Advertisement

Prognostic Factors in Follicular Lymphoma

  • Anna Johnston
  • Judith TrotmanEmail author
Chapter

Abstract

Follicular lymphoma (FL) is the most common indolent lymphoma. The majority of patients achieve a long-lasting remission with first-line induction therapy and have a good prognosis with median survival in excess of 20 years. However, approximately 20% exhibit early progression and have a poor prognosis. These are the patients who may benefit from novel treatment approaches. The challenge is in identifying them before progression. This chapter discusses current and developing approaches to define prognosis in follicular lymphoma. In current practice, prognostic indices based on readily available clinical information such as the Follicular Lymphoma International Prognostic Index (FLIPI) remain the most widely used prognostic tools. Developing approaches include measurement of total metabolic tumor volume (TMTV) using positron emission tomography (PET), clinicogenetic indices which integrate information about common genetic lesions in follicular lymphoma, and measures of the tumor microenvironment. The prognostic role of PET performed after induction treatment is now well defined, and evidence for this and future directions for research are discussed. The review is divided into two parts, the first focusing on clinical prognostic factors both at diagnosis and after treatment and the second discussing approaches based on emerging understanding of disease biology.

Keywords

Follicular lymphoma FDG-PET Microenvironment Positron emission tomography Prognosis Prognostic index Total metabolic tumor volume Cytogenetics Tumor burden Tumor grade Transformation FLIPI FLIPI2 m7-FLIPI Genetics Molecular Metabolic remission 

References

  1. 1.
    Project TIN-HsLPF. A predictive model for aggressive non-Hodgkin’s lymphoma. N Engl J Med. 1993;329(14):987–94.CrossRefGoogle Scholar
  2. 2.
    Decaudin D, Lepage E, Brousse N, Brice P, Harousseau J-L, Belhadj K, et al. Low-grade stage III–IV follicular lymphoma: multivariate analysis of prognostic factors in 484 patients—a study of the Groupe d’Etude des Lymphomes de l’Adulte. J Clin Oncol. 1999;17(8):2499–505.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Solal-Celigny P, Roy P, Colombat P, White J, Armitage JO, Arranz-Saez R, et al. Follicular lymphoma international prognostic index. Blood. 2004;104(5):1258–65.PubMedCrossRefGoogle Scholar
  4. 4.
    Buske C, Hoster E, Dreyling M, Hasford J, Unterhalt M, Hiddemann W. The follicular lymphoma international prognostic index (FLIPI) separates high-risk from intermediate- or low-risk patients with advanced-stage follicular lymphoma treated front-line with rituximab and the combination of cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) with respect to treatment outcome. Blood. 2006;108(5):1504–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Federico M, Bellei M, Marcheselli L, Luminari S, Lopez-Guillermo A, Vitolo U, et al. Follicular lymphoma international prognostic index 2: a new prognostic index for follicular lymphoma developed by the international follicular lymphoma prognostic factor project. J Clin Oncol. 2009;27(27):4555–62.PubMedCrossRefGoogle Scholar
  6. 6.
    Nooka AK, Nabhan C, Zhou X, Taylor MD, Byrtek M, Miller TP, et al. Examination of the follicular lymphoma international prognostic index (FLIPI) in the National LymphoCare study (NLCS): a prospective US patient cohort treated predominantly in community practices. Ann Oncol. 2013;24(2):441–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Pastore A, Jurinovic V, Kridel R, Hoster E, Staiger AM, Szczepanowski M, et al. Integration of gene mutations in risk prognostication for patients receiving first-line immunochemotherapy for follicular lymphoma: a retrospective analysis of a prospective clinical trial and validation in a population-based registry. Lancet Oncol. 2015;16(9):1111–22.CrossRefGoogle Scholar
  8. 8.
    Dupuis J, Berriolo-Riedinger A, Julian A, Brice P, Tychyj-Pinel C, Tilly H, et al. Impact of [(18)F]fluorodeoxyglucose positron emission tomography response evaluation in patients with high-tumor burden follicular lymphoma treated with immunochemotherapy: a prospective study from the Groupe d’Etudes des Lymphomes de l’Adulte and GOELAMS. J Clin Oncol. 2012;30(35):4317–22.PubMedCrossRefGoogle Scholar
  9. 9.
    GLSG. Online calculator site: http://www.glsg.de/m7-flipi/. First published in [11].
  10. 10.
    Brice P, Bastion Y, Lepage E, Brousse N, Haioun C, Moreau P, et al. Comparison in low-tumor-burden follicular lymphomas between an initial no-treatment policy, prednimustine, or interferon alfa: a randomized study from the Groupe d’Etude des Lymphomes Folliculaires. Groupe d’Etude des Lymphomes de l’Adulte. J Clin Oncol. 1997;15(3):1110–7.PubMedCrossRefGoogle Scholar
  11. 11.
    Ardeshna KM, Smith P, Norton A, Hancock BW, Hoskin PJ, MacLennan KA, et al. Long-term effect of a watch and wait policy versus immediate systemic treatment for asymptomatic advanced-stage non-Hodgkin lymphoma: a randomised controlled trial. Lancet. 2003;362(9383):516–22.PubMedCrossRefGoogle Scholar
  12. 12.
    Ardeshna KM, Qian W, Smith P, Braganca N, Lowry L, Patrick P, et al. Rituximab versus a watch-and-wait approach in patients with advanced-stage, asymptomatic, non-bulky follicular lymphoma: an open-label randomised phase 3 trial. Lancet Oncol. 2014;15(4):424–35.PubMedCrossRefGoogle Scholar
  13. 13.
    El-Galaly TC, Bilgrau AE, de Nully BP, Mylam KJ, Ahmad SA, Pedersen LM, et al. A population-based study of prognosis in advanced stage follicular lymphoma managed by watch and wait. Br J Haematol. 2015;169(3):435–44.PubMedCrossRefGoogle Scholar
  14. 14.
    Marcus R, Imrie K, Belch A, Cunningham D, Flores E, Catalano J, et al. CVP chemotherapy plus rituximab compared with CVP as first-line treatment for advanced follicular lymphoma. Blood. 2005;105(4):1417–23.PubMedCrossRefGoogle Scholar
  15. 15.
    Hiddemann W, Kneba M, Dreyling M, Schmitz N, Lengfelder E, Schmits R, et al. Frontline therapy with rituximab added to the combination of cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) significantly improves the outcome for patients with advanced-stage follicular lymphoma compared with therapy with CHOP alone: results of a prospective randomized study of the German Low-Grade Lymphoma Study Group. Blood. 2005;106(12):3725–32.PubMedCrossRefGoogle Scholar
  16. 16.
    Farwell MD, Pryma DA, Mankoff DA. PET/CT imaging in cancer: current applications and future directions. Cancer. 2014;120(22):3433–45.PubMedCrossRefGoogle Scholar
  17. 17.
    Meignan M, Cottereau AS, Versari A, Chartier L, Dupuis J, Boussetta S, et al. Baseline metabolic tumor volume predicts outcome in high–tumor-burden follicular lymphoma: a pooled analysis of three multicenter studies. J Clin Oncol. 2016;34(30):3618–26.PubMedCrossRefGoogle Scholar
  18. 18.
    Schöder H, Moskowitz C. Metabolic tumor volume in lymphoma: hype or hope? J Clin Oncol. 2016;34(30):3591–4.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Cheson BD, Horning SJ, Coiffier B, Shipp MA, Fisher RI, Connors JM, et al. Report of an international workshop to standardize response criteria for non-Hodgkin’s lymphomas. NCI Sponsored International Working Group. J Clin Oncol. 1999;17(4):1244.PubMedCrossRefGoogle Scholar
  20. 20.
    Casulo C, Byrtek M, Dawson KL, Zhou X, Farber CM, Flowers CR, et al. Early relapse of follicular lymphoma after rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone defines patients at high risk for death: an analysis from the national lymphocare study. J Clin Oncol. 2015;33(23):2516–22.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Maurer MJ, Bachy E, Ghesquieres H, Ansell SM, Nowakowski GS, Thompson CA, et al. Early event status informs subsequent outcome in newly diagnosed follicular lymphoma. Am J Hematol. 2016;91(11):1096–101.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Shi Q, Flowers CR, Hiddemann W, Marcus R, Herold M, Hagenbeek A, et al. Thirty-month complete response as a surrogate end point in first-line follicular lymphoma therapy: an individual patient-level analysis of multiple randomized trials. J Clin Oncol. 2017;35(5):552–60.PubMedCrossRefGoogle Scholar
  23. 23.
    Trotman J, Fournier M, Lamy T, Seymour JF, Sonet A, Janikova A, et al. Positron emission tomography-computed tomography (PET-CT) after induction therapy is highly predictive of patient outcome in follicular lymphoma: analysis of PET-CT in a subset of PRIMA trial participants. J Clin Oncol. 2011;29(23):3194–200.PubMedCrossRefGoogle Scholar
  24. 24.
    Luminari S, Biasoli I, Versari A, Rattotti S, Bottelli C, Rusconi C, et al. The prognostic role of post-induction FDG-PET in patients with follicular lymphoma: a subset analysis from the FOLL05 trial of the Fondazione Italiana Linfomi (FIL). Ann Oncol. 2014;25(2):442–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Trotman J, Luminari S, Boussetta S, Versari A, Dupuis J, Tychyj C, et al. Prognostic value of PET-CT after first-line therapy in patients with follicular lymphoma: a pooled analysis of central scan review in three multicentre studies. Lancet Haematol. 2014;1(1):e17–27.PubMedCrossRefGoogle Scholar
  26. 26.
    Trotman J. Prognostic value of PET-CT after first-line immunochemotherapy for follicular lymphoma in the phase III gallium study. In: 14th International Conference On Malignant Lymphoma. Lugano; 2017.Google Scholar
  27. 27.
    Montoto S, Fitzgibbon J. Transformation of indolent B-cell lymphomas. J Clin Oncol. 2011;29(14):1827–34.PubMedCrossRefGoogle Scholar
  28. 28.
    Wagner-Johnston ND, Link BK, Byrtek M, Dawson KL, Hainsworth J, Flowers CR, et al. Outcomes of transformed follicular lymphoma in the modern era: a report from the National LymphoCare Study (NLCS). Blood. 2015;126(7):851–7.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Casulo C, Burack WR, Friedberg JW. Transformed follicular non-Hodgkin lymphoma. Blood. 2015;125(1):40–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Sarkozy C, Trneny M, Xerri L, Wickham N, Feugier P, Leppa S, et al. Risk factors and outcomes for patients with follicular lymphoma who had histologic transformation after response to first-line immunochemotherapy in the PRIMA trial. J Clin Oncol. 2016;34(22):2575–82.PubMedCrossRefGoogle Scholar
  31. 31.
    Kridel R, Sehn LH, Gascoyne RD. Pathogenesis of follicular lymphoma. J Clin Invest. 2012;122(10):3424–31.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Thiele J. WHO Classification of tumours of haematopoietic and lymphoid tissues. Revised 4th ed. Lyon: IARC; 2017.Google Scholar
  33. 33.
    Wahlin BE, Yri OE, Kimby E, Holte H, Delabie J, Smeland EB, et al. Clinical significance of the WHO grades of follicular lymphoma in a population-based cohort of 505 patients with long follow-up times. Br J Haematol. 2012;156(2):225–33.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Horn H, Schmelter C, Leich E, Salaverria I, Katzenberger T, Ott MM, et al. Follicular lymphoma grade 3B is a distinct neoplasm according to cytogenetic and immunohistochemical profiles. Haematologica. 2011;96(9):1327–34.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Liu Q, Salaverria I, Pittaluga S, Jegalian AG, Xi L, Siebert R, et al. Follicular lymphomas in children and young adults: a comparison of the pediatric variant with usual follicular lymphoma. Am J Surg Pathol. 2013;37(3):333–43.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Louissaint A Jr, Ackerman AM, Dias-Santagata D, Ferry JA, Hochberg EP, Huang MS, et al. Pediatric-type nodal follicular lymphoma: an indolent clonal proliferation in children and adults with high proliferation index and no BCL2 rearrangement. Blood. 2012;120(12):2395–404.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127(20):2375–90.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Dave SS, Wright G, Tan B, Rosenwald A, Gascoyne RD, Chan WC, et al. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med. 2004;351(21):2159–69.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Byers RJ, Sakhinia E, Joseph P, Glennie C, Hoyland JA, Menasce LP, et al. Clinical quantitation of immune signature in follicular lymphoma by RT-PCR-based gene expression profiling. Blood. 2008;111(9):4764–70.PubMedCrossRefGoogle Scholar
  40. 40.
    Farinha P, Masoudi H, Skinnider BF, Shumansky K, Spinelli JJ, Gill K, et al. Analysis of multiple biomarkers shows that lymphoma-associated macrophage (LAM) content is an independent predictor of survival in follicular lymphoma (FL). Blood. 2005;106(6):2169–74.PubMedCrossRefGoogle Scholar
  41. 41.
    Farinha P, Al-Tourah A, Gill K, Klasa R, Connors JM, Gascoyne RD. The architectural pattern of FOXP3-positive T cells in follicular lymphoma is an independent predictor of survival and histologic transformation. Blood. 2010;115(2):289–95.PubMedCrossRefGoogle Scholar
  42. 42.
    Ame-Thomas P, Hoeller S, Artchounin C, Misiak J, Braza MS, Jean R, et al. CD10 delineates a subset of human IL-4 producing follicular helper T cells involved in the survival of follicular lymphoma B cells. Blood. 2015;125(15):2381–5.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Yang ZZ, Grote DM, Ziesmer SC, Xiu B, Novak AJ, Ansell SM. PD-1 expression defines two distinct T-cell sub-populations in follicular lymphoma that differentially impact patient survival. Blood Cancer J. 2015;5(2):e281.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Krysiak K, Gomez F, White BS, Matlock M, Miller CA, Trani L, et al. Recurrent somatic mutations affecting B-cell receptor signaling pathway genes in follicular lymphoma. Blood. 2017;129(4):473–83.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Morin R, Mendez-Lago M, Mungall A, Goya R, Mungall K, Corbett R, et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature. 2011;476(7360):298–303.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Okosun J, Bodor C, Wang J, Araf S, Yang CY, Pan C, et al. Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nat Genet. 2014;46(2):176–81.CrossRefGoogle Scholar
  47. 47.
    Pasqualucci L, Dominguez-Sola D, Chiarenza A, Fabbri G, Grunn A, Trifonov V, et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature. 2011;471(7337):189–95.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    García-Ramírez I, Tadros S, González-Herrero I, Martín-Lorenzo A, Rodríguez-Hernández G, Moore D, et al. Crebbp loss cooperates with Bcl2 overexpression to promote lymphoma in mice. Blood. 2017;129(19):2645–56.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Bodor C, Grossmann V, Popov N, Okosun J, O’Riain C, Tan K, et al. EZH2 mutations are frequent and represent an early event in follicular lymphoma. Blood. 2013;122(18):3165–8.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Cheung KJ, Johnson NA, Affleck JG, Severson T, Steidl C, Ben-Neriah S, et al. Acquired TNFRSF14 mutations in follicular lymphoma are associated with worse prognosis. Cancer Res. 2010;70(22):9166–74.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Launay E, Pangault C, Bertrand P, Jardin F, Lamy T, Tilly H, et al. High rate of TNFRSF14 gene alterations related to 1p36 region in de novo follicular lymphoma and impact on prognosis. Leukemia. 2012;26(3):559–62.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Schmidt J, Gong S, Marafioti T, Mankel B, Gonzalez-Farre B, Balague O, et al. Genome-wide analysis of pediatric-type follicular lymphoma reveals low genetic complexity and recurrent alterations of TNFRSF14 gene. Blood. 2016;128(8):1101–11.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    O’Shea D, O’Riain C, Taylor C, Waters R, Carlotti E, MacDougall F, et al. The presence of TP53 mutation at diagnosis of follicular lymphoma identifies a high-risk group of patients with shortened time to disease progression and poorer overall survival. Blood. 2008;112(8):3126–9.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Correia C, Schneider PA, Dai H, Dogan A, Maurer MJ, Church AK, et al. BCL2 mutations are associated with increased risk of transformation and shortened survival in follicular lymphoma. Blood. 2015;125(4):658–67.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Huet S, Szafer-Glusman E, Tesson B, Xerri L, Fairbrother WJ, Mukhyala K, et al. BCL2 mutations do not confer adverse prognosis in follicular lymphoma patients treated with rituximab. Am J Hematol. 2017;92(6):515–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Weigert O, Weinstock DM. The promises and challenges of using gene mutations for patient stratification in follicular lymphoma. Blood. 2017;130(13):1491–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Jurinovic V, Kridel R, Staiger AM, Szczepanowski M, Horn H, Dreyling MH, et al. Clinicogenetic risk models predict early progression of follicular lymphoma after first-line immunochemotherapy. Blood. 2016;128(8):1112–20.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Huet S, Tesson B, Jais J-P, Feldman AE, Magnano L, Thomas E, et al. A gene-expression profiling score for outcome predniction in patients with follicular lymphoma: a retrospective analysis on three international cohorts. Lancet Oncol. 2018;19(4):549–61.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Leich E, Salaverria I, Bea S, Zettl A, Wright G, Moreno V, et al. Follicular lymphomas with and without translocation t(14;18) differ in gene expression profiles and genetic alterations. Blood. 2009;114(4):826–34.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Diaz-Alderete A, Doval A, Camacho F, Verde L, Sabin P, Arranz-Saez R, et al. Frequency of BCL2 and BCL6 translocations in follicular lymphoma: relation with histological and clinical features. Leuk Lymphoma. 2008;49(1):95–101.PubMedCrossRefGoogle Scholar
  61. 61.
    Katzenberger T, Ott G, Klein T, Kalla J, Muller-Hermelink HK, Ott MM. Cytogenetic alterations affecting BCL6 are predominantly found in follicular lymphomas grade 3B with a diffuse large B-cell component. Am J Pathol. 2004;165(2):481–90.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Bosga-Bouwer AG, van Imhoff GW, Boonstra R, van der Veen A, Haralambieva E, van den Berg A, et al. Follicular lymphoma grade 3B includes 3 cytogenetically defined subgroups with primary t(14;18), 3q27, or other translocations: t(14;18) and 3q27 are mutually exclusive. Blood. 2003;101(3):1149–54.PubMedCrossRefGoogle Scholar
  63. 63.
    Miyaoka M, Kikuti YY, Carreras J, Ikoma H, Hiraiwa S, Ichiki A, et al. Clinicopathological and genomic analysis of double-hit follicular lymphoma: comparison with high-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements. Mod Pathol. 2018;31(2):313–26.PubMedCrossRefGoogle Scholar
  64. 64.
    Barrington SF, Kirkwood AA, Franceschetto A, Fulham MJ, Roberts TH, Almquist H, et al. PET-CT for staging and early response: results from the response-adapted therapy in advanced Hodgkin lymphoma study. Blood. 2016;127(12):1531–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Corradini P, Ladetto M, Zallio F, Astolfi M, Rizzo E, Sametti S, et al. Long-term follow-up of indolent lymphoma patients treated with high-dose sequential chemotherapy and autografting: evidence that durable molecular and clinical remission frequently can be attained only in follicular subtypes. J Clin Oncol. 2004;22(8):1460–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Moos M, Schulz R, Martin S, Benner A, Haas R. The remission status before and the PCR status after high-dose therapy with peripheral blood stem cell support are prognostic factors for relapse-free survival in patients with follicular non-Hodgkin’s lymphoma. Leukemia. 1998;12(12):1971–6.PubMedCrossRefGoogle Scholar
  67. 67.
    Galimberti S, Luminari S, Ciabatti E, Grassi S, Guerrini F, Dondi A, et al. Minimal residual disease after conventional treatment significantly impacts on progression-free survival of patients with follicular lymphoma: the FIL FOLL05 trial. Clin Cancer Res. 2014;20(24):6398–405.PubMedCrossRefGoogle Scholar
  68. 68.
    van Oers MH, Tonnissen E, Van Glabbeke M, Giurgea L, Jansen JH, Klasa R, et al. BCL-2/IgH polymerase chain reaction status at the end of induction treatment is not predictive for progression-free survival in relapsed/resistant follicular lymphoma: results of a prospective randomized EORTC 20981 phase III intergroup study. J Clin Oncol. 2010;28(13):2246–52.PubMedCrossRefGoogle Scholar
  69. 69.
    Luminari S, Galimberti S, Versari A, Biasoli I, Anastasia A, Rusconi C, et al. Positron emission tomography response and minimal residual disease impact on progression-free survival in patients with follicular lymphoma. A subset analysis from the FOLL05 trial of the Fondazione Italiana Linfomi. Haematologica. 2016;101(2):e66–8.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of Tasmania and Department of Haematology, Royal Hobart HospitalHobartAustralia
  2. 2.University of Sydney and Department of Haematology, Concord Repatriation HospitalSydneyAustralia

Personalised recommendations