Enhancing CAN Security by Means of Lightweight Stream-Ciphers and Protocols

  • Aymen BoudguigaEmail author
  • Jerome Letailleur
  • Renaud Sirdey
  • Witold Klaudel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11699)


The Controller Area Network (CAN) is the most used standard for communication inside vehicles. CAN relies on frame broadcast to exchange data payloads between different Electronic Control Units (ECUs) which manage critical or comfort functions such as cruise control or air conditioning. CAN is distinguished by its simplicity, its real-time application compatibility and its low deployment cost. However, CAN major drawback is its lack of security support. Indeed, CAN does not provide protections against attacks such as intrusion, injection or impersonation. In this work, we propose a framework for CAN security based on Trivium and Grain, two well-known lightweight stream ciphers. We define a simple authentication and key exchange protocol for ECUs. In addition, we extend CAN with the support of confidentiality and integrity for at least critical frames.


Controller Area Network Confidentiality Integrity 


  1. 1.
  2. 2.
    Bosch: CAN Specification Version 2.0, September 1991Google Scholar
  3. 3.
    Hoppe, T., Kiltz, S., Dittmann, J.: Security threats to automotive CAN networks - practical examples and selected short-term countermeasures. In: Proceedings of the 27th International Conference on Computer Safety, Reliability, and Security (SAFECOMP 2008) (2008)Google Scholar
  4. 4.
    Nilsson, D.K., Larson, U.E.: Simulated attacks on CAN buses: vehicle virus. In: Proceedings of the Fifth International Conference on Communication Systems and Networks (AsiaCSN 2008) (2008)Google Scholar
  5. 5.
    Koscher, K., et al.: Experimental security analysis of a modern automobile. In: Proceedings of the 2010 IEEE Symposium on Security and Privacy (2010)Google Scholar
  6. 6.
    Checkoway, S., et al.: Comprehensive experimental analyses of automotive attack surfaces. In: Proceedings of the 20th USENIX Conference on SecurityGoogle Scholar
  7. 7.
    Schneider, D.: Jeep hacking 101Google Scholar
  8. 8.
    Tencent Keen Security Lab: Experimental security research of tesla autopilotGoogle Scholar
  9. 9.
    De Cannière, C., Preneel, B.: Trivium. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 244–266. Springer, Heidelberg (2008). Scholar
  10. 10.
    Ågren, M., Hell, M., Johansson, T., Meier, W.: Grain-128a: a new version of grain-128 with optional authentication. IJWMC 5, 48–59 (2011)CrossRefGoogle Scholar
  11. 11.
    Oguma, H., Yoshioka, A., Nishikawa, M., Shigetomi, R., Otsuka, A., Imai, H.: New attestation based security architecture for in-vehicle communication. In: IEEE Global Telecommunications Conference (GLOBECOM 2008) (2008)Google Scholar
  12. 12.
    Szilagyi, C., Koopman, P.: Flexible multicast authentication for time-triggered embedded control network applications. In: 2009 IEEE/IFIP International Conference on Dependable Systems Networks (2009)Google Scholar
  13. 13.
    Schweppe, H., Roudier, Y., Weyl, B., Apvrille, L., Scheuermann, D.: Car2X communication: securing the last meter -A cost-effective approach for ensuring trust in Car2X applications using in-vehicle symmetric cryptography. In: 4th IEEE International Symposium on Wireless Vehicular Communications (WiVeC 2011) (2011)Google Scholar
  14. 14.
    Lin, C.W., Sangiovanni-Vincentelli, A.: Cyber-security for the Controller Area Network (CAN) communication protocol. In: 2012 International Conference on Cyber Security (CyberSecurity 2012) (2012)Google Scholar
  15. 15.
    Groza, B., Murvay, S., van Herrewege, A., Verbauwhede, I.: LiBrA-CAN: a lightweight broadcast authentication protocol for controller area networks. In: Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.) CANS 2012. LNCS, vol. 7712, pp. 185–200. Springer, Heidelberg (2012). Scholar
  16. 16.
    Groza, B., Murvay, S.: Efficient Protocols for secure broadcast in controller area networks. IEEE Trans. Industr. Inf. 9(4), 2034–2042 (2013)CrossRefGoogle Scholar
  17. 17.
    Perrig, A., Canetti, R., Song, D., Tygar, J.D.: Efficient and secure source authentication for multicast. In: 2001 Network and Distributed System Security Symposium, pp. 35–46 (2001)Google Scholar
  18. 18.
    Hoppen, T., Kiltz, S., Dittmann, J.: Security threats to automotive CAN networks-Practical examples and selected short-term countermeasures. Reliab. Eng. Syst. Saf. 96(1), 11–25 (2011)CrossRefGoogle Scholar
  19. 19.
    Kleberger, P., Olovsson, T., Jonsson, E.: Security aspects of the in-vehicle network in the connected car. In: 2011 IEEE Intelligent Vehicles Symposium, pp. 528–533, June 2011Google Scholar
  20. 20.
    Larson, U., Nilsson, D., Jonsson, E.: An approach to specification-based attack detection for in-vehicle networks. In: 2008 IEEE Intelligent Vehicles Symposium, pp. 220–225, June 2008Google Scholar
  21. 21.
    Hoppe, T., Kiltz, S., Dittmann, J.: Adaptive dynamic reaction to automotive IT security incidents using multimedia car environment. In: Fourth International Conference on Information Assurance and Security (ISA 2008) (2008)Google Scholar
  22. 22.
    Boudguiga, A., Klaudel, W., Boulanger, A., Chiron, P.: A simple intrusion detection method for controller area network. In: 2016 IEEE International Conference on Communications (ICC), pp. 1–7, May 2016Google Scholar
  23. 23.
    Nürnberger, S., Rossow, C.: – vatiCAN – Vetted, authenticated CAN bus. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 106–124. Springer, Heidelberg (2016). Scholar
  24. 24.
    Groza, B., Popa, L., Murvay, P.-S.: INCANTA - INtrusion detection in controller area networks with time-covert authentication. In: Hamid, B., Gallina, B., Shabtai, A., Elovici, Y., Garcia-Alfaro, J. (eds.) CSITS/ISSA -2018. LNCS, vol. 11552, pp. 94–110. Springer, Cham (2019). Scholar
  25. 25.
    Bella, G., Biondi, P., Costantino, G., Matteucci, I.: TOUCAN: a protocol to secure controller area network. In: Proceedings of the ACM Workshop on Automotive Cybersecurity, AutoSec 2019, pp. 3–8. ACM, New York (2019)Google Scholar
  26. 26.
    Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inform. Theory 29, 198–208 (1983)MathSciNetCrossRefGoogle Scholar
  27. 27.
    ETSI TS 102 893 v1.1.1: Intelligent Transport Systems (ITS); Security; Threat, Vulnerability and Risk Analysis (TVRA). ETSI WG5 Technical report, pp. 1–29, March 2010Google Scholar
  28. 28.
    Henniger, O., Apvrille, L., Fuchs, A., Roudier, Y., Ruddle, A., Weyl, B.: Security requirements for automotive on-board networks. In: 2009 9th International Conference on Intelligent Transport Systems Telecommunications, pp. 641–646, October 2009Google Scholar
  29. 29.
    Monteuuis, J.P., Boudguiga, A., Zhang, J., Labiod, H., Servel, A., Urien, P.: Sara: Security automotive risk analysis method. In: Proceedings of the 4th ACM Workshop on Cyber-Physical System Security, CPSS 2018, pp. 3–14. ACM, New York (2018)Google Scholar
  30. 30.
    Boudguiga, A., Boulanger, A., Chiron, P., Klaudel, W., Labiod, H., Seguy, J.C.: RACE: risk analysis for cooperative engines. In: 7th International Conference on New Technologies, Mobility and Security (NTMS 2015) (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Aymen Boudguiga
    • 1
    • 4
    Email author
  • Jerome Letailleur
    • 2
    • 4
  • Renaud Sirdey
    • 1
    • 4
  • Witold Klaudel
    • 3
    • 4
  1. 1.CEA-LISTGif-sur-YvettesFrance
  2. 2.Prove & RunParisFrance
  3. 3.RenaultGuyancourtFrance
  4. 4.IRT SystemXPalaiseauFrance

Personalised recommendations