Advertisement

Prognostic Implications of Physical Frailty and Sarcopenia Pre and Post Transplantation

  • Stefan Buettner
  • Jan N. M. IJzermans
  • Jeroen L. A. van VugtEmail author
Chapter

Abstract

The development of frailty and sarcopenia has many shared risk factors with the occurrence of cirrhosis. In turn, cirrhosis influences the course of frailty and sarcopenia. Frailty and sarcopenia metrics can be used to enhance current recipient selection and prioritization tools such as the MELD score, in order to reduce waitlist mortality and improve long-time prognosis for transplanted patients. Both syndromes may be influenced by interventions prior to and after transplantation. Strategies should be multidimensional and, at least, be a combination of nutrition, exercise, and ammonia-lowering therapies with or without novel pharmacological therapy. In order to enhance selection of patients and enact interventions, a standardized and practical definition of frailty and sarcopenia is required. Only in this way can the prognostic implications of these syndromes be employed to their full potential to improve care in transplantation patients.

Keywords

Liver transplantation Prognosis Frailty Sarcopenia Cirrhosis 

References

  1. 1.
    Neuberger J. An update on liver transplantation: a critical review. J Autoimmun. 2016;66:51–9.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    van den Berg EH, Amini M, Schreuder TCMA, Dullaart RPF, Faber KN, Alizadeh BZ, et al. Prevalence and determinants of non-alcoholic fatty liver disease in lifelines: a large Dutch population cohort. PLoS One. 2017;12:e0171502.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64:73–84.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Sajja KC, Mohan DP, Rockey DC. Age and ethnicity in cirrhosis. J Investigative Med. 2014;62:920–6.CrossRefGoogle Scholar
  5. 5.
    Ferrucci L, Fabbri E. Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat Rev Cardiol. 2018;15:505–22.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Fukuda T, Bouchi R, Takeuchi T, Nakano Y, Murakami M, Minami I, et al. Association of diabetic retinopathy with both sarcopenia and muscle quality in patients with type 2 diabetes: a cross-sectional study. BMJ Open Diabetes Research & Amp Care. 2017:5.Google Scholar
  7. 7.
    Marchesini G, Marzocchi R. Metabolic syndrome and NASH. Clin Liver Dis. 2007;11:105–17.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Cederholm T. Overlaps between frailty and sarcopenia definitions. Nestle Nutr Inst Workshop Ser. 2015;83:65–9.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    van Vugt JL, Levolger S, de Bruin RW, van Rosmalen J, Metselaar HJ, JN IJ. Systematic review and meta-analysis of the impact of computed tomography-assessed skeletal muscle mass on outcome in patients awaiting or undergoing liver transplantation. Am J Transplant. 2016;16:2277–92.CrossRefGoogle Scholar
  10. 10.
    Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people. Age Ageing. 2010;39:412–23.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56:M146–56.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kalaitzakis E, Simrén M, Olsson R, Henfridsson P, Hugosson I, Bengtsson M, et al. Gastrointestinal symptoms in patients with liver cirrhosis: associations with nutritional status and health-related quality of life. Scand J Gastroenterol. 2006;41:1464–72.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Pedersen JS, Bendtsen F, Møller S. Management of cirrhotic ascites. Ther Adv Chronic Dis. 2015;6:124–37.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Swain MG. Fatigue in liver disease: pathophysiology and clinical management. Can J Gastroenterol. 2006;20:181–8.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kalaitzakis E, Josefsson A, Castedal M, Henfridsson P, Bengtsson M, Hugosson I, et al. Factors related to fatigue in patients with cirrhosis before and after liver transplantation. Clin Gastroenterol Hepatol. 2012;10:174–81.e1.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Campos F, Abrigo J, Aguirre F, Garces B, Arrese M, Karpen S, et al. Sarcopenia in a mice model of chronic liver disease: role of the ubiquitin-proteasome system and oxidative stress. Pflugers Arch. 2018;470:1503.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Philippe AB, Erin SC, Simon SW. The ubiquitin proteasome system in atrophying skeletal muscle: roles and regulation. Am J Phys Cell Phys. 2016;311:C392–403.CrossRefGoogle Scholar
  18. 18.
    Scicchitano BM, Pelosi L, Sica G, Musarò A. The physiopathologic role of oxidative stress in skeletal muscle. Mech Ageing Dev. 2018;170:37–44.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Carias S, Castellanos AL, Vilchez V, Nair R, Dela Cruz AC, Watkins J, et al. Nonalcoholic steatohepatitis is strongly associated with sarcopenic obesity in patients with cirrhosis undergoing liver transplant evaluation. J Gastroenterol Hepatol. 2016;31:628–33.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Srikanthan P, Hevener AL, Karlamangla AS. Sarcopenia exacerbates obesity-associated insulin resistance and Dysglycemia: findings from the National Health and nutrition examination survey III. PLoS One. 2010;5:e10805.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Bhanji RA, Narayanan P, Moynagh MR, Takahashi N, Angirekula M, Kennedy CC, et al. Differing impact of sarcopenia and frailty in non-alcoholic steatohepatitis (NASH) and alcoholic liver disease (ALD). Liver Transpl. 2018.Google Scholar
  22. 22.
    Kok B, Tandon P. Frailty in patients with cirrhosis. Curr Treat Options Gastroenterol. 2018;16:215–25.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lai JC, Feng S, Terrault NA, Lizaola B, Hayssen H, Covinsky K. Frailty predicts waitlist mortality in liver transplant candidates. Am J Transplant. 2014;14:1870–9.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Tandon P, Tangri N, Thomas L, Zenith L, Shaikh T, Carbonneau M, et al. A rapid bedside screen to predict unplanned hospitalization and death in outpatients with cirrhosis: a prospective evaluation of the clinical frailty scale. Am J Gastroenterol. 2016;111:1759–67.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Dunn MA, Josbeno DA, Tevar AD, Rachakonda V, Ganesh SR, Schmotzer AR, et al. Frailty as tested by gait speed is an independent risk factor for cirrhosis complications that require hospitalization. Am J Gastroenterol. 2016;111:1768–75.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Carey EJ, Steidley DE, Aqel BA, Byrne TJ, Mekeel KL, Rakela J, et al. Six-minute walk distance predicts mortality in liver transplant candidates. Liver Transpl. 2010;16:1373–8.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Baracos VE. Psoas as a sentinel muscle for sarcopenia: a flawed premise. J Cachexia Sarcopenia Muscle. 2017;8:527–8.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Yadav A, Chang YH, Carpenter S, Silva AC, Rakela J, Aqel BA, et al. Relationship between sarcopenia, six-minute walk distance and health-related quality of life in liver transplant candidates. Clin Transpl. 2015;29:134–41.CrossRefGoogle Scholar
  29. 29.
    Mourtzakis M, Prado CM, Lieffers JR, Reiman T, McCargar LJ, Baracos VE. A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl Physiol Nutr Metab. 2008;33:997–1006.CrossRefGoogle Scholar
  30. 30.
    Holt DQ, Strauss BJ, Lau KK, Moore GT. Body composition analysis using abdominal scans from routine clinical care in patients with Crohn’s disease. Scand J Gastroenterol. 2016;51:842–7.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Montano-Loza AJ, Meza-Junco J, Baracos VE, Prado CM, Ma M, Meeberg G, et al. Severe muscle depletion predicts postoperative length of stay but is not associated with survival after liver transplantation. Liver Transpl. 2014;20:640–8.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Cesari M, Fielding RA, Pahor M, Goodpaster B, Hellerstein M, van Kan GA, et al. Biomarkers of sarcopenia in clinical trials-recommendations from the international working group on sarcopenia. J Cachexia Sarcopenia Muscle. 2012;3:181–90.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Bahat G, Tufan A, Tufan F, Kilic C, Akpinar TS, Kose M, et al. Cut-off points to identify sarcopenia according to European working group on sarcopenia in older people (EWGSOP) definition. Clin Nutr. 2016;35:1557–63.CrossRefGoogle Scholar
  34. 34.
    Ebadi M, Wang CW, Lai JC, Dasarathy S, Kappus MR, Dunn MA, et al. Poor performance of psoas muscle index for identification of patients with higher waitlist mortality risk in cirrhosis. J Cachexia Sarcopenia Muscle. 2018.Google Scholar
  35. 35.
    Engelmann C, Schob S, Nonnenmacher I, Werlich L, Aehling N, Ullrich S, et al. Loss of paraspinal muscle mass is a gender-specific consequence of cirrhosis that predicts complications and death. Aliment Pharmacol Ther:0.Google Scholar
  36. 36.
    Carey EJ, Lai JC, Wang CW, Dasarathy S, Lobach I, Montano-Loza AJ, et al. A multicenter study to define sarcopenia in patients with end-stage liver disease. Liver Transpl. 2017;23:625–33.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Martin L, Birdsell L, Macdonald N, Reiman T, Clandinin MT, McCargar LJ, et al. Cancer cachexia in the age of obesity: skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J Clin Oncol. 2013;31:1539–47.CrossRefGoogle Scholar
  38. 38.
    van Vugt JLA, Alferink LJM, Buettner S, Gaspersz MP, Bot D, Darwish Murad S, et al. A model including sarcopenia surpasses the MELD score in predicting waiting list mortality in cirrhotic liver transplant candidates: a competing risk analysis in a national cohort. J Hepatol. 2017.Google Scholar
  39. 39.
    Kang SH, Jeong WK, Baik SK, Cha SH, Kim MY. Impact of sarcopenia on prognostic value of cirrhosis: going beyond the hepatic venous pressure gradient and MELD score. J Cachexia Sarcopenia Muscle. 2018;9:860–70.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Moctezuma-Velazquez C, Low G, Mourtzakis M, Ma M, Burak KW, Tandon P, et al. Association between Low testosterone levels and sarcopenia in cirrhosis: a Cross-sectional study. Ann Hepatol. 2018;17:615–23.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Cholongitas E, Burroughs AK. The evolution in the prioritization for liver transplantation. Ann Gastroenterol. 2012;25:6.PubMedPubMedCentralGoogle Scholar
  42. 42.
    Kamath PS, Kim WR, Advanced Liver Disease Study G. The model for end-stage liver disease (MELD). Hepatology. 2007;45:797–805.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Kim WR, Biggins SW, Kremers WK, Wiesner RH, Kamath PS, Benson JT, et al. Hyponatremia and mortality among patients on the liver-transplant waiting list. N Engl J Med. 2008;359:1018–26.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Myers RP, Shaheen AA, Faris P, Aspinall AI, Burak KW. Revision of MELD to include serum albumin improves prediction of mortality on the liver transplant waiting list. PLoS One. 2013;8:e51926.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Myers RP, Tandon P, Ney M, Meeberg G, Faris P, Shaheen AA, et al. Validation of the five-variable model for end-stage liver disease (5vMELD) for prediction of mortality on the liver transplant waiting list. Liver Int. 2014;34:1176–83.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56:M146–56.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Sinclair M, Poltavskiy E, Dodge JL, Lai JC. Frailty is independently associated with increased hospitalisation days in patients on the liver transplant waitlist. World J Gastroenterol. 2017;23:899–905.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994;49:M85–94.CrossRefGoogle Scholar
  49. 49.
    Katz S, Ford AB, Moskowitz RW, Jackson BA, Jaffe MW. Studies of illness in the aged. The index of Adl: a standardized measure of biological and psychosocial function. JAMA. 1963;185:914–9.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Lawton MP, Brody EM. Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist. 1969;9:179–86.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Lai JC, Covinsky KE, Hayssen H, Lizaola B, Dodge JL, Roberts JP, et al. Clinician assessments of health status predict mortality in patients with end-stage liver disease awaiting liver transplantation. Liver Int. 2015;35:2167–73.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Lai JC, Covinsky KE, McCulloch CE, Feng S. The liver frailty index improves mortality prediction of the subjective clinician assessment in patients with cirrhosis. Am J Gastroenterol. 2018;113:235–42.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Dunn MA, Josbeno DA, Schmotzer AR, Tevar AD, DiMartini AF, Landsittel DP, et al. The gap between clinically assessed physical performance and objective physical activity in liver transplant candidates. Liver Transpl. 2016;22:1324–32.CrossRefGoogle Scholar
  54. 54.
    Chang KV, Chen JD, Wu WT, Huang KC, Lin HY, Han DS. Is sarcopenia associated with hepatic encephalopathy in liver cirrhosis? A systematic review and meta-analysis. J Formos Med Assoc. 2018.Google Scholar
  55. 55.
    Idriss R, Hasse J, Wu T, Khan F, Saracino G. McKenna G, et al. Liver Transpl: Impact of prior bariatric surgery on perioperative liver transplant outcomes; 2018.Google Scholar
  56. 56.
    Durand F, Buyse S, Francoz C, Laouenan C, Bruno O, Belghiti J, et al. Prognostic value of muscle atrophy in cirrhosis using psoas muscle thickness on computed tomography. J Hepatol. 2014;60:1151–7.CrossRefGoogle Scholar
  57. 57.
    Montano-Loza AJ, Duarte-Rojo A, Meza-Junco J, Baracos VE, Sawyer MB, Pang JX, et al. Inclusion of sarcopenia within MELD (MELD-sarcopenia) and the prediction of mortality in patients with cirrhosis. Clin Transl Gastroenterol. 2015;6:e102.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Sinclair M, Grossmann M, Angus PW, Hoermann R, Hey P, Scodellaro T, et al. Low testosterone as a better predictor of mortality than sarcopenia in men with advanced liver disease. J Gastroenterol Hepatol. 2016;31:661–7.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Sinclair M, Grossmann M, Hoermann R, Angus PW, Gow PJ. Testosterone therapy increases muscle mass in men with cirrhosis and low testosterone: a randomised controlled trial. J Hepatol. 2016;65:906–13.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Lai JC, Covinsky KE, Dodge JL, Boscardin WJ, Segev DL, Roberts JP, et al. Development of a novel frailty index to predict mortality in patients with end-stage liver disease. Hepatology. 2017;66:564–74.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Dolgin NH, Smith AJ, Harrington SG, Movahedi B, PNA M, Bozorgzadeh A. Association between sarcopenia and functional status in liver transplant patients. Exp Clin Transplant. 2018.Google Scholar
  62. 62.
    Lai JC, Dodge JL, Sen S, Covinsky K, Feng S. Functional decline in patients with cirrhosis awaiting liver transplantation: results from the functional assessment in liver transplantation (FrAILT) study. Hepatology. 2016;63:574–80.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    van Vugt JLA, Buettner S, Alferink LJM, Bossche N, de Bruin RWF, Darwish Murad S, et al. Low skeletal muscle mass is associated with increased hospital costs in patients with cirrhosis listed for liver transplantation-a retrospective study. Transpl Int. 2018;31:165–74.CrossRefGoogle Scholar
  64. 64.
    Golse N, Bucur PO, Ciacio O, Pittau G, Sa Cunha A, Adam R, et al. A new definition of sarcopenia in patients with cirrhosis undergoing liver transplantation. Liver Transpl. 2017;23:143–54.CrossRefGoogle Scholar
  65. 65.
    Krell RW, Kaul DR, Martin AR, Englesbe MJ, Sonnenday CJ, Cai S, et al. Association between sarcopenia and the risk of serious infection among adults undergoing liver transplantation. Liver Transpl. 2013;19:1396–402.CrossRefGoogle Scholar
  66. 66.
    Underwood PW, Cron DC, Terjimanian MN, Wang SC, Englesbe MJ, Waits SA. Sarcopenia and failure to rescue following liver transplantation. Clin Transpl. 2015;29:1076–80.CrossRefGoogle Scholar
  67. 67.
    Valero V 3rd, Amini N, Spolverato G, Weiss MJ, Hirose K, Dagher NN, et al. Sarcopenia adversely impacts postoperative complications following resection or transplantation in patients with primary liver tumors. J Gastrointest Surg. 2015;19:272–81.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Dolgin NH, Martins PN, Movahedi B, Lapane KL, Anderson FA, Bozorgzadeh A. Functional status predicts postoperative mortality after liver transplantation. Clin Transpl. 2016;30:1403–10.CrossRefGoogle Scholar
  69. 69.
    Merli M, Lucidi C, Giannelli V, Giusto M, Riggio O, Falcone M, et al. Cirrhotic patients are at risk for health care-associated bacterial infections. Clin Gastroenterol Hepatol. 2010;8:979–85.CrossRefGoogle Scholar
  70. 70.
    Cosqueric G, Sebag A, Ducolombier C, Thomas C, Piette F, Weill-Engerer S. Sarcopenia is predictive of nosocomial infection in care of the elderly. Br J Nutr. 2006;96:895–901.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Englesbe MJ, Patel SP, He K, Lynch RJ, Schaubel DE, Harbaugh C, et al. Sarcopenia and mortality after liver transplantation. J Am Coll Surg. 2010;211:271–8.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Kalafateli M, Mantzoukis K, Choi Yau Y, Mohammad AO, Arora S, Rodrigues S, et al. Malnutrition and sarcopenia predict post-liver transplantation outcomes independently of the model for end-stage liver disease score. J Cachexia Sarcopenia Muscle. 2017;8:113–21.CrossRefGoogle Scholar
  73. 73.
    Lai JC, Segev DL, McCulloch CE, Covinsky KE, Dodge JL, Feng S. Physical frailty after liver transplantation. Am J Transplant. 2018;18:1986–94.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Jeon JY, Wang HJ, Ock SY, Xu W, Lee JD, Lee JH, et al. Newly developed sarcopenia as a prognostic factor for survival in patients who underwent liver transplantation. PLoS One. 2015;10:e0143966.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Dasarathy S. Posttransplant sarcopenia: an underrecognized early consequence of liver transplantation. Dig Dis Sci. 2013;58:3103–11.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Tsien C, Garber A, Narayanan A, Shah SN, Barnes D, Eghtesad B, et al. Post-liver transplantation sarcopenia in cirrhosis: a prospective evaluation. J Gastroenterol Hepatol. 2014;29:1250–7.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Clark K, Cross T. Sarcopenia and survival after liver transplantation. Liver Transpl. 2014;20:1423.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Montano-Loza AJ. Severe muscle depletion predicts postoperative length of stay but is not associated with survival after liver transplantation. Liver Transpl. 2014;20:1424.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Norman K, Otten L. Financial impact of sarcopenia or low muscle mass - A short review. Clin Nutr. 2018.Google Scholar
  80. 80.
    Koter S, Cohnert TU, Hindermayr KB, Lindenmann J, Bruckner M, Oswald WK, et al. Increased hospital costs are associated with low skeletal muscle mass in patients undergoing elective open aortic surgery. J Vasc Surg. 2018.Google Scholar
  81. 81.
    Cron DC, Friedman JF, Winder GS, Thelen AE, Derck JE, Fakhoury JW, et al. Depression and frailty in patients with end-stage liver disease referred for transplant evaluation. Am J Transplant. 2016;16:1805–11.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Buganza-Torio E, Mitchell N, Abraldes JG, Thomas L, Ma M, Bailey RJ, et al. Depression in cirrhosis - a prospective evaluation of the prevalence, predictors and development of a screening nomogram. Aliment Pharmacol Ther. 2019;49:194–201.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Raia S, Nery JR, Mies S. Liver transplantation from live donors. Lancet. 1989;2:497.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Strong RW, Lynch SV, Ong TH, Matsunami H, Koido Y, Balderson GA. Successful liver transplantation from a living donor to her son. N Engl J Med. 1990;322:1505–7.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Broering DC, Mueller L, Ganschow R, Kim JS, Achilles EG, Schafer H, et al. Is there still a need for living-related liver transplantation in children? Ann Surg. 2001;234:713–21. discussion 21-2CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Sugawara Y, Makuuchi M. Living donor liver transplantation: present status and recent advances. Br Med Bull. 2005;75-76:15–28.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Abbasoglu O. Liver transplantation: yesterday, today and tomorrow. World J Gastroenterol. 2008;14:3117–22.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Malago M, Burdelski M, Broelsch CE. Present and future challenges in living related liver transplantation. Transplant Proc. 1999;31:1777–81.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Lo CM, Fan ST, Liu CL, Wei WI, Lo RJ, Lai CL, et al. Adult-to-adult living donor liver transplantation using extended right lobe grafts. Ann Surg. 1997;226:261–9. discussion 9-70CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Hamaguchi Y, Kaido T, Okumura S, Fujimoto Y, Ogawa K, Mori A, et al. Impact of quality as well as quantity of skeletal muscle on outcomes after liver transplantation. Liver Transpl. 2014;20:1413–9.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Masuda T, Shirabe K, Ikegami T, Harimoto N, Yoshizumi T, Soejima Y, et al. Sarcopenia is a prognostic factor in living donor liver transplantation. Liver Transpl. 2014;20:401–7.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Hamaguchi Y, Kaido T, Okumura S, Kobayashi A, Shirai H, Yagi S, et al. Proposal of muscle-MELD score, including muscularity, for prediction of mortality after living donor liver transplantation. Transplantation 2016; 100: 2416–2423.Google Scholar
  93. 93.
    Izumi T, Watanabe J, Tohyama T, Takada Y. Impact of psoas muscle index on short-term outcome after living donor liver transplantation. Turk J Gastroenterol. 2016;27:382–8.CrossRefGoogle Scholar
  94. 94.
    Hammad A, Kaido T, Hamaguchi Y, Okumura S, Kobayashi A, Shirai H, et al. Impact of sarcopenic overweight on the outcomes after living donor liver transplantation. Hepatobiliary Surg Nutr. 2017;6:367–78.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Kaido T, Tamai Y, Hamaguchi Y, Okumura S, Kobayashi A, Shirai H, et al. Effects of pretransplant sarcopenia and sequential changes in sarcopenic parameters after living donor liver transplantation. Nutrition. 2017;33:195–8.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Onuma T, Kamishima T, Shimamura T, Kawamura N, Yamashita K, Sutherland K, et al. Longitudinal CT study of sarcopenia due to hepatic failure after living donor liver transplantation. Quant Imaging Med Surg. 2018;8:25–31.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Toshima T, Shirabe K, Kurihara T, Itoh S, Harimoto N, Ikegami T, et al. Profile of plasma amino acids values as a predictor of sepsis in patients following living donor liver transplantation: special reference to sarcopenia and postoperative early nutrition. Hepatol Res. 2015;45:1170–7.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Kaido T, Ogawa K, Fujimoto Y, Ogura Y, Hata K, Ito T, et al. Impact of sarcopenia on survival in patients undergoing living donor liver transplantation. Am J Transplant. 2013;13:1549–56.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Lurz E, Quammie C, Englesbe M, Alonso EM, Lin HC, Hsu EK, et al. Frailty in children with liver disease: a prospective multicenter study. J Pediatr. 2018;194:109–15. e4CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Mager DR, Hager A, Ooi PH, Siminoski K, Gilmour SM, Yap JYK. Persistence of sarcopenia after pediatric liver transplantation is associated with poorer growth and recurrent hospital admissions. JPEN J Parenter Enteral Nutr. 2018.Google Scholar
  101. 101.
    Mazzaferro V, Regalia E, Doci R, Andreola S, Pulvirenti A, Bozzetti F, et al. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N Engl J Med. 1996;334:693–9.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Mazzaferro V, Bhoori S, Sposito C, Bongini M, Langer M, Miceli R, et al. Milan criteria in liver transplantation for hepatocellular carcinoma: an evidence-based analysis of 15 years of experience. Liver Transpl. 2011;17(Suppl 2):S44–57.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Mazzaferro V, Llovet JM, Miceli R, Bhoori S, Schiavo M, Mariani L, et al. Predicting survival after liver transplantation in patients with hepatocellular carcinoma beyond the Milan criteria: a retrospective, exploratory analysis. Lancet Oncol. 2009;10:35–43.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Kim YR, Park S, Han S, Ahn JH, Kim S, Sinn DH, et al. Sarcopenia as a predictor of post-transplant tumor recurrence after living donor liver transplantation for hepatocellular carcinoma beyond the Milan criteria. Sci Rep. 2018;8:7157.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Wynter-Blyth V, Moorthy K. Prehabilitation: preparing patients for surgery. BMJ. 2017;358:j3702.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Kogiso T, Tokushige K. Key roles of hepatologists in successful liver transplantation. Hepatol Res. 2018;48:608–21.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Dunn MA. The cost of sarcopenia. Transpl Int. 2018;31:155–6.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Laube R, Wang H, Park L, Heyman JK, Vidot H, Majumdar A, et al. Frailty in advanced liver disease. Liver Int. 2018.Google Scholar
  109. 109.
    Anand AC. Nutrition and muscle in cirrhosis. J Clin Exp Hepatol. 2017;7:340–57.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Plauth M, Merli M, Kondrup J, Weimann A, Ferenci P, Muller MJ, et al. ESPEN guidelines for nutrition in liver disease and transplantation. Clin Nutr. 1997;16:43–55.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Sinclair M, Gow PJ, Grossmann M, Angus PW. Review article: sarcopenia in cirrhosis--aetiology, implications and potential therapeutic interventions. Aliment Pharmacol Ther. 2016;43:765–77.CrossRefGoogle Scholar
  112. 112.
    Plank LD, Gane EJ, Peng S, Muthu C, Mathur S, Gillanders L, et al. Nocturnal nutritional supplementation improves total body protein status of patients with liver cirrhosis: a randomized 12-month trial. Hepatology. 2008;48:557–66.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Lai JC, Volk ML, Strasburg D, Alexander N. Performance-based measures associate with frailty in patients with end-stage liver disease. Transplantation. 2016;100:2656–60.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Duarte-Rojo A, Ruiz-Margain A, Montano-Loza AJ, Macias-Rodriguez RU, Ferrando A, Kim WR. Exercise and physical activity for patients with end-stage liver disease: improving functional status and sarcopenia while on the transplant waiting list. Liver Transpl. 2018;24:122–39.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Dasarathy S, Merli M. Sarcopenia from mechanism to diagnosis and treatment in liver disease. J Hepatol. 2016;65:1232–44.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Kumar A, Davuluri G, Silva RNE, Engelen M, Ten Have GAM, Prayson R, et al. Ammonia lowering reverses sarcopenia of cirrhosis by restoring skeletal muscle proteostasis. Hepatology. 2017;65:2045–58.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Zhou X, Wang JL, Lu J, Song Y, Kwak KS, Jiao Q, et al. Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell. 2010;142:531–43.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Bergerson JT, Lee JG, Furlan A, Sourianarayanane A, Fetzer DT, Tevar AD, et al. Liver transplantation arrests and reverses muscle wasting. Clin Transpl. 2015;29:216–21.CrossRefGoogle Scholar
  119. 119.
    Jahangiri Y, Pathak P, Tomozawa Y, Li L, Schlansky BL, Farsad K. Muscle gain after Transjugular intrahepatic portosystemic shunt creation: time course and prognostic implications for survival in cirrhosis. J Vasc Interv Radiol. 2019;30:866.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Lauerer M, Kaiser K, Nagel E. Organ transplantation in the face of donor shortage - ethical implications with a focus on liver allocation. Visc Med. 2016;32:278–85.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Wet op de orgaandonatie (Law on organ donation) 1996, 24 May. Accessed 13-11-2018.Google Scholar
  122. 122.
    Cohen IG, Amarasingham R, Shah A, Xie B, Lo B. The legal and ethical concerns that Arise from using complex predictive analytics in health care. Health Aff. 2014;33:1139–47.CrossRefGoogle Scholar
  123. 123.
    Kahn J, Wagner D, Homfeld N, Muller H, Kniepeiss D, Schemmer P. Both sarcopenia and frailty determine suitability of patients for liver transplantation-a systematic review and meta-analysis of the literature. Clin Transpl. 2018;32:e13226.CrossRefGoogle Scholar
  124. 124.
    Lai JC. Editorial: advancing adoption of frailty to improve the Care of Patients with cirrhosis: time for a consensus on a frailty index. Am J Gastroenterol. 2016;111:1776.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Stefan Buettner
    • 1
  • Jan N. M. IJzermans
    • 1
  • Jeroen L. A. van Vugt
    • 1
    Email author
  1. 1.Department of SurgeryErasmus MC University Medical CenterRotterdamThe Netherlands

Personalised recommendations