et al (2011) Mapping forest canopy height globally with spaceborne lidar. J Geophys Res-Biogeo 116:G04021CrossRefGoogle Scholar
  35. Stocker MR, Nesbitt SJ, Kligman BT et al (2019) The earliest equatorial record of frogs from the Late Triassic of Arizona. Biol Lett 15:20180922.  https://doi.org/10.1098/rsbl.2018.0922CrossRefPubMedGoogle Scholar
  36. Valdujo PH, Carnaval ACOQ, Graham CH (2013) Environmental correlates of anuran beta diversity in the Brazilian Cerrado. Ecography 36:708–717.  https://doi.org/10.1111/j.1600-0587.2012.07374.xCrossRefGoogle Scholar
  37. Vasconcelos TS, Santos TG, Haddad CFB et al (2010) Climatic variables and altitude as predictors of anuran species richness and number of reproductive modes in Brazil. J Trop Ecol 26:423–432.  https://doi.org/10.1017/S0266467410000167CrossRefGoogle Scholar
  38. Vasconcelos TS, Rodríguez MÁ, Hawkins BA (2011) Biogeographic distribution patterns of South American amphibians: a regionalization based on cluster analysis. Natureza Conservação 9:67–72CrossRefGoogle Scholar
  39. Vasconcelos TS, Rodríguez MÁ, Hawkins BA (2012) Species distribution modelling as a macroecological tool: a case study using New World amphibians. Ecography 35:539–548.  https://doi.org/10.1111/j.1600-0587.2011.07050.xCrossRefGoogle Scholar
  40. Vasconcelos TS, Prado VHM, da Silva FR et al (2014) Biogeographic distribution patterns and their correlates in the diverse frog fauna of the Atlantic Forest hotspot. PLoS One 9(8):e104130.  https://doi.org/10.1371/journal.pone.0104130CrossRefPubMedPubMedCentralGoogle Scholar
  41. Vilela B, Villalobos F (2015) letsR: a new R package for data handling and analysis in macroecology. Methods Ecol Evol 6:1229–1234CrossRefGoogle Scholar
  42. Villalobos F, Dobrovolski R, Provete DB et al (2013) Is rich and rare the common share? Describing biodiversity patterns to inform conservation practices for South American anurans. PLoS One 8:e56073.  https://doi.org/10.1371/journal.-pone.0056073CrossRefPubMedPubMedCentralGoogle Scholar
  43. Wake DB, Koo MS (2018) Primer: amphibians. Curr Biol 28:R1221–R1242CrossRefGoogle Scholar
  44. Wells KD (2007) The ecology and behavior of amphibians. The University of Chicago Press, ChicagoCrossRefGoogle Scholar
  45. Wiens JJ, Pyron RA, Moen DS (2011) Phylogenetic origin of local-scale diversity patterns and the causes of Amazonian megadiversity. Ecol Lett 14:643–652CrossRefGoogle Scholar
  46. Wildlife Conservation Society – WCS, Center for International Earth Science Information Network – CIESIN – Columbia University (2005) Last of the wild project, Version 2, 2005 (LWP-2): Global human footprint dataset (Geographic)Google Scholar
  47. Whittaker RJ, Nogués-Bravo D, Araújo MB (2007) Geographical gradients of species richness: a test of the water-energy conjecture of Hawkins et al. (2003) using European data for five taxa. Glob Ecol Biogeogr 16:76–89Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tiago S. Vasconcelos
    • 1
  • Fernando R. da Silva
    • 2
  • Tiago G. dos Santos
    • 3
  • Vitor H. M. Prado
    • 4
  • Diogo B. Provete
    • 5
  1. 1.Department of Biological SciencesSão Paulo State University (UNESP)BauruBrazil
  2. 2.Federal University of São Carlos (UFScar)SorocabaBrazil
  3. 3.Federal University of Pampa (UNIPAMPA)São GabrielBrazil
  4. 4.Goiás State University (UEG)AnápolisBrazil
  5. 5.Federal University of Mato Grosso do Sul (UFMS)Campo GrandeBrazil

Personalised recommendations