Advertisement

The Microenvironment in Follicular Lymphoma

  • Nahum Puebla-Osorio
  • Paolo Strati
  • Sattva S. NeelapuEmail author
Chapter

Abstract

Current understanding of the pathogenesis of follicular lymphoma (FL) requires in-depth knowledge of the multiple cellular components of its microenvironment, including infiltrating lymphocytes, macrophages, and stromal cells, in addition to tumoral B-lymphocytes. Evidence shows that non-lymphomatous cells within the tumor microenvironment play an essential role, including impairment in antitumor immune response (IR) and promotion of immune tolerance, representing a highly relevant area of research focus for the development of novel strategies to improve clinical outcomes in this disease. In this chapter, we highlight the most prominent discoveries in the last couple of decades on the role of the tumor microenvironment in FL and provide a perspective on the discovery of novel immune targets and the development of new immune therapies for the treatment of patients with FL.

Keywords

Follicular lymphoma Tumor microenvironment Follicular dendritic cells (FDCs) Follicular T helper cells Regulatory T-cells (Tregs) Stromal cells Macrophages 

References

  1. 1.
    Kuppers R. Prognosis in follicular lymphoma--it’s in the microenvironment. N Engl J Med. 2004;351:2152–3.  https://doi.org/10.1056/NEJMp048257.CrossRefPubMedGoogle Scholar
  2. 2.
    Dave SS, Wright G, Tan B, Rosenwald A, Gascoyne RD, Chan WC, et al. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med. 2004;351:2159–69. doi:351/21/2159 [pii]  https://doi.org/10.1056/NEJMoa041869.
  3. 3.
    Dave SS. Follicular lymphoma and the microenvironment. Blood. 2008;111:4427–8.  https://doi.org/10.1182/blood-2008-01-134643.CrossRefPubMedGoogle Scholar
  4. 4.
    Li L, Choi YS. Follicular dendritic cell-signaling molecules required for proliferation and differentiation of GC-B cells. Semin Immunol. 2002;14(4):259–66.CrossRefGoogle Scholar
  5. 5.
    Chang KC, Huang X, Medeiros LJ, Jones D. Germinal centre-like versus undifferentiated stromal immunophenotypes in follicular lymphoma. J Pathol. 2003;201(3):404–12.  https://doi.org/10.1002/path.1478.CrossRefPubMedGoogle Scholar
  6. 6.
    de Jong D. Molecular pathogenesis of follicular lymphoma: a cross talk of genetic and immunologic factors. J Clin Oncol. 2005;23:6358–63.  https://doi.org/10.1200/JCO.2005.26.856.CrossRefPubMedGoogle Scholar
  7. 7.
    Amé-Thomas P, Maby-El Hajjami H, Monvoisin C, Jean R, Monnier D, Caulet-Maugendre S, et al. Human mesenchymal stem cells isolated from bone marrow and lymphoid organs support tumor B-cell growth: role of stromal cells in follicular lymphoma pathogenesis. Blood. 2007;109(2):693–702. Epub 2006 Sep 19.  https://doi.org/10.1182/blood-2006-05-020800.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Denton AE, Linterman MA. Stromal networking: cellular connections in the germinal centre. Curr Opin Immunol. 2017;45:103–11.  https://doi.org/10.1016/j.coi.2017.03.001. Epub 2017 Mar 17CrossRefPubMedGoogle Scholar
  9. 9.
    Mourcin F, Pangault C, Amin-Ali R, Amé-Thomas P, Tarte K. Stromal cell contribution to human follicular lymphoma pathogenesis. Front Immunol. 2012;3:280.  https://doi.org/10.3389/fimmu.2012.00280. eCollection 2012CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Banchereau J, Bazan F, Blanchard D, Brière F, Galizzi JP, van Kooten C, et al. The CD40 antigen and its ligand. Annu Rev Immunol. 1994;12:881–922.  https://doi.org/10.1146/annurev.iy.12.040194.004313.CrossRefPubMedGoogle Scholar
  11. 11.
    Béguelin W, Rivas MA, Calvo Fernández MT, Teater M, Purwada A, Redmond D, et al. EZH2 enables germinal centre formation through epigenetic silencing of CDKN1A and an Rb-E2F1 feedback loop. Nat Commun. 2017;8(1):877.  https://doi.org/10.1038/s41467-017-01029-x.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Purwada A, Jaiswal MK, Ahn H, Noima T, Kitamura D, Gaharwar AK, et al. Ex vivo engineered immune organoids for controlled germinal center reactions. Biomaterials. 2015;63:24–34.  https://doi.org/10.1016/j.biomaterials.2015.06.002.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Weekes CD, Pirruccello SJ, Vose JM, Kuszynski C, Sharp JG. Lymphoma cells associated with bone marrow stromal cells in culture exhibit altered growth and survival. Leuk Lymphoma. 1998;31(1–2):151–65.  https://doi.org/10.3109/10428199809057595.CrossRefPubMedGoogle Scholar
  14. 14.
    Burack WR, Spence JM, Spence JP, Spence SA, Rock PJ, Shenoy GN, et al. Patient-derived xenografts of low-grade B-cell lymphomas demonstrate roles of the tumor microenvironment. Blood Adv. 2017;1(16):1263–73.  https://doi.org/10.1182/bloodadvances.2017005892. eCollection 2017 Jul 11CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hollmann C, Gerdes J. Follicular dendritic cells and T cells: nurses and executioners in the germinal centre reaction. J Pathol. 1999;189:147–9.  https://doi.org/10.1002/(SICI)1096-9896(199910)189:2<147::AID-PATH433>3.0.CO;2-8.CrossRefPubMedGoogle Scholar
  16. 16.
    Kamel OW. Unraveling the mystery of the lymphoid follicle. Am J Pathol. 1999;155:681–2.  https://doi.org/10.1016/S0002-9440(10)65165-6.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Koopman G, Pals ST. Cellular interactions in the germinal center: role of adhesion receptors and significance for the pathogenesis of AIDS and malignant lymphoma. Immunol Rev. 1992;126:21–45.CrossRefGoogle Scholar
  18. 18.
    Koopman G, Keehnen RM, Lindhout E, Newman W, Shimizu Y, van Seventer GA, et al. Adhesion through the LFA-1 (CD11a/CD18)-ICAM-1 (CD54) and the VLA-4 (CD49d)-VCAM-1 (CD106) pathways prevents apoptosis of germinal center B cells. J Immunol. 1994;152(8):3760–7.PubMedGoogle Scholar
  19. 19.
    Ghia P, Caligaris-Cappio F. The indispensable role of microenvironment in the natural history of low-grade B-cell neoplasms. Adv Cancer Res. 2000;79:157–73.CrossRefGoogle Scholar
  20. 20.
    Petrasch S, Kosco M, Perez-Alvarez C, Schmitz J, Brittinger G. Proliferation of non-Hodgkin-lymphoma lymphocytes in vitro is dependent upon follicular dendritic cell interactions. Br J Haematol. 1992;80(1):21–6.  https://doi.org/10.1111/j.1365-2141.1992.tb06395.x.CrossRefPubMedGoogle Scholar
  21. 21.
    Koopman G, Parmentier HK, Schuurman HJ, Newman W, Meijer CJ, Pals ST. Adhesion of human B cells to follicular dendritic cells involves both the lymphocyte function-associated antigen 1/intercellular adhesion molecule 1 and very late antigen 4/vascular cell adhesion molecule 1 pathways. J Exp Med. 1991;173(6):1297–304.CrossRefGoogle Scholar
  22. 22.
    Taylor ST, Hickman JA, Dive C. Survival signals within the tumour microenvironment suppress drug-induced apoptosis: lessons learned from B lymphomas. Endocr Relat Cancer. 1999;6:21–3.CrossRefGoogle Scholar
  23. 23.
    Shiozawa E, Yamochi-Onizuka T, Yamochi T, Yamamoto Y, Naitoh H, Kawakami K, et al. Disappearance of CD21-positive follicular dendritic cells preceding the transformation of follicular lymphoma: immunohistological study of the transformation using CD21, p53, Ki-67, and P-glycoprotein. Pathol Res Pract. 2003;199(5):293–302.  https://doi.org/10.1078/0344-0338-00421.CrossRefPubMedGoogle Scholar
  24. 24.
    Jin MK, Hoster E, Dreyling M, Unterhalt M, Hiddemann W, Klapper W. Follicular dendritic cells in follicular lymphoma and types of non-Hodgkin lymphoma show reduced expression of CD23, CD35 and CD54 but no association with clinical outcome. Histopathology. 2011;58(4):586–92.  https://doi.org/10.1111/j.1365-2559.2011.03779.x.CrossRefPubMedGoogle Scholar
  25. 25.
    Blaker YN, Spetalen S, Brodtkorb M, Lingjaerde OC, Beiske K, Østenstad B, et al. The tumour microenvironment influences survival and time to transformation in follicular lymphoma in the rituximab era. Br J Haematol. 2016;175(1):102–14.  https://doi.org/10.1111/bjh.14201.CrossRefPubMedGoogle Scholar
  26. 26.
    Hase H, Kanno Y, Kojima M, Hasegawa K, Sakurai D, Kojima H, et al. BAFF/BLyS can potentiate B-cell selection with the B-cell coreceptor complex. Blood. 2004;103(6):2257–65.  https://doi.org/10.1182/blood-2003-08-2694.CrossRefPubMedGoogle Scholar
  27. 27.
    Khouri IF, Saliba RM, Erwin WD, Samuels BI, Korbling M, Medeiros LJ, et al. Nonmyeloablative allogeneic transplantation with or without 90yttrium ibritumomab tiuxetan is potentially curative for relapsed follicular lymphoma: 12-year results. Blood. 2012;119(26):6373–8.  https://doi.org/10.1182/blood-2012-03-417808.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Li YJ, Li ZM, Xia ZJ, Li S, Xia Y, Huang HQ, et al. High APRIL but not BAFF serum levels are associated with poor outcome in patients with follicular lymphoma. Ann Hematol. 2015;94(1):79–88.  https://doi.org/10.1007/s00277-014-2173-2.CrossRefPubMedGoogle Scholar
  29. 29.
    Butsch R, Lukas Waelti S, Schaerer S, Braun J, Korol D, Probst-Hensch N, et al. Intratumoral plasmacytoid dendritic cells associate with increased survival in patients with follicular lymphoma. Leuk Lymphoma. 2011;52(7):1230–8.  https://doi.org/10.3109/10428194.2011.569619.CrossRefPubMedGoogle Scholar
  30. 30.
    Vinuesa CG, Linterman MA, Yu D, MacLennan IC. Follicular helper T cells. Annu Rev Immunol. 2016;34:335–68.CrossRefGoogle Scholar
  31. 31.
    Fazilleau N, Mark L, McHeyzer-Williams LJ, McHeyzer-Williams MG. Follicular helper T cells: lineage and location. Immunity. 2009;30:324–35.  https://doi.org/10.1016/j.immuni.2009.03.003.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Gaulard P, de Leval L. Follicular helper T cells: implications in neoplastic hematopathology. Semin Diagn Pathol. 2011;28:202–13.CrossRefGoogle Scholar
  33. 33.
    Chung Y, Tanaka S, Chu F, Nurieva RI, Martinez GJ, Rawal S, et al. Follicular regulatory T cells expressing Foxp3 and Bcl-6 suppress germinal center reactions. Nat Med. 2011;17(8):983–8.  https://doi.org/10.1038/nm.2426.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Linterman MA, Pierson W, Lee SK, Kallies A, Kawamoto S, Rayner TF, et al. Foxp3+ follicular regulatory T cells control the germinal center response. Nat Med. 2011;17(8):975–82.  https://doi.org/10.1038/nm.2425.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Brady MT, Hilchey SP, Hyrien O, Spence SA, Bernstein SH. Mesenchymal stromal cells support the viability and differentiation of follicular lymphoma-infiltrating follicular helper T-cells. PLoS One. 2014;9:e97597.  https://doi.org/10.1371/journal.pone.0097597.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ame-Thomas P, Le Priol J, Yssel H, Caron G, Pangualt C, Jean R, et al. Characterization of intratumoral follicular helper T cells in follicular lymphoma: role in the survival of malignant B cells. Leukemia. 2012;26(5):1053–63.  https://doi.org/10.1038/leu.2011.301.CrossRefPubMedGoogle Scholar
  37. 37.
    Richendollar BG, Pohlman B, Elson P, Hsi ED. Follicular programmed death 1-positive lymphocytes in the tumor microenvironment are an independent prognostic factor in follicular lymphoma. Hum Pathol. 2011;42:552–7.  https://doi.org/10.1016/j.humpath.2010.08.015.CrossRefPubMedGoogle Scholar
  38. 38.
    Myklebust JH, Irish JM, Brody J, Czerwinski DK, Houot R, Kohrt HE, et al. High PD-1 expression and suppressed cytokine signaling distinguish T cells infiltrating follicular lymphoma tumors from peripheral T cells. Blood. 2013;121(8):1367–76.  https://doi.org/10.1182/blood-2012-04-421826.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Pangault C, Amé-Thomas P, Ruminy P, Rossille D, Caron G, Baia M, et al. Follicular lymphoma cell niche: identification of a preeminent IL-4-dependent T(FH)-B cell axis. Leukemia. 2010;24(12):2080–9.  https://doi.org/10.1038/leu.2010.223.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Yildiz M, Li H, Bernard D, Amin NA, Ouillette P, Jones S, et al. Activating STAT6 mutations in follicular lymphoma. Blood. 2015;125(4):668–79.  https://doi.org/10.1182/blood-2014-06-582650.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Calvo KR, Dabir B, Kovach A, Devor C, Bandle R, Bond A, et al. IL-4 protein expression and basal activation of Erk in vivo in follicular lymphoma. Blood. 2008;112(9):3818–26.  https://doi.org/10.1182/blood-2008-02-138933.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Rawal S, Chu F, Zhang M, Park HJ, Nattamai D, Kannan S, et al. Cross talk between follicular Th cells and tumor cells in human follicular lymphoma promotes immune evasion in the tumor microenvironment. J Immunol. 2013;190(12):6681–93.  https://doi.org/10.4049/jimmunol.1201363.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Pandey S, Mourcin F, Marchand T, Nayar S, Guirriec M, Pangault C, et al. IL-4/CXCL12 loop is a key regulator of lymphoid stroma function in follicular lymphoma. Blood. 2017;129(18):2507–18.  https://doi.org/10.1182/blood-2016-08-737239.CrossRefPubMedGoogle Scholar
  44. 44.
    Coquet JM, Kyparissoudis K, Pellicci DG, Besra G, Berzins SP, Smyth MJ, Godfrey DI. IL-21 is produced by NKT cells and modulates NKT cell activation and cytokine production. J Immunol. 2007;178(5):2827–34.CrossRefGoogle Scholar
  45. 45.
    Spolski R, Leonard WJ. IL-21 and T follicular helper cells. Int Immunol. 2010;22:7–12.  https://doi.org/10.1093/intimm/dxp112.CrossRefPubMedGoogle Scholar
  46. 46.
    de Totero D, Capaia M, Fabbi M, Croce M, Meazza R, Cutrona G, et al. Heterogeneous expression and function of IL-21R and susceptibility to IL-21-mediated apoptosis in follicular lymphoma cells. Exp Hematol. 2010;38(5):373–83.  https://doi.org/10.1016/j.exphem.2010.02.008.CrossRefPubMedGoogle Scholar
  47. 47.
    Akamatsu N, Yamada Y, Hasegawa H, Makabe K, Asano R, Kumagai I, et al. High IL-21 receptor expression and apoptosis induction by IL-21 in follicular lymphoma. Cancer Lett. 2007;256(2):196–206.  https://doi.org/10.1016/j.canlet.2007.06.001.CrossRefPubMedGoogle Scholar
  48. 48.
    Wood B, Sikdar S, Choi SJ, Virk S, Alhejaily A, Baetz T, LeBrun DP. Abundant expression of interleukin-21 receptor in follicular lymphoma cells is associated with more aggressive disease. Leuk Lymphoma. 2013;54(6):1212–20.  https://doi.org/10.3109/10428194.2012.742522.CrossRefPubMedGoogle Scholar
  49. 49.
    Arai J, Yasukawa M, Yakushijin Y, Miyazaki T, Fujita S. Stromal cells in lymph nodes attract B-lymphoma cells via production of stromal cell-derived factor-1. Eur J Haematol. 2000;64:323–32.CrossRefGoogle Scholar
  50. 50.
    Corcione A, Ottonello L, Tortolina G, Facchetti P, Airoldi I, Guglielmino R, et al. Stromal cell-derived factor-1 as a chemoattractant for follicular center lymphoma B cells. J Natl Cancer Inst. 2000;92:628–35.CrossRefGoogle Scholar
  51. 51.
    Matas-Céspedes A, Rodriguez V, Kalko SG, Vidal-Crespo A, Rosich L, Casserras T, et al. Disruption of follicular dendritic cells-follicular lymphoma cross-talk by the pan-PI3K inhibitor BKM120 (Buparlisib). Clin Cancer Res. 2014;20(13):3458–71.  https://doi.org/10.1158/1078-0432.CCR-14-0154.CrossRefPubMedGoogle Scholar
  52. 52.
    Ansel KM, Ngo VN, Hyman PL, Luther SA, Förster R, Sedgwick JD, et al. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature. 2000;406(6793):309–14.  https://doi.org/10.1038/35018581.CrossRefPubMedGoogle Scholar
  53. 53.
    Moser B. CXCR5, the defining marker for follicular B helper T (TFH) cells. Front Immunol. 2015;6:296.  https://doi.org/10.3389/fimmu.2015.00296.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Ansell SM, Vonderheide RH. Cellular composition of the tumor microenvironment. Am Soc Clin Oncol Educ Book. 2013;  https://doi.org/10.1200/EdBook_AM.2013.33.e91.CrossRefGoogle Scholar
  55. 55.
    Förster R, Mattis AE, Kremmer E, Wolf E, Brem G, Lipp M. A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell. 1996;87(6):1037–47.CrossRefGoogle Scholar
  56. 56.
    Trentin L, Cabrelle A, Facco M, Carollo D, Miorin M, Tosoni A, et al. Homeostatic chemokines drive migration of malignant B cells in patients with non-Hodgkin lymphomas. Blood. 2004;104(2):502–8.  https://doi.org/10.1182/blood-2003-09-3103.CrossRefPubMedGoogle Scholar
  57. 57.
    Husson H, Freedman AS, Cardoso AA, Schultze J, Munoz O, Strola G, et al. CXCL13 (BCA-1) is produced by follicular lymphoma cells: role in the accumulation of malignant B cells. Br J Haematol. 2002;119(2):492–5.CrossRefGoogle Scholar
  58. 58.
    Takemura S, Braun A, Crowson C, Kurtin PJ, Cofield RH, O’Fallon WM, et al. Lymphoid neogenesis in rheumatoid synovitis. J Immunol. 2001;167(2):1072–80.CrossRefGoogle Scholar
  59. 59.
    Husson H, Carideo EG, Cardoso AA, Lugli SM, Neuberg D, Munoz O, et al. MCP-1 modulates chemotaxis by follicular lymphoma cells. Br J Haematol. 2001;115(3):554–62.CrossRefGoogle Scholar
  60. 60.
    Fujii A, Oshima K, Hamasaki M, Utsunomiya H, Okazaki M, Kagami Y, et al. Differential expression of cytokines, chemokines and their receptors in follicular lymphoma and reactive follicular hyperplasia: assessment by complementary DNA microarray. Oncol Rep. 2005;13(5):819–24.PubMedGoogle Scholar
  61. 61.
    Balkwill F. Tumor necrosis factor or tumor promoting factor? Cytokine Growth Factor Rev. 2002;13:135–41.CrossRefGoogle Scholar
  62. 62.
    Salles G, Bienvenu J, Bastion Y, Barbier Y, Doche C, Warzocha K, et al. Elevated circulating levels of TNFalpha and its p55 soluble receptor are associated with an adverse prognosis in lymphoma patients. Br J Haematol. 1996;93(2):352–9.CrossRefGoogle Scholar
  63. 63.
    Green MR, Gentles AJ, Nair RV, Irish JM, Kihira S, Liu CL, et al. Hierarchy in somatic mutations arising during genomic evolution and progression of follicular lymphoma. Blood. 2013;121(9):1604–11.  https://doi.org/10.1182/blood-2012-09-457283.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Fischer T, Zing NPC, Chiattone CS, Federico M, Luminari S. Transformed follicular lymphoma. Ann Hematol. 2018;97(1):17–29.  https://doi.org/10.1007/s00277-017-3151-2.CrossRefPubMedGoogle Scholar
  65. 65.
    Cheung KJ, Johnson NA, Affleck JG, Severson T, Steidl C, Ben-Neriah S, et al. Acquired TNFRSF14 mutations in follicular lymphoma are associated with worse prognosis. Cancer Res. 2010;70(22):9166–74.  https://doi.org/10.1158/0008-5472.CAN-10-2460.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Boice M, Salloum D, Mourcin F, Sanghvi V, Amin R, Oricchio E, et al. Loss of the HVEM tumor suppressor in lymphoma and restoration by modified CAR-T cells. Cell. 2016;167(2):405–418.e13.  https://doi.org/10.1016/j.cell.2016.08.032.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Leger-Ravet MB, Devergne O, Peuchmaur M, Solal-Celigny P, Brousse N, Gaulard P, et al. In situ detection of activated cytotoxic cells in follicular lymphomas. Am J Pathol. 1994;144(3):492–9.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Wahlin BE, Sander B, Christensson B, Kimby E. CD8+T-cell content in diagnostic lymph nodes measured by flow cytometry is a predictor of survival in follicular lymphoma. Clin Cancer Res. 2007;13:388–97.  https://doi.org/10.1158/1078-0432.Ccr-06-1734.CrossRefGoogle Scholar
  69. 69.
    Laurent C, Charmpi K, Gravelle P, Tosolini M, Franchet C, Ysebaert L, et al. Several immune escape patterns in non-Hodgkin’s lymphomas. Oncoimmunology. 2015;4(8):e1026530.  https://doi.org/10.1080/2162402X.2015.1026530.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Yang ZZ, Liang AB, Ansell SM. T-cell-mediated antitumor immunity in B-cell non-Hodgkin lymphoma: activation, suppression and exhaustion. Leuk Lymphoma. 2015;56:2498–504.  https://doi.org/10.3109/10428194.2015.1011640.CrossRefPubMedGoogle Scholar
  71. 71.
    Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015;15:486–99.  https://doi.org/10.1038/nri3862.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Gravelle P, Do C, Franchet C, Mueller S, Oberic L, Ysebaert L, et al. Impaired functional responses in follicular lymphoma CD8(+)TIM-3(+) T lymphocytes following TCR engagement. Oncoimmunology. 2016;5(10):e1224044. eCollection 2016.  https://doi.org/10.1080/2162402X.2016.1224044.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Yang ZZ, Kim HJ, Villasboas JC, Chen YP, Price-Troska T, Jalali S, et al. Expression of LAG-3 defines exhaustion of intratumoral PD-1(+) T cells and correlates with poor outcome in follicular lymphoma. Oncotarget. 2017;8(37):61425–39.  https://doi.org/10.18632/oncotarget.18251.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Meirav K, Ginette S, Tamar T, Iris B, Arnon N, Abraham A. Extrafollicular PD1 and intrafollicular CD3 expression are associated with survival in follicular lymphoma. Clin Lymphoma Myeloma Leuk. 2017;17(10):645–9.  https://doi.org/10.1016/j.clml.2017.06.026.CrossRefPubMedGoogle Scholar
  75. 75.
    Josefsson SE, Huse K, Kolstad A, Beiske K, Pende D, Steen CB, et al. T cells expressing checkpoint receptor TIGIT are enriched in follicular lymphoma tumors and characterized by reversible suppression of T-cell receptor signaling. Clin Cancer Res. 2018;24(4):870–81.  https://doi.org/10.1158/1078-0432.CCR-17-2337.CrossRefPubMedGoogle Scholar
  76. 76.
    Zhu Y, Paniccia A, Schulick AC, Chen W, Koenig MR, Byers JT, et al. Identification of CD112R as a novel checkpoint for human T cells. J Exp Med. 2016;213(2):167–76.  https://doi.org/10.1084/jem.20150785.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Brenchley JM, Karandikar NJ, Betts MR, Ambrozak DR, Hill BJ, Crotty LE, et al. Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood. 2003;101(7):2711–20.  https://doi.org/10.1182/blood-2002-07-2103.CrossRefPubMedGoogle Scholar
  78. 78.
    Alvaro T, Lejeune M, Salvadó MT, Lopez C, Jaén J, Bosch R, Pons LE. Immunohistochemical patterns of reactive microenvironment are associated with clinicobiologic behavior in follicular lymphoma patients. J Clin Oncol. 2006;24(34):5350–7.  https://doi.org/10.1200/JCO.2006.06.4766.CrossRefGoogle Scholar
  79. 79.
    Focosi D, Petrini M. CD57 expression on lymphoma microenvironment as a new prognostic marker related to immune dysfunction. J Clin Oncol. 2007;25:1289–91; author reply 1291-1282.  https://doi.org/10.1200/JCO.2006.10.2251.CrossRefPubMedGoogle Scholar
  80. 80.
    Magnano L, Martínez A, Carreras J, Martínez-Trillos A, Giné E, Rovira J, et al. T-cell subsets in lymph nodes identify a subgroup of follicular lymphoma patients with favorable outcome. Leuk Lymphoma. 2017;58(4):842–50.  https://doi.org/10.1080/10428194.2016.1217525.CrossRefPubMedGoogle Scholar
  81. 81.
    Ramsay AG, Clear AJ, Kelly G, Fatah R, Matthews J, Macdougall F, et al. Follicular lymphoma cells induce T-cell immunologic synapse dysfunction that can be repaired with lenalidomide: implications for the tumor microenvironment and immunotherapy. Blood. 2009;114(21):4713–20.  https://doi.org/10.1182/blood-2009-04-217687.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Kiaii S, Clear AJ, Ramsay AG, Davies D, Sangaralingam A, Lee A, et al. Follicular lymphoma cells induce changes in T-cell gene expression and function: potential impact on survival and risk of transformation. J Clin Oncol. 2013;31(21):2654–61.  https://doi.org/10.1200/JCO.2012.44.2137.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Garcia-Munoz R, Panizo C. Follicular lymphoma (FL): immunological tolerance theory in FL. Hum Immunol. 2017;8:138–45.  https://doi.org/10.1016/j.humimm.2016.09.010.CrossRefGoogle Scholar
  84. 84.
    Xerri L, Huet S, Venstrom JM, Szafer-Glusman E, Fabiani B, Canioni D, et al. Rituximab treatment circumvents the prognostic impact of tumor-infiltrating T-cells in follicular lymphoma patients. Hum Pathol. 2017;64:128–36.  https://doi.org/10.1016/j.humpath.2017.03.023.CrossRefPubMedGoogle Scholar
  85. 85.
    Lee AM, Clear AJ, Calaminici M, Davies AJ, Jordan S, MacDougall F, et al. Number of CD4+ cells and location of forkhead box protein P3-positive cells in diagnostic follicular lymphoma tissue microarrays correlates with outcome. J Clin Oncol. 2006;24(31):5052–9.  https://doi.org/10.1200/JCO.2006.06.4642.CrossRefPubMedGoogle Scholar
  86. 86.
    Glas AM, Knoops L, Delahaye L, Kersten MJ, Kibbelaar RE, Wessels LA, et al. Gene-expression and immunohistochemical study of specific T-cell subsets and accessory cell types in the transformation and prognosis of follicular lymphoma. J Clin Oncol. 2007;25(4):390–8.  https://doi.org/10.1200/JCO.2006.06.1648.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Farinha P, Masoudi H, Skinnider BF, Shumansky K, Spinelli JJ, Gill K, et al. Analysis of multiple biomarkers shows that lymphoma-associated macrophage (LAM) content is an independent predictor of survival in follicular lymphoma (FL). Blood. 2005;106(6):2169–74.  https://doi.org/10.1182/blood-2005-04-1565.CrossRefGoogle Scholar
  88. 88.
    Clear AJ, Lee AM, Calaminici M, Ramsay AG, Morris KJ, Hallam S, et al. Increased angiogenic sprouting in poor prognosis FL is associated with elevated numbers of CD163+ macrophages within the immediate sprouting microenvironment. Blood. 2010;115(24):5053–6.  https://doi.org/10.1182/blood-2009-11-253260.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Farinha P, Kyle AH, Minchinton AI, Connors JM, Karsan A, Gascoyne RD. Vascularization predicts overall survival and risk of transformation in follicular lymphoma. Haematologica. 2010;95(12):2157–60.  https://doi.org/10.3324/haematol.2009.021766.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    He L, Liang JH, Wu JZ, Li Y, Qin SC, Miao Y, et al. Low absolute CD4+ T cell counts in peripheral blood are associated with inferior survival in follicular lymphoma. Tumour Biol. 2016;37(9):12589–95.  https://doi.org/10.1007/s13277-016-5124-9.CrossRefPubMedGoogle Scholar
  91. 91.
    Yoshida N, Oda M, Kuroda Y, Katayama Y, Okikawa Y, Masunari T, et al. Clinical significance of sIL-2R levels in B-cell lymphomas. PLoS One. 2013;8(11):e78730.  https://doi.org/10.1371/journal.pone.0078730.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Ferretti E, Tripodo C, Pagnan G, Guarnotta C, Marimpietri D, Corrias MV, et al. The interleukin (IL)-31/IL-31R axis contributes to tumor growth in human follicular lymphoma. Leukemia. 2015;29(4):958–67.  https://doi.org/10.1038/leu.2014.291.CrossRefPubMedGoogle Scholar
  93. 93.
    Ferretti E, Corcione A, Pistoia V. The IL-31/IL-31 receptor axis: general features and role in tumor microenvironment. J Leukoc Biol. 2017;102:711–7.  https://doi.org/10.1189/jlb.3MR0117-033R.CrossRefPubMedGoogle Scholar
  94. 94.
    Lohneis P, Wienert S, Klauschen F, Anagnostopoulos I, Johrens K. Fibrosis in low-grade follicular lymphoma – a link to the TH2 immune reaction. Leuk Lymphoma. 2017;58:1190–6.  https://doi.org/10.1080/10428194.2016.1231404.CrossRefPubMedGoogle Scholar
  95. 95.
    Le KS, Thibult ML, Just-Landi S, Pastor S, Gondois-Rey F, Granjeaud S, et al. Follicular B lymphomas generate regulatory T cells via the ICOS/ICOSL pathway and are susceptible to treatment by anti-ICOS/ICOSL therapy. Cancer Res. 2016;76(16):4648–60.  https://doi.org/10.1158/0008-5472.CAN-15-0589.CrossRefPubMedGoogle Scholar
  96. 96.
    Carreras J, et al. High numbers of tumor-infiltrating FOXP3-positive regulatory T cells are associated with improved overall survival in follicular lymphoma. Blood. 2006;108(9):2957–64. Epub 2006 Jul 6. doi:blood-2006-04-018218 [pii]CrossRefGoogle Scholar
  97. 97.
    Kelley TW, Parker CJ. CD4 (+)CD25 (+)Foxp3 (+) regulatory T cells and hematologic malignancies. Front Biosci (Schol Ed). 2010;2:980–92.CrossRefGoogle Scholar
  98. 98.
    Farinha P, Al-Tourah A, Gill K, Klasa R, Connors JM, Gascoyne RD. The architectural pattern of FOXP3-positive T cells in follicular lymphoma is an independent predictor of survival and histologic transformation. Blood. 2010;115(2):289–95.  https://doi.org/10.1182/blood-2009-07-235598.CrossRefGoogle Scholar
  99. 99.
    Lim HW, Hillsamer P, Kim CH. Regulatory T cells can migrate to follicles upon T cell activation and suppress GC-Th cells and GC-Th cell-driven B cell responses. J Clin Invest. 2004;114:1640–9.  https://doi.org/10.1172/JCI22325.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Ngo VN, Tang HL, Cyster JG. Epstein-Barr virus-induced molecule 1 ligand chemokine is expressed by dendritic cells in lymphoid tissues and strongly attracts naive T cells and activated B cells. J Exp Med. 1998;188(1):181–91.CrossRefGoogle Scholar
  101. 101.
    Ai WZ, Hou JZ, Zeiser R, Czerwinski D, Negrin RS, Levy R. Follicular lymphoma B cells induce the conversion of conventional CD4(+) T cells to T-regulatory cells. Int J Cancer. 2009;124(1):239–44.  https://doi.org/10.1002/ijc.23881.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Yang ZZ, Novak AJ, Ziesmer SC, Witzig TE, Ansell SM. CD70+ non-Hodgkin lymphoma B cells induce Foxp3 expression and regulatory function in intratumoral CD4+CD25 T cells. Blood. 2007;110:2537–44.CrossRefGoogle Scholar
  103. 103.
    Voo KS, Foglietta M, Percivalle E, Chu F, Nattamai D, Harline M, et al. Selective targeting of Toll-like receptors and OX40 inhibit regulatory T-cell function in follicular lymphoma. Int J Cancer. 2014;135(12):2834–46.  https://doi.org/10.1002/ijc.28937.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Chevalier N, Mueller M, Mougiakakos D, Ihorst G, Marks R, Schmitt-Graeff A, Veelken H. Analysis of dendritic cell subpopulations in follicular lymphoma with respect to the tumor immune microenvironment. Leuk Lymphoma. 2016;57(9):2150–60.  https://doi.org/10.3109/10428194.2015.1135432.CrossRefPubMedGoogle Scholar
  105. 105.
    Wahlin BE, Aggarwal M, Montes-Moreno S, Gonzalez LF, Roncador G, Sanchez-Verde L, et al. A unifying microenvironment model in follicular lymphoma: outcome is predicted by programmed death-1--positive, regulatory, cytotoxic, and helper T cells and macrophages. Clin Cancer Res. 2010;16(2):637–50.  https://doi.org/10.1158/1078-0432.CCR-09-2487.CrossRefPubMedGoogle Scholar
  106. 106.
    Nelson LS, Mansfield JR, Lloyd R, Oguejiofor K, Salih Z, Menasce LP, et al. Automated prognostic pattern detection shows favourable diffuse pattern of FOXP3(+) Tregs in follicular lymphoma. Br J Cancer. 2015;113(8):1197–205.  https://doi.org/10.1038/bjc.2015.291.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Zhao DM, Thornton AM, DiPaolo RJ, Shevach EM. Activated CD4+CD25+ T cells selectively kill B lymphocytes. Blood. 2006;107(10):3925–32.  https://doi.org/10.1182/blood-2005-11-4502.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Lapenta C, Donati S, Spadaro F, Castaldo P, Belardelli F, Cox MC, Santini SM. NK cell activation in the antitumor response induced by IFN-alpha dendritic cells loaded with apoptotic cells from follicular lymphoma patients. J Immunol. 2016;197(3):795–806.  https://doi.org/10.4049/jimmunol.1600262.CrossRefPubMedGoogle Scholar
  109. 109.
    Wogsland CE, Greenplate AR, Kolstad A, Myklebust JH, Irish JM, Huse K. Mass cytometry of follicular lymphoma tumors reveals intrinsic heterogeneity in proteins including HLA-DR and a deficit in nonmalignant plasmablast and germinal center B-cell populations. Cytometry B Clin Cytom. 2017;92(1):79–87.  https://doi.org/10.1002/cyto.b.21498.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Green MR, Kihira S, Liu CL, Nair RV, Salari R, Gentles AJ, et al. Mutations in early follicular lymphoma progenitors are associated with suppressed antigen presentation. Proc Natl Acad Sci U S A. 2015;112(10):E1116–25.  https://doi.org/10.1073/pnas.1501199112.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Green MR, Yoon H, Boss JM. Epigenetic regulation during B cell differentiation controls CIITA promoter accessibility. J Immunol. 2006;177(6):3865–73.CrossRefGoogle Scholar
  112. 112.
    Liu A, Takahashi M, Toba K, Zheng Z, Hashimoto S, Nikkuni K, et al. Regulation of the expression of MHC class I and II by class II transactivator (CIITA) in hematopoietic cells. Hematol Oncol. 1999;17(4):149–60.CrossRefGoogle Scholar
  113. 113.
    De S, Shaknovich R, Riester M, Elemento O, Geng H, Kormaksson M, et al. Aberration in DNA methylation in B-cell lymphomas has a complex origin and increases with disease severity. PLoS Genet. 2013;9(1):e1003137.  https://doi.org/10.1371/journal.pgen.1003137.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Hopp L, Löffler-Wirth H, Binder H. Epigenetic heterogeneity of B-cell lymphoma: DNA methylation, gene expression and chromatin states. Genes (Basel). 2015;6(3):812–40.  https://doi.org/10.3390/genes6030812.CrossRefGoogle Scholar
  115. 115.
    Stevens WBC, Mendeville M, Redd R, Clear AJ, Bladergroen R, Calaminici M, et al. Prognostic relevance of CD163 and CD8 combined with EZH2 and gain of chromosome 18 in follicular lymphoma: a study by the Lunenburg Lymphoma Biomarker Consortium. Haematologica. 2017;102(8):1413–23.  https://doi.org/10.3324/haematol.2017.165415.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Zhu D, McCarthy H, Ottensmeier CH, Johnson P, Hamblin TJ, Stevenson FK. Acquisition of potential N-glycosylation sites in the immunoglobulin variable region by somatic mutation is a distinctive feature of follicular lymphoma. Blood. 2002;99(7):2562–8.CrossRefGoogle Scholar
  117. 117.
    Zhu D, Ottensmeier CH, Du MQ, McCarthy H, Stevenson FK. Incidence of potential glycosylation sites in immunoglobulin variable regions distinguishes between subsets of Burkitt’s lymphoma and mucosa-associated lymphoid tissue lymphoma. Br J Haematol. 2003;120:217–22.CrossRefGoogle Scholar
  118. 118.
    Hollander N, Haimovich J. Altered N-linked glycosylation in follicular lymphoma and chronic lymphocytic leukemia: involvement in pathogenesis and potential therapeutic targeting. Front Immunol. 2017;8:912.  https://doi.org/10.3389/fimmu.2017.00912.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Coelho V, Krysov S, Ghaemmaghami AM, Emara M, Potter KN, Johnson P, et al. Glycosylation of surface Ig creates a functional bridge between human follicular lymphoma and microenvironmental lectins. Proc Natl Acad Sci U S A. 2010;107(43):18587–92.  https://doi.org/10.1073/pnas.1009388107.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Amin R, Mourcin F, Uhel F, Pangault C, Ruminy P, Dupré L, et al. DC-SIGN-expressing macrophages trigger activation of mannosylated IgM B-cell receptor in follicular lymphoma. Blood. 2015;126(16):1911–20.  https://doi.org/10.1182/blood-2015-04-640912.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Linley A, Krysov S, Ponzoni M, Johnson PW, Packham G, Stevenson FK. Lectin binding to surface Ig variable regions provides a universal persistent activating signal for follicular lymphoma cells. Blood. 2015;126(16):1902–10.  https://doi.org/10.1182/blood-2015-04-640805.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Marcus R, Davies A, Ando K, Klapper W, Opat S, Owen C, et al. Obinutuzumab for the first-line treatment of follicular lymphoma. N Engl J Med. 2017;377:1331–44.  https://doi.org/10.1056/NEJMoa1614598.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Nair R, Tabchi S, Hagemeister F. Obinutuzumab treatment of follicular lymphoma. N Engl J Med. 2017;377:2605.  https://doi.org/10.1056/NEJMc1714337.CrossRefPubMedGoogle Scholar
  124. 124.
    Markham A. Copanlisib: first global approval. Drugs. 2017;77:2057–62.  https://doi.org/10.1007/s40265-017-0838-6.CrossRefPubMedGoogle Scholar
  125. 125.
    Dreyling M, Morschhauser F, Bouabdallah K, Bron D, Cunningham D, Assouline SE, et al. Phase II study of copanlisib, a PI3K inhibitor, in relapsed or refractory, indolent or aggressive lymphoma. Ann Oncol. 2017;28(9):2169–78.  https://doi.org/10.1093/annonc/mdx289.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Fowler NH, Davis RE, Rawal S, Nastoupil L, Hagemeister FB, McLaughlin P, et al. Safety and activity of lenalidomide and rituximab in untreated indolent lymphoma: an open-label, phase 2 trial. Lancet Oncol. 2014;15(12):1311–8.  https://doi.org/10.1016/S1470-2045(14)70455-3.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Blum KA. B-cell receptor pathway modulators in NHL. Hematology Am Soc Hematol Educ Program. 2015;2015:82–91.  https://doi.org/10.1182/asheducation-2015.1.82.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Wolska-Washer A, Robak P, Smolewski P, Robak T. Emerging antibody-drug conjugates for treating lymphoid malignancies. Expert Opin Emerg Drugs. 2017;22:259–73.  https://doi.org/10.1080/14728214.2017.1366447.CrossRefPubMedGoogle Scholar
  129. 129.
    Palanca-Wessels MC, Czuczman M, Salles G, Assouline S, Sehn LH, Flinn I, et al. Safety and activity of the anti-CD79B antibody-drug conjugate polatuzumab vedotin in relapsed or refractory B-cell non-Hodgkin lymphoma and chronic lymphocytic leukaemia: a phase 1 study. Lancet Oncol. 2015;16(6):704–15.  https://doi.org/10.1016/S1470-2045(15)70128-2.CrossRefPubMedGoogle Scholar
  130. 130.
    Roberts ZJ, Better M, Bot A, Roberts MR, Ribas A. Axicabtagene ciloleucel, a first-in-class CAR T cell therapy for aggressive NHL. Leuk Lymphoma. 2018;59(8):1785–96.  https://doi.org/10.1080/10428194.2017.1387905. Epub 2017 Oct 23CrossRefPubMedGoogle Scholar
  131. 131.
    Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DE, Jaocobson CA, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377:2531–44.  https://doi.org/10.1056/NEJMoa1707447.CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Sureda A, Zhang MJ, Dreger P, Carreras J, Fenske T, Finel H, et al. Allogeneic hematopoietic stem cell transplantation for relapsed follicular lymphoma: a combined analysis on behalf of the Lymphoma Working Party of the EBMT and the Lymphoma Committee of the CIBMTR. Cancer. 2018;124(8):1733–42.  https://doi.org/10.1002/cncr.31264.CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Hess G. The role of stem cell transplantation in follicular lymphoma. Best Pract Res Clin Haematol. 2018;31:31–40.  https://doi.org/10.1016/j.beha.2017.10.009.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Nahum Puebla-Osorio
    • 1
  • Paolo Strati
    • 1
  • Sattva S. Neelapu
    • 1
    Email author
  1. 1.Department of Lymphoma and MyelomaUniversity of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations