Advertisement

Nutritional Therapy in the Management of Physical Frailty and Sarcopenia

  • Manuela MerliEmail author
  • Barbara Lattanzi
  • Daria D’Ambrosio
  • Nicoletta Fabrini
  • Alice Liguori
Chapter

Abstract

Sarcopenia and frailty are frequent in liver cirrhosis and are associated with a worse prognosis. For this reason, and being potentially modifiable disorders, to find a strategy to prevent or improve these conditions is of great importance in cirrhotic patients.

To date, there are no standardized treatments to reverse or prevent the deterioration of nutritional status and physical frailty in patients with liver cirrhosis. However, nutritional intervention and individual counseling to achieve adequate amounts of calories and proteins are recommended. Oral nutritional supplementations with BCAA or leucine or beta-hydroxy-beta-methyl butyrate combined with exercise training are promising measures, but more studies are needed to define the best way and time to operate with these approaches.

Keywords

Frailty Sarcopenia Nutritional therapy Branched-chain amino acids Liver cirrhosis 

References

  1. 1.
    Lai JC, Covinsky KE, Dodge JL, Boscardin WJ, Segev DL, Roberts JP, Feng S. Development of a novel frailty index to predict mortality in patients with end-stage liver disease. Hepatology. 2017;66(2):564–74.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Montano-Loza AJ, Meza-Junco J, Prado CM, Lieffers JR, Baracos VE, Bain VG, et al. Muscle wasting is associated with mortality in patients with cirrhosis. Clin Gastroenterol Hepatol. 2012;10:166–173 e161.CrossRefGoogle Scholar
  3. 3.
    Merli M, Riggio O, Dally L. Does malnutrition affect survival in cirrhosis? PINC (Policentrica Italiana Nutrizione Cirrosi). Hepatology. 1996;23:1041–6.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    van Vugt JLA, Alferink LJM, Buettner S, Gaspersz MP, Bot D, Murad SD, et al. A model including sarcopenia surpasses the MELD score in predicting waiting list mortality in cirrhotic liver transplant candidates. J Hepatol. 2017;68:707–14.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    McClave SA, Di Baise JK, Mullin GE, Martindale RG. ACG Clinical Guideline: Nutrition therapy in the adult hospitalized patient. Am J Gastroenterol. 2016.Google Scholar
  6. 6.
    Tarazona-Santabalbina FJ, Gómez-Cabrera MC, Pérez-Ros P, Martínez-Arnau FM, Cabo H, Tsaparas K, Salvador-Pascual A, Rodriguez-Mañas L, Viña J. A multicomponent exercise intervention that reverses frailty and improves cognition, emotion, and social networking in the community-dwelling frail elderly: a randomized clinical trial. J Am Med Dir Assoc. 2016;17:426–33.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ng TP, Feng L, Nyunt MS, Feng L, Niti M, Tan BY, Chan G, Khoo SA, Chan SM, Yap P, Yap KB. Nutritional, physical, cognitive, and combination interventions and frailty reversal among older adults: a randomized controlled trial. Am J Med. 2015;128:1225–1236.e1.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kok B, Tandon P. Frailty in patients with cirrhosis. Curr Treat Options Gastroenterol. 2018;16:215–25.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lattanzi B, D’Ambrosio D, Fedele F, Merli M. Nutritional assessment and management for hospitalized patients with cirrhosis. Current Hepatology Reports. 2018;  https://doi.org/10.1007/s11901-018-0398-6.
  10. 10.
    Laube R, Wang H, Park L, Heyman JK, Vidot H, Majumdar A, Strasser SI, McCaughan GW, Liu K. Frailty in advanced liver disease. Liver Int. 2018;38:2117–28.CrossRefGoogle Scholar
  11. 11.
    Smith-Ray RL, Hughes SL, Prohaska TR, Little DM, Jurivich DA, Hedeker D. Impact of cognitive training on balance and gait in older adults. J Gerontol B Psychol Sci Soc Sci. 2015;70(3):357–66.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Li KZ, Roudaia E, Lussier M, Bherer L, Leroux A, McKinley PA. Benefits of cognitive dual task training on balance performance in healthy older adults. J Gerontol A Biol Sci Med Sci. 2010;65(12):1344–52.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Theou O, Stathokostas L, Roland K, et al. The effectiveness of exercise interventions for the management of frailty: a systematic review. J Aging Res. 2011;2011:569194.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Willis SL, Tennstedt SL, Marsiske M, et al. Long-term effects of cognitive training on everyday functional outcomes in older adults. JAMA. 2006;296(23):2805–14.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Doumas M, Rapp MA, Krampe RT. Working memory and postural control: adult age differences in potential for improvement, task priority, and dual tasking. J Gerontol B Psychol Sci Soc Sci. 2009;64(2):193–201.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kim CO, Lee KR. Preventive effect of protein-energy supplementation on the functional decline of frail older adults with low socioeconomic status: a community-based randomized controlled study. J Gerontol A Biol Sci Med Sci. 2013;68(3):309–16.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Rosendahl E, Lindelöf N, Littbrand H, et al. High-intensity functional exercise program and protein-enriched energy supplement for older persons dependent in activities of daily living: a randomised controlled trial. Aust J Physiother. 2006;52(2):105–13.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Milne AC, Avenell A, Potter J. Meta-analysis: protein and energy supplementation in older people. Ann Intern Med. 2006;144(1):37–48.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Payette H, Boutier V, Coulombe C, Gray-Donald K. Benefits of nutritional supplementation in free-living, frail, undernourished elderly people: a prospective randomized community trial. J Am Diet Assoc. 2002;102(8):1088–95.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Fiatarone MA, O’Neill EF, Ryan ND, et al. Exercise training and nutritional supplementation for physical frailty in very elderly people. N Engl J Med. 1994;330(25):1769–75.CrossRefGoogle Scholar
  21. 21.
    Park Y, Choi JE, Hwang HS. Protein supplementation improves muscle mass and physical performance in undernourished prefrail and frail elderly subjects: a randomized, double-blind, placebo-controlled trial. Am J Clin Nutr. 2018;108:1026–33.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Calvani R, Miccheli A, Landi F, Bossola M, Cesari M, Leeuwenburgh C, Sieber CC, Bernabei R, Marzetti E. Current nutritional recommendations and novel dietary strategies to manage sarcopenia. J Frailty Aging. 2013;2:38–53.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Malafarina V, Uriz-Otano F, Iniesta R, Gil-Guerrero L. Effectiveness of nutritional supplementation on muscle mass in the treatment of sarcopenia in old age: a systematic review. J Am Med Dir Assoc. 2013;14(1):10–7.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Marzetti E, Cesari M, Calvani R, Msihid J, Tosato M, Rodriguez-Mañas L, Lattanzio F, Cherubini A, Bejuit R, Di Bari M, Maggio M, Vellas B, Dantoine T, Cruz-Jentoft AJ, Sieber CC, Freiberger E, Skalska A, Grodzicki T, Sinclair AJ, Topinkova E, Rýznarová I, Strandberg T, AMWJ S, JMGA S, Roller-Wirnsberger R, Jónsson PV, Ramel A, Del Signore S, Pahor M, Roubenoff R, Bernabei R, Landi F. SPRINTT Consortium. The “Sarcopenia and Physical fRailty IN older people: multi-componenT Treatment strategies” (SPRINTT) randomized controlled trial: Case finding, screening, and characteristics of eligible participants. Exp Gerontol. 2018;113:48–57.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ooi PH, Gilmour SM, Yap J, Mager DR. Effects of branched chain amino acid supplementation on patient care outcomes in adults and children with liver cirrhosis: a systematic review. Clin Nutr ESPEN. 2018;28:41–51.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    European Association for the Study of the Liver. EASL Clinical Practice Guidelines on nutrition in chronic liver disease. J Hepatol. 2019;70(1):172–93.CrossRefGoogle Scholar
  27. 27.
    Tsien CD, McCullough AJ, Dasarathy S. Late evening snack: exploiting a period of anabolic opportunity in cirrhosis. J Gastroenterol Hepatol. 2012;27:430–41.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Cabre E, Gonzalez-Huix F, Abad-Lacruz A, Esteve M, Acero D, Fernandez-Bañares F, et al. Effect of total enteral nutrition on the short-term outcome of severely malnourished cirrhotics. A randomized controlled trial. Gastroenterology. 1990;98(3):715–20. PMID: 2105256.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Fan ST, Lo CM, Lai EC, Chu KM, Liu CL, Wong J. Perioperative nutritional support in patients undergoing hepatectomy for hepatocellular carcinoma. N Engl J Med. 1994;331(23):1547–52.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Le Cornu KA, McKiernan FJ, Kapadia SA, Neuberger JM. A prospective randomized study of preoperative nutritional supplementation in patients awaiting elective orthotopic liver transplantation. Transplantation. 2000;69(7):1364–9.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Plank LD, Mathur S, Gane EJ, Peng SL, Gillanders LK, McIlroy K, Chavez CP, Calder PC, McCall JL. Perioperative immunonutrition in patients undergoing liver transplantation: a randomized double-blind trial. Hepatology. 2015;61(2):639–47.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Fialla AD, Israelsen M, Hamberg O, Krag A, Gluud LL. Nutritional therapy in cirrhosis or alcoholic hepatitis: a systematic review and meta-analysis. Liver Int. 2015;35(9):2072–8.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Koretz RL, Avenell A, Lipman TO. Nutritional support for liver disease. Cochrane Database Syst Rev. 2012;5:CD008344.Google Scholar
  34. 34.
    Antar R, Wong P, Ghali P. A meta-analysis of nutritional supplementation for management of hospitalized alcoholic hepatitis. Can J Gastroenterol. 2012;26(7):463–7.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Koretz RL, Avenell A, Lipman TO. Nutritional support for liver disease. Cochrane Database Syst Rev. 2012;5:CD008344.Google Scholar
  36. 36.
    Plauth M, Cabré E, Campillo B, Kondrup J, Marchesini G, Schütz T, Shenkin A, Wendon J, ESPEN. ESPEN guidelines on parenteral nutrition: hepatology. Clin Nutr. 2009;28:436–44.  https://doi.org/10.1016/j.clnu.2009.04.019. Epub 2009 Jun 11.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Bianchi GP, Marchesini G, Fabbri A, Rondelli A, Bugianesi E, Zoli M, Pisi E. Vegetable versus animal protein diet in cirrhotic patients with chronic encephalopathy. A randomized cross-over comparison. J Intern Med. 1993;233(5):385–92.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Maharshi S, Sharma BC, Sachdeva S, Srivastava S, Sharma P. Efficacy of nutritional therapy for patients with cirrhosis and minimal hepatic encephalopathy in a randomized trial. Clin Gastroenterol Hepatol. 2016;14(3):454–460.e3.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Gheorghe L, Iacob R, Vădan R, Iacob S, Gheorghe C. Improvement of hepatic encephalopathy using a modified high-calorie high-protein diet. Rom J Gastroenterol. 2005;14(3):231–8.PubMedGoogle Scholar
  40. 40.
    Córdoba J, López-Hellín J, Planas M, Sabín P, Sanpedro F, Castro F, Esteban R, Guardia J. Normal protein diet for episodic hepatic encephalopathy: results of a randomized study. Jm Hepatol. 2004;41(1):38–43.CrossRefGoogle Scholar
  41. 41.
    Kondrup J, Müller MJ. Energy and protein requirements of patients with chronic liver disease. J Hepatol. 1997;27(1):239–47. Review. PMID: 9252101.Google Scholar
  42. 42.
    Gluud LL, Dam G, Les I, Marchesini G, Borre M, Aagaard NK, Vilstrup H. Branched-chain amino acids for people with hepatic encephalopathy. Cochrane Database Syst Rev. 2017;5:CD001939.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Horst D, Grace ND, Conn HO, Schiff E, Schenker S, Viteri A, Law D, Atterbury CE. Comparison of dietary protein with an oral, branched chain-enriched amino acid supplement in chronic portal-systemic encephalopathy: a randomized controlled trial. Hepatology. 1984;4(2):279–87.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Christie ML, Sack DM, Pomposelli J, Horst D. Enriched branched-chain amino acid formula versus a casein-based supplement in the treatment of cirrhosis. JPEN J Parenter Enteral Nutr. 1985;9(6):671–8.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Marchesini G, Bianchi G, Merli M, Amodio P, Panella C, Loguercio C, Rossi Fanelli F, Abbiati R, Italian BCAA Study Group. Nutritional supplementation with branched-chain amino acids in advanced cirrhosis: a double-blind, randomized trial. Gastroenterology. 2003;124(7):1792–801.CrossRefGoogle Scholar
  46. 46.
    Les I, Doval E, García-Martínez R, Planas M, Cárdenas G, Gómez P, Flavià M, Jacas C, Mínguez B, Vergara M, Soriano G, Vila C, Esteban R, Córdoba J. Effects of branched-chain amino acids supplementation in patients with cirrhosis and a previous episode of hepatic encephalopathy: a randomized study. Am J Gastroenterol. 2011;106(6):1081–8.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ruiz-Margáin A, Macías-Rodríguez RU, Ríos-Torres SL, Román-Calleja BM, Méndez-Guerrero O, Rodríguez-Córdova P, Torre A. Effect of a high-protein, high-fiber diet plus supplementation with branched-chain amino acids on the nutritional status of patients with cirrhosis. Rev Gastroenterol Mex. 2018;83(1):9–15.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Kitajima Y, Takahashi H, Akiyama T, Murayama K, Iwane S, Kuwashiro T, Tanaka K, et al. Supplementation with branched-chain amino acids ameliorates hypoalbuminemia, prevents sarcopenia, and reduces fat accumulation in the skeletal muscles of patients with liver cirrhosis. J Gastroenterol. 2017;24.Google Scholar
  49. 49.
    Hiraoka A, Michitaka K, Kiguchi D, Izumoto H, Ueki H, Kaneto M, et al. Efficacy of branched-chain amino acid supplementation and walking exercise for preventing sarcopenia in patients with liver cirrhosis. Eur J Gastroenterol Hepatol. 2017;29(12):1416–23.CrossRefGoogle Scholar
  50. 50.
    Uojima H, Sakurai S, Hidaka H, Kinbara T, Sung JH, Ichita C, Tokoro S, Masuda S, Sasaki A, Koizumi K, Egashira H, Kako M, Kobayashi S. Effect of branched-chain amino acid supplements on muscle strength and muscle mass in patients with liver cirrhosis. Eur J Gastroenterol Hepatol. 2017;29(12):1402–7.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Carroll B, Korolchuk VI, Sarkar S. Amino acids and autophagy: cross-talk and co-operation to control cellular homeostasis. Amino Acids. 2015;47:2065–88.  https://doi.org/10.1007/s00726-014-1775-2.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Tsien C, Davuluri G, Singh D, Allawy A, Ten Have GA, Thapaliya S, et al. Metabolic and molecular responses to leucine-enriched branched chain amino acid supplementation in the skeletal muscle of alcoholic cirrhosis. Hepatology. 2015;61(6):2018–29.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Román E, Torrades MT, Nadal MJ, Cárdenas G, Nieto JC, Vidal S, Bascuñana H, Juárez C, Guarner C, Córdoba J, Soriano G. Randomized pilot study: effects of an exercise programme and leucine supplementation in patients with cirrhosis. Dig Dis Sci. 2014;59(8):1966–75.CrossRefGoogle Scholar
  54. 54.
    Aversa Z, Bonetto A, Costelli P, Minero VG, Penna F, Baccino FM, Lucia S, Rossi Fanelli F, Muscaritoli M. β-Hydroxy-β-methylbutyrate (HMB) attenuates muscle and body weight loss in experimental cancer cachexia. Int J Oncol. 2011;38(3):713–20.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Kornasio R, Riederer I, Butler-Browne G, Mouly V, Uni Z, Halevy O. Beta-hydroxy-betamethylbutyrate (HMB) stimulates myogenic cell proliferation, differentiation, and survival via the MAPK/ERK and PI3K/Akt pathways. Biochim Biophys Acta. 2009;1793(5):755–63.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Smith HJ, Mukerji P, Tisdale MJ. Attenuation of proteasome-induced proteolysis in skeletal muscle by {beta}-hydroxy-{beta}-methylbutyrate in cancer-induced muscle loss. Cancer Res. 2005;65(1):277–83.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Manuela Merli
    • 1
    Email author
  • Barbara Lattanzi
    • 1
  • Daria D’Ambrosio
    • 1
  • Nicoletta Fabrini
    • 1
  • Alice Liguori
    • 1
  1. 1.Gastroenterology and Hepatology Unit, Department of Translation and Precision Medicine, Sapienza University of RomeRomeItaly

Personalised recommendations