Evidence for the Assessment of Physical Frailty and Sarcopenia in Hospitalized Patients and the Role of Assessing Changes Over Time

  • Guido StirnimannEmail author


Patient with advanced cirrhosis frequently require hospital treatment. In addition to the standard risk assessment tools (Child-Pugh stage, MELD-Na score), sarcopenia and physical frailty have been identified as independent risk factors for an unfavorable outcome.

The diagnosis of sarcopenia is ideally confirmed with a normalized muscularity analysis on cross-sectional CT or MRI images at the level of the 3rd lumbar vertebra. Frailty can be assessed with relatively simple bedside tools that have been developed in other fields of medicine and recently evaluated in hospitalized patients with cirrhosis [activities of daily living (ADL) score, the Braden scale, and the Morse fall scale].

Based on the assessment of sarcopenia and frailty, patients at risk for further complications and unfavorable outcome can be identified, and a tailored treatment strategy with nutritional therapy and physical exercise can be implemented.

Whether these intervention strategies improve the overall outcome of patients with advanced liver cirrhosis needs to be confirmed in future prospective trials.


Cirrhosis Sarcopenia Physical frailty Hospitalization Nutrition Exercise 


  1. 1.
    Chirapongsathorn S, Talwalkar JA, Kamath PS. Strategies to reduce hospital readmissions. Semin Liver Dis. 2016;36(2):161–6.CrossRefGoogle Scholar
  2. 2.
    Berman K, Tandra S, Forssell K, Vuppalanchi R, Burton JR Jr, Nguyen J, et al. Incidence and predictors of 30-day readmission among patients hospitalized for advanced liver disease. Clin Gastroenterol Hepatol. 2011;9(3):254–9.CrossRefGoogle Scholar
  3. 3.
    Seraj SM, Campbell EJ, Argyropoulos SK, Wegermann K, Chung RT, Richter JM. Hospital readmissions in decompensated cirrhotics: factors pointing toward a prevention strategy. World J Gastroenterol. 2017;23(37):6868–76.CrossRefGoogle Scholar
  4. 4.
    Volk ML, Tocco RS, Bazick J, Rakoski MO, Lok AS. Hospital readmissions among patients with decompensated cirrhosis. Am J Gastroenterol. 2012;107(2):247–52.CrossRefGoogle Scholar
  5. 5.
    Petersen KF, Krssak M, Navarro V, Chandramouli V, Hundal R, Schumann WC, et al. Contributions of net hepatic glycogenolysis and gluconeogenesis to glucose production in cirrhosis. Am J Phys. 1999;276(3. Pt 1):E529–35.Google Scholar
  6. 6.
    Dasarathy S, Merli M. Sarcopenia from mechanism to diagnosis and treatment in liver disease. J Hepatol. 2016;65(6):1232–44.CrossRefGoogle Scholar
  7. 7.
    Kamath PS, Wiesner RH, Malinchoc M, Kremers W, Therneau TM, Kosberg CL, et al. A model to predict survival in patients with end-stage liver disease. Hepatology. 2001;33(2):464–70.CrossRefGoogle Scholar
  8. 8.
    Biggins SW, Kim WR, Terrault NA, Saab S, Balan V, Schiano T, et al. Evidence-based incorporation of serum sodium concentration into MELD. Gastroenterology. 2006;130(6):1652–60.CrossRefGoogle Scholar
  9. 9.
    Kim WR, Biggins SW, Kremers WK, Wiesner RH, Kamath PS, Benson JT, et al. Hyponatremia and mortality among patients on the liver-transplant waiting list. N Engl J Med. 2008;359(10):1018–26.CrossRefGoogle Scholar
  10. 10.
    Moreau R, Jalan R, Gines P, Pavesi M, Angeli P, Cordoba J, et al. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. Gastroenterology. 2013;144(7):1426–37, 37 e1–9.CrossRefGoogle Scholar
  11. 11.
    Jalan R, Saliba F, Pavesi M, Amoros A, Moreau R, Gines P, et al. Development and validation of a prognostic score to predict mortality in patients with acute-on-chronic liver failure. J Hepatol. 2014;61(5):1038–47.CrossRefGoogle Scholar
  12. 12.
    Knaus WA, Zimmerman JE, Wagner DP, Draper EA, Lawrence DE. APACHE-acute physiology and chronic health evaluation: a physiologically based classification system. Crit Care Med. 1981;9(8):591–7.CrossRefGoogle Scholar
  13. 13.
    Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13(10):818–29.CrossRefGoogle Scholar
  14. 14.
    Kok B, Tandon P. Frailty in patients with cirrhosis. Curr Treat Options Gastroenterol. 2018;16(2):215–25.CrossRefGoogle Scholar
  15. 15.
    Tapper EB, Finkelstein D, Mittleman MA, Piatkowski G, Lai M. Standard assessments of frailty are validated predictors of mortality in hospitalized patients with cirrhosis. Hepatology. 2015;62(2):584–90.CrossRefGoogle Scholar
  16. 16.
    Gobbens RJ, van Assen MA. The prediction of ADL and IADL disability using six physical indicators of frailty: a longitudinal study in the Netherlands. Curr Gerontol Geriatr Res. 2014;2014:358137.CrossRefGoogle Scholar
  17. 17.
    Bergstrom N, Braden B, Kemp M, Champagne M, Ruby E. Predicting pressure ulcer risk: a multisite study of the predictive validity of the Braden Scale. Nurs Res. 1998;47(5):261–9.CrossRefGoogle Scholar
  18. 18.
    Morse JM, Black C, Oberle K, Donahue P. A prospective study to identify the fall-prone patient. Soc Sci Med. 1989;28(1):81–6.CrossRefGoogle Scholar
  19. 19.
    Montano-Loza AJ. Muscle wasting: a nutritional criterion to prioritize patients for liver transplantation. Curr Opin Clin Nutr Metab Care. 2014;17(3):219–25.CrossRefGoogle Scholar
  20. 20.
    van Vugt JL, Levolger S, Gharbharan A, Koek M, Niessen WJ, Burger JW, et al. A comparative study of software programmes for cross-sectional skeletal muscle and adipose tissue measurements on abdominal computed tomography scans of rectal cancer patients. J Cachexia Sarcopenia Muscle. 2017;8(2):285–97.CrossRefGoogle Scholar
  21. 21.
    Montano-Loza AJ, Duarte-Rojo A, Meza-Junco J, Baracos VE, Sawyer MB, Pang JXQ, et al. Inclusion of sarcopenia within MELD (MELD-sarcopenia) and the prediction of mortality in patients with cirrhosis. Clin Transl Gastroenterol. 2015;6:e102.CrossRefGoogle Scholar
  22. 22.
    Durand F, Buyse S, Francoz C, Laouenan C, Bruno O, Belghiti J, et al. Prognostic value of muscle atrophy in cirrhosis using psoas muscle thickness on computed tomography. J Hepatol. 2014;60(6):1151–7.CrossRefGoogle Scholar
  23. 23.
    Montano-Loza AJ, Angulo P, Meza-Junco J, Prado CMM, Sawyer MB, Beaumont C, et al. Sarcopenic obesity and myosteatosis are associated with higher mortality in patients with cirrhosis. J Cachexia Sarcopenia Muscle. 2016;7(2):126–35.CrossRefGoogle Scholar
  24. 24.
    Hirsch S, Bunout D, de la Maza P, Iturriaga H, Petermann M, Icazar G, et al. Controlled trial on nutrition supplementation in outpatients with symptomatic alcoholic cirrhosis. JPEN J Parenter Enteral Nutr. 1993;17(2):119–24.CrossRefGoogle Scholar
  25. 25.
    Marchesini G, Bianchi G, Merli M, Amodio P, Panella C, Loguercio C, et al. Nutritional supplementation with branched-chain amino acids in advanced cirrhosis: a double-blind, randomized trial. Gastroenterology. 2003;124(7):1792–801.CrossRefGoogle Scholar
  26. 26.
    Ney M, Vandermeer B, van Zanten SJ, Ma MM, Gramlich L, Tandon P. Meta-analysis: oral or enteral nutritional supplementation in cirrhosis. Aliment Pharmacol Ther. 2013;37(7):672–9.CrossRefGoogle Scholar
  27. 27.
    Zenith L, Meena N, Ramadi A, Yavari M, Harvey A, Carbonneau M, et al. Eight weeks of exercise training increases aerobic capacity and muscle mass and reduces fatigue in patients with cirrhosis. Clin Gastroenterol Hepatol. 2014;12(11):1920–6. e2.CrossRefGoogle Scholar
  28. 28.
    Roman E, Garcia-Galceran C, Torrades T, Herrera S, Marin A, Donate M, et al. Effects of an exercise programme on functional capacity, body composition and risk of falls in patients with cirrhosis: a randomized clinical trial. PLoS One. 2016;11(3):e0151652.CrossRefGoogle Scholar
  29. 29.
    Debette-Gratien M, Tabouret T, Antonini MT, Dalmay F, Carrier P, Legros R, et al. Personalized adapted physical activity before liver transplantation: acceptability and results. Transplantation. 2015;99(1):145–50.CrossRefGoogle Scholar
  30. 30.
    European Association for the Study of the Liver. Electronic address eee, European Association for the Study of the L. EASL Clinical Practice Guidelines on nutrition in chronic liver disease. J Hepatol. 2019;70(1):172–93.CrossRefGoogle Scholar
  31. 31.
    Tandon P, Raman M, Mourtzakis M, Merli M. A practical approach to nutritional screening and assessment in cirrhosis. Hepatology. 2017;65(3):1044–57.CrossRefGoogle Scholar
  32. 32.
    Tapper EB, Volk M. Strategies to reduce 30-day readmissions in patients with cirrhosis. Curr Gastroenterol Rep. 2017;19(1):1.CrossRefGoogle Scholar
  33. 33.
    Chirapongsathorn S, Talwalkar JA, Kamath PS. Readmission in cirrhosis: a growing problem. Curr Treat Options Gastroenterol. 2016;14(2):236–46.CrossRefGoogle Scholar
  34. 34.
    Sinclair M, Grossmann M, Hoermann R, Angus PW, Gow PJ. Testosterone therapy increases muscle mass in men with cirrhosis and low testosterone: a randomised controlled trial. J Hepatol. 2016;65(5):906–13.CrossRefGoogle Scholar
  35. 35.
    Bhanji RA, Takahashi N, Moynagh MR, Narayanan P, Angirekula M, Mara KC, et al. The evolution and impact of sarcopenia pre- and post-liver transplantation. Aliment Pharmacol Ther. 2019;49(6):807–13.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Division of Gastroenterology & Liver UnitUniversity of Alberta HospitalEdmontonCanada
  2. 2.Department of Visceral Surgery and MedicineUniversity Hospital Inselspital and University of BernBernSwitzerland

Personalised recommendations