Advertisement

Hepatic Encephalopathy, Sarcopenia, and Frailty

  • Chantal Bémeur
  • Christopher F. RoseEmail author
Chapter

Abstract

Hepatic encephalopathy (HE), sarcopenia, and frailty are serious complications of chronic liver disease that may negatively affect quality of life and survival. HE is a complex neuropsychiatric multifactorial syndrome for which ammonia is believed to play a key role. Sarcopenia, which is nearly universal in chronic liver disease, is a muscle disease characterized by low muscle strength, low muscle quantity or quality, and low physical performance. Physical frailty is described as a multidimensional syndrome of decreased reserve, functional impairment, and resistance to stressors, resulting from cumulative declines across multiple systems, whereas cognitive frailty is characterized by reduced neurophysiological reserve. Pathophysiology of sarcopenia and frailty in the setting of HE and chronic liver disease remains to be elucidated. Therapeutic strategies of HE aim at reducing blood ammonia concentrations. In that context, muscle may play a vital compensatory role in reducing ammonia levels since it contains an ammonia-removing enzyme. Assessing HE, sarcopenia, and frailty during chronic liver disease is the cornerstone of optimal intervention.

Keywords

Hepatic encephalopathy Chronic liver disease Muscle Sarcopenia Frailty Ammonia Therapeutics 

References

  1. 1.
    Montagnese S, Russo FP, Amodio P, Burra P, Gasbarrini A, Loguercio C, et al. Hepatic encephalopathy 2018: a clinical practice guideline by the Italian Association for the Study of the Liver (AISF). Dig Liver Dis. 2019;51(2):190–205.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Tapper EB, Parikh ND, Waljee AK, Volk M, Carlozzi NE, Lok AS-F. Diagnosis of minimal hepatic encephalopathy: a systematic review of point-of-care diagnostic tests. Am J Gastroenterol. 2018;113(4):529–38.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Ridola L, Nardelli S, Gioia S, Riggio O. Quality of life in patients with minimal hepatic encephalopathy. World J Gastroenterol. 2018;24(48):5446–53.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Hartmann IJ, Groeneweg M, Quero JC, Beijeman SJ, de Man RA, Hop WC, et al. The prognostic significance of subclinical hepatic encephalopathy. Am J Gastroenterol. 2000;95(8):2029–34.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Allampati S, Duarte-Rojo A, Thacker LR, Patidar KR, White MB, Klair JS, et al. Diagnosis of minimal hepatic encephalopathy using stroop EncephalApp: a multicenter US-based, Norm-Based Study. Am J Gastroenterol. 2016;111(1):78–86.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Stewart CA, Malinchoc M, Kim WR, Kamath PS. Hepatic encephalopathy as a predictor of survival in patients with end-stage liver disease. Liver Transpl. 2007;13(10):1366–71.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Patidar KR, Thacker LR, Wade JB, Sterling RK, Sanyal AJ, Siddiqui MS, et al. Covert hepatic encephalopathy is independently associated with poor survival and increased risk of hospitalization. Am J Gastroenterol. 2014;109(11):1757–63.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Neff G, Iii WZ. Systematic review of the economic burden of overt hepatic encephalopathy and pharmacoeconomic impact of rifaximin. PharmacoEconomics. 2018;36(7):809–22.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Smith BW, Adams LA. Non-alcoholic fatty liver disease. Crit Rev Clin Lab Sci. 2011;48(3):97–113.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Butterworth RF. Altered glial-neuronal crosstalk: cornerstone in the pathogenesis of hepatic encephalopathy. Neurochem Int. 2010;57(4):383–8.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Bosoi CR, Parent-Robitaille C, Anderson K, Tremblay M, Rose CF. AST-120 (spherical carbon adsorbent) lowers ammonia levels and attenuates brain edema in bile-duct ligated rats. Hepatology. 2011;53(6):1995–2002.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Rovira A, Alonso J, Córdoba J. MR imaging findings in hepatic encephalopathy. AJNR Am J Neuroradiol. 2008;29(9):1612–21.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Bosoi CR, Yang X, Huynh J, Parent-Robitaille C, Jiang W, Tremblay M, et al. Systemic oxidative stress is implicated in the pathogenesis of brain edema in rats with chronic liver failure. Free Radic Biol Med. 2012;52(7):1228–35.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Bosoi CR, Rose CF. Identifying the direct effects of ammonia on the brain. Metab Brain Dis. 2009;24(1):95–102.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Butterworth RF. Pathophysiology of hepatic encephalopathy: a new look at ammonia. Metab Brain Dis. 2002;17(4):221–7.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Rose CF. Increase brain lactate in hepatic encephalopathy: cause or consequence? Neurochem Int. 2010;57(4):389–94.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Wright G, Noiret L, Damink SW, Jalan R. Interorgan ammonia metabolism in liver failure: the basis of current and future therapies. Liver Int. 2011;31(2):163–75.Google Scholar
  18. 18.
    Gluud LL, Vilstrup H, Morgan MY. Non-absorbable disaccharides versus placebo/no intervention and lactulose versus lactitol for the prevention and treatment of hepatic encephalopathy in people with cirrhosis. Cochrane Database Syst Rev. 2016;(5):CD003044.Google Scholar
  19. 19.
    van Leeuwen PA, van Berlo CL, Soeters PB. New mode of action for lactulose. Lancet. 1988;1(8575–6):55–6.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Teperman LW, Peyregne VP. Considerations on the impact of hepatic encephalopathy treatments in the pretransplant setting. Transplantation. 2010;89(7):771–8.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Tarao K, Ikeda T, Hayashi K, Sakurai A, Okada T, Ito T, et al. Successful use of vancomycin hydrochloride in the treatment of lactulose resistant chronic hepatic encephalopathy. Gut. 1990;31(6):702–6.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Mas A, Rodés J, Sunyer L, Rodrigo L, Planas R, Vargas V, et al. Comparison of rifaximin and lactitol in the treatment of acute hepatic encephalopathy: results of a randomized, double-blind, double-dummy, controlled clinical trial. J Hepatol. 2003;38(1):51–8.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Pedretti G, Calzetti C, Missale G, Fiaccadori F. Rifaximin versus neomycin on hyperammonemia in chronic portal systemic encephalopathy of cirrhotics. A double-blind, randomized trial. Ital J Gastroenterol. 1991;23(4):175–8.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Bass NM, Mullen KD, Sanyal A, Poordad F, Neff G, Leevy CB, et al. Rifaximin treatment in hepatic encephalopathy. N Engl J Med. 2010;362(12):1071–81.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Kawaguchi T, Suzuki F, Imamura M, Murashima N, Yanase M, Mine T, et al. Rifaximin-altered gut microbiota components associated with liver/neuropsychological functions in patients with hepatic encephalopathy: an exploratory data analysis of phase II/III clinical trials. Hepatol Res. 2019;49(4):404–18.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Malaguarnera M, Greco F, Barone G, Gargante MP, Malaguarnera M, Toscano MA. Bifidobacterium longum with fructo-oligosaccharide (FOS) treatment in minimal hepatic encephalopathy: a randomized, double-blind, placebo-controlled study. Dig Dis Sci. 2007;52(11):3259–65.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Bajaj JS, Saeian K, Christensen KM, Hafeezullah M, Varma RR, Franco J, et al. Probiotic yogurt for the treatment of minimal hepatic encephalopathy. Am J Gastroenterol. 2008;103(7):1707–15.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Dalal R, McGee RG, Riordan SM, Webster AC. Probiotics for people with hepatic encephalopathy. Cochrane Database Syst Rev. 2017;(2):CD008716.Google Scholar
  29. 29.
    Enns GM, Berry SA, Berry GT, Rhead WJ, Brusilow SW, Hamosh A. Survival after treatment with phenylacetate and benzoate for urea-cycle disorders. N Engl J Med. 2007;356(22):2282–92.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Sushma S, Dasarathy S, Tandon RK, Jain S, Gupta S, Bhist MS. Sodium benzoate in the treatment of acute hepatic encephalopathy: a double-blind randomized trial. Hepatology. 1992;16(1):138–44.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Weiss N, Tripon S, Lodey M, Guiller E, Junot H, Monneret D, et al. Treating hepatic encephalopathy in cirrhotic patients admitted to ICU with sodium phenylbutyrate: a preliminary study. Fundam Clin Pharmacol. 2018;32(2):209–15.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Rockey DC, Vierling JM, Mantry P, Ghabril M, Brown RS, Alexeeva O, et al. Randomized, double-blind, controlled study of glycerol phenylbutyrate in hepatic encephalopathy. Hepatology. 2014;59(3):1073–83.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Butterworth RF, Kircheis G, Hilger N, McPhail MJW. Efficacy of l-ornithine l-aspartate for the treatment of hepatic encephalopathy and hyperammonemia in cirrhosis: systematic review and meta-analysis of randomized controlled trials. J Clin Exp Hepatol. 2018;8(3):301–13.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Butterworth RF, McPhail MJW. L-Ornithine L-Aspartate (LOLA) for hepatic encephalopathy in cirrhosis: results of randomized controlled trials and meta-analyses. Drugs. 2019;79(Suppl 1):31–7.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Jalan R, Wright G, Davies NA, Hodges SJ. L-Ornithine phenylacetate (OP): a novel treatment for hyperammonemia and hepatic encephalopathy. Med Hypotheses. 2007;69(5):1064–9.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Stravitz RT, Gottfried M, Durkalski V, Fontana RJ, Hanje AJ, Koch D, et al. Safety, tolerability, and pharmacokinetics of l-ornithine phenylacetate in patients with acute liver injury/failure and hyperammonemia. Hepatology. 2018;67(3):1003–13.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Ventura-Cots M, Arranz JA, Simón-Talero M, Torrens M, Blanco A, Riudor E, et al. Safety of ornithine phenylacetate in cirrhotic decompensated patients: an open-label, dose-escalating, single-cohort study. J Clin Gastroenterol. 2013;47(10):881–7.Google Scholar
  38. 38.
    Ventura-Cots M, Concepción M, Arranz JA, Simón-Talero M, Torrens M, Blanco-Grau A, et al. Impact of ornithine phenylacetate (OCR-002) in lowering plasma ammonia after upper gastrointestinal bleeding in cirrhotic patients. Ther Adv Gastroenterol. 2016;9(6):823–35.CrossRefGoogle Scholar
  39. 39.
    Yamato M, Muto Y, Yoshida T, Kato M, Moriwaki H. Clearance rate of plasma branched-chain amino acids correlates significantly with blood ammonia level in patients with liver cirrhosis. Int Hepatol Commun. 1995;3(2):91–6.CrossRefGoogle Scholar
  40. 40.
    Wahren J, Felig P, Hagenfeldt L. Effect of protein ingestion on splanchnic and leg metabolism in normal man and in patients with diabetes mellitus. J Clin Invest. 1976;57(4):987–99.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Marchesini G, Dioguardi FS, Bianchi GP, Zoli M, Bellati G, Roffi L, et al. Long-term oral branched-chain amino acid treatment in chronic hepatic encephalopathy. A randomized double-blind casein-controlled trial. The Italian Multicenter Study Group. J Hepatol. 1990;11(1):92–101.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Gluud LL, Dam G, Les I, Marchesini G, Borre M, Aagaard NK, et al. Branched-chain amino acids for people with hepatic encephalopathy. Cochrane Database Syst Rev. 2017;(5):CD001939.Google Scholar
  43. 43.
    Malaguarnera M, Pistone G, Astuto M, Vecchio I, Raffaele R, Lo Giudice E, et al. Effects of L-acetylcarnitine on cirrhotic patients with hepatic coma: randomized double-blind, placebo-controlled trial. Dig Dis Sci. 2006;51(12):2242–7.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Martí-Carvajal AJ, Gluud C, Arevalo-Rodriguez I, Martí-Amarista CE. Acetyl-L-carnitine for patients with hepatic encephalopathy. Cochrane Database Syst Rev. 2019;(1):CD011451.Google Scholar
  45. 45.
    Gentile S, Guarino G, Romano M, Alagia IA, Fierro M, Annunziata S, et al. A randomized controlled trial of acarbose in hepatic encephalopathy. Clin Gastroenterol Hepatol. 2005;3(2):184–91.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Agostoni V, Lee SH, Forster V, Kabbaj M, Bosoi CR, Tremblay M, et al. Liposome-supported peritoneal dialysis for the treatment of hyperammonemia-associated encephalopathy. Adv Funct Mater. 2016;26(46):8382–9.CrossRefGoogle Scholar
  47. 47.
    Kurtz CB, Millet YA, Puurunen MK, Perreault M, Charbonneau MR, Isabella VM, et al. An engineered E. coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans. Sci Transl Med. 2019;11(475):eaau7975.Google Scholar
  48. 48.
    Chen Y, Yang F, Lu H, Wang B, Chen Y, Lei D, et al. Characterization of fecal microbial communities in patients with liver cirrhosis. Hepatology. 2011;54(2):562–72.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Bajaj JS, Heuman DM, Hylemon PB, Sanyal AJ, White MB, Monteith P, et al. Altered profile of human gut microbiome is associated with cirrhosis and its complications. J Hepatol. 2014;60(5):940–7.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Bajaj JS, Kassam Z, Fagan A, Gavis EA, Liu E, Cox IJ, et al. Fecal microbiota transplant from a rational stool donor improves hepatic encephalopathy: a randomized clinical trial. Hepatology. 2017;66(6):1727–38.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Adam R, Hoti E. Liver transplantation: the current situation. Semin Liver Dis. 2009;29(1):3–18.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Sotil EU, Gottstein J, Ayala E, Randolph C, Blei AT. Impact of preoperative overt hepatic encephalopathy on neurocognitive function after liver transplantation. Liver Transpl. 2009;15(2):184–92.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Atluri DK, Asgeri M, Mullen KD. Reversibility of hepatic encephalopathy after liver transplantation. Metab Brain Dis. 2010;25(1):111–3.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Weiss N, Thabut D. Neurological complications occurring after liver transplantation: role of risk factors, hepatic encephalopathy, and acute (on chronic) brain injury. Liver Transpl. 2019;25(3):469–87.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Bemeur C. Neurological complications post-liver transplantation: impact of nutritional status. Metab Brain Dis. 2013;28(2):293–300.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Merli M, Giusto M, Lucidi C, Giannelli V, Pentassuglio I, Di Gregorio V, et al. Muscle depletion increases the risk of overt and minimal hepatic encephalopathy: results of a prospective study. Metab Brain Dis. 2013;28(2):281–4.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Selberg O, Böttcher J, Tusch G, Pichlmayr R, Henkel E, Müller MJ. Identification of high- and low-risk patients before liver transplantation: a prospective cohort study of nutritional and metabolic parameters in 150 patients. Hepatology. 1997;25(3):652–7.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Hartman C, Eliakim R, Shamir R. Nutritional status and nutritional therapy in inflammatory bowel diseases. World J Gastroenterol. 2009;15(21):2570–8.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Montano-Loza AJ, Duarte-Rojo A, Meza-Junco J, Baracos VE, Sawyer MB, Pang JXQ, et al. Inclusion of sarcopenia within MELD (MELD-sarcopenia) and the prediction of mortality in patients with cirrhosis. Clin Transl Gastroenterol. 2015;6(7):e102.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Chang K-V, Chen J-D, Wu W-T, Huang K-C, Lin H-Y, Han D-S. Is sarcopenia associated with hepatic encephalopathy in liver cirrhosis? A systematic review and meta-analysis. J Formos Med Assoc. 2019;118(4):833–42.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Tapper EB, Jiang ZG, Patwardhan VR. Refining the ammonia hypothesis: a physiology-driven approach to the treatment of hepatic encephalopathy. Mayo Clin Proc. 2015;90(5):646–58.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Kumar A, Davuluri G, Silva RNE, Engelen MPKJ, Ten Have GAM, Prayson R, et al. Ammonia lowering reverses sarcopenia of cirrhosis by restoring skeletal muscle proteostasis. Hepatology. 2017;65(6):2045–58.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Hanai T, Shiraki M, Watanabe S, Kochi T, Imai K, Suetsugu A, et al. Sarcopenia predicts minimal hepatic encephalopathy in patients with liver cirrhosis. Hepatol Res. 2017;47(13):1359–67.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Dasarathy S, Mookerjee RP, Rackayova V, Rangroo Thrane V, Vairappan B, Ott P, et al. Ammonia toxicity: from head to toe? Metab Brain Dis. 2017;32(2):529–38.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Kant S, Davuluri G, Alchirazi KA, Welch N, Heit C, Kumar A, et al. Ethanol sensitizes skeletal muscle to ammonia-induced molecular perturbations. J Biol Chem. 2019;294(18):7231–44.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Bhanji RA, Moctezuma-Velazquez C, Duarte-Rojo A, Ebadi M, Ghosh S, Rose C, et al. Myosteatosis and sarcopenia are associated with hepatic encephalopathy in patients with cirrhosis. Hepatol Int. 2018;12(4):377–86.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Thandassery RB, Montano-Loza AJ. Role of nutrition and muscle in cirrhosis. Curr Treat Options Gastroenterol. 2016;14(2):257–73.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Zenith L, Meena N, Ramadi A, Yavari M, Harvey A, Carbonneau M, et al. Eight weeks of exercise training increases aerobic capacity and muscle mass and reduces fatigue in patients with cirrhosis. Clin Gastroenterol Hepatol. 2014;12(11):1920–1926.e2.CrossRefGoogle Scholar
  70. 70.
    Román E, García-Galcerán C, Torrades T, Herrera S, Marín A, Doñate M, et al. Effects of an exercise programme on functional capacity, body composition and risk of falls in patients with cirrhosis: a randomized clinical trial. PLoS One. 2016;11(3):e0151652.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Kruger C, McNeely ML, Bailey RJ, Yavari M, Abraldes JG, Carbonneau M, et al. Home exercise training improves exercise capacity in cirrhosis patients: role of exercise adherence. Sci Rep. 2018;8(1):99.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Amodio P, Bemeur C, Butterworth R, Cordoba J, Kato A, Montagnese S, et al. The nutritional management of hepatic encephalopathy in patients with cirrhosis: international society for hepatic encephalopathy and nitrogen metabolism consensus. Hepatology. 2013;58(1):325–36.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Aamann L, Tandon P, Bémeur C. Role of exercise in the management of hepatic encephalopathy: experience from animal and human studies. J Clin Exp Hepatol. 2019;9(1):131–6.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Bémeur C, Butterworth RF. Nutrition in the management of cirrhosis and its neurological complications. J Clin Exp Hepatol. [Internet]. 2013 [cited 2013 Jun 24]. Available from: http://www.sciencedirect.com/science/article/pii/S0973688313005550.
  75. 75.
    Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56(3):M146–56.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Landi F, Calvani R, Cesari M, Tosato M, Martone AM, Bernabei R, et al. Sarcopenia as the biological substrate of physical frailty. Clin Geriatr Med. 2015;31(3):367–74.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Lai JC, Feng S, Terrault NA, Lizaola B, Hayssen H, Covinsky K. Frailty predicts waitlist mortality in liver transplant candidates. Am J Transplant. 2014;14(8):1870–9.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Carey EJ, Steidley DE, Aqel BA, Byrne TJ, Mekeel KL, Rakela J, et al. Six-minute walk distance predicts mortality in liver transplant candidates. Liver Transpl. 2010;16(12):1373–8.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Alvares-da-Silva MR, Reverbel da Silveira T. Comparison between handgrip strength, subjective global assessment, and prognostic nutritional index in assessing malnutrition and predicting clinical outcome in cirrhotic outpatients. Nutrition. 2005;21(2):113–7.CrossRefGoogle Scholar
  80. 80.
    Tapper EB, Konerman M, Murphy S, Sonnenday CJ. Hepatic encephalopathy impacts the predictive value of the Fried Frailty Index. Am J Transplant. 2018;18(10):2566–70.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Lai JC, Dodge JL, Sen S, Covinsky K, Feng S. Functional decline in patients with cirrhosis awaiting liver transplantation: results from the functional assessment in liver transplantation (FrAILT) study. Hepatology. 2016;63(2):574–80.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Englesbe MJ, Patel SP, He K, Lynch RJ, Schaubel DE, Harbaugh C, et al. Sarcopenia and mortality after liver transplantation. J Am Coll Surg. 2010;211(2):271–8.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Laube R, Wang H, Park L, Heyman JK, Vidot H, Majumdar A, et al. Frailty in advanced liver disease. Liver Int. 2018;38(12):2117–28.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Trivedi HD, Tapper EB. Interventions to improve physical function and prevent adverse events in cirrhosis. Gastroenterol Rep (Oxf). 2018;6(1):13–20.CrossRefGoogle Scholar
  85. 85.
    Boyle PA, Buchman AS, Wilson RS, Leurgans SE, Bennett DA. Physical frailty is associated with incident mild cognitive impairment in community-based older persons. J Am Geriatr Soc. 2010;58(2):248–55.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Rosado-Artalejo C, Carnicero JA, Losa-Reyna J, Guadalupe-Grau A, Castillo-Gallego C, Gutierrez-Avila G, et al. Cognitive performance across 3 frailty phenotypes: Toledo study for healthy aging. J Am Med Dir Assoc. 2017;18(9):785–90.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Morley JE, Morris JC, Berg-Weger M, Borson S, Carpenter BD, Del Campo N, et al. Brain health: the importance of recognizing cognitive impairment: an IAGG consensus conference. J Am Med Dir Assoc. 2015;16(9):731–9.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Calzà L, Beltrami D, Gagliardi G, Ghidoni E, Marcello N, Rossini-Favretti R, et al. Should we screen for cognitive decline and dementia? Maturitas. 2015;82(1):28–35.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Kelaiditi E, Cesari M, Canevelli M, van Kan GA, Ousset P-J, Gillette-Guyonnet S, et al. Cognitive frailty: rational and definition from an (I.A.N.A./I.A.G.G.) international consensus group. J Nutr Health Aging. 2013;17(9):726–34.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Davis BC, Bajaj JS. Effects of alcohol on the brain in cirrhosis: beyond hepatic encephalopathy. Alcohol Clin Exp Res. 2018;42(4):660–7.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Ahluwalia V, Wade JB, Moeller FG, White MB, Unser AB, Gavis EA, et al. The etiology of cirrhosis is a strong determinant of brain reserve: a multimodal magnetic resonance imaging study. Liver Transpl. 2015;21(9):1123–32.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Solfrizzi V, Scafato E, Seripa D, Lozupone M, Imbimbo BP, D’Amato A, et al. Reversible cognitive frailty, dementia, and all-cause mortality. The Italian Longitudinal Study on Aging. J Am Med Dir Assoc. 2017;18(1):89.e1–8.CrossRefGoogle Scholar
  93. 93.
    Ney M, Tangri N, Dobbs B, Bajaj J, Rolfson D, Ma M, et al. Predicting hepatic encephalopathy-related hospitalizations using a composite assessment of cognitive impairment and frailty in 355 patients with cirrhosis. Am J Gastroenterol. 2018;113(10):1506–15.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Bagshaw SM, Stelfox HT, McDermid RC, Rolfson DB, Tsuyuki RT, Baig N, et al. Association between frailty and short- and long-term outcomes among critically ill patients: a multicentre prospective cohort study. CMAJ. 2014;186(2):E95–102.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Sujino Y, Tanno J, Nakano S, Funada S, Hosoi Y, Senbonmatsu T, et al. Impact of hypoalbuminemia, frailty, and body mass index on early prognosis in older patients (≥85 years) with ST-elevation myocardial infarction. J Cardiol. 2015;66(3):263–8.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–9.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Pendlebury ST, Cuthbertson FC, Welch SJV, Mehta Z, Rothwell PM. Underestimation of cognitive impairment by Mini-Mental State Examination versus the Montreal Cognitive Assessment in patients with transient ischemic attack and stroke: a population-based study. Stroke. 2010;41(6):1290–3.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Département de nutritionUniversité de Montréal, and Hepato-Neuro Lab, CRCHUMMontrealCanada
  2. 2.Département de médecineUniversité de Montréal, and Hepato-Neuro Lab, CRCHUMMontrealCanada

Personalised recommendations