Advertisement

Spondylolysis and Spondylolisthesis in Athletes

  • Koichi Sairyo
  • Toshinori Sakai
  • Yoichiro Takata
  • Kazuta Yamashita
  • Fumitake Tezuka
  • Hiroaki Manabe
Chapter

Abstract

Lumbar spondylolysis is the most common pathology identified in adolescents with chronic back pain. A key component to the diagnosis and treatment of lumbar spondylolysis in our practice relies on CT stage classification. It is predictive of fracture union and yields important information about the pain mechanism. This in turn drives treatment. Early defects are best found on MRI with assessment for edema in the adjacent pars. Slippage is the long-term sequela to be avoided. Evidence has shown that the immature spine is more prone to slippage, and therefore routine surveillance is required. Before return to play, the athlete must complete a comprehensive rehabilitation protocol.

Keywords

Spondylolysis Pars defect Spondylolisthesis CT MRI Pediatric Athlete 

References

  1. 1.
    Sairyo K, Katoh S, Sakamaki T, Komatsubara S, Endo K, Yasui N. Three successive stress fractures at the same vertebral level in an adolescent baseball player. Am J Sports Med. 2003;31(4):606–10.CrossRefGoogle Scholar
  2. 2.
    Sairyo K, Katoh S, Sasa T, Yasui N, Goel VK, Vadapalli S, et al. Athletes with unilateral spondylolysis are at risk of stress fracture at the contra-lateral pedicle and pars interarticularis: a clinical and biomechanical study. Am J Sports Med. 2005;33(4):583–90.CrossRefGoogle Scholar
  3. 3.
    Sairyo K, Katoh S, Takata Y, Terai T, Yasui N, Goel VK, et al. MRI signal changes of the pedicle as an indicator for early diagnosis of spondylolysis in children and adolescents. A clinical and biomechanical study. Spine. 2006;31:206–11.CrossRefGoogle Scholar
  4. 4.
    Wiltse LL, Widell EH Jr, Jackson DW. Fatigue fracture: the basic lesion in isthmic spondylolisthesis. J Bone Joint Surg Am. 1975;57(1):17–22.CrossRefGoogle Scholar
  5. 5.
    Yamada A, Sairyo K, Shibuya I, Kato K, Dezawa A, Sakai T. Lumbar spondylolysis in juveniles from the same family: a report of three cases and a review of the literature. Case Rep Orthop. 2013;2013:272514.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Haukipuro K, Keränen N, Koivisto E, et al. Familial occurrence of lumbar spondylolysis and spondylolisthesis. Clin Genet. 1978;13(6):471–6.CrossRefGoogle Scholar
  7. 7.
    Cai T, Yang L, Cai W, Guo S, Yu P, Li J, et al. Dysplastic spondylolysis is caused by mutations in the diastrophic dysplasia sulfate transporter gene. Proc Natl Acad Sci U S A. 2015;112(26):8064–9.CrossRefGoogle Scholar
  8. 8.
    Sairyo K, Sakai T, Yasui N. Conservative treatment of lumbar spondylolysis in childhood and adolescence: the radiological signs which predict healing. J Bone Joint Surg (Br). 2009;91-B:206–9.CrossRefGoogle Scholar
  9. 9.
    Sairyo K, Sakai T, Yasui N, Dezawa A. Conservative treatment for pediatric lumbar spondylolysis to achieve bone healing using a hard brace: what type and how long? J Neurosurg Spine. 2012;16(6):610–4.CrossRefGoogle Scholar
  10. 10.
    Terai T, Sairyo K, Goel VK, Ebraheim N, Biyani A, Sakai T, Yasui N. Stress fracture as the beginning of spondylolysis occurs from the ventral aspect of pars interarticularis. A clinical and biomechanical study. J Bone Joint Surg Br. 2010;92(8):1123–7.CrossRefGoogle Scholar
  11. 11.
    Sairyo K, Sakai T, Amari R, Yasui N. Causes of radiculopathy in young athletes with spondylolysis. Am J Sports Med. 2010;38(2):357–62.CrossRefGoogle Scholar
  12. 12.
    Yamashita K, Sakai T, Takata Y, Hayashi F, Tezuka F, Morimoto M, et al. Utility of STIR-MRI in detecting the pain generator in asymmetric bilateral pars fracture: a report of 5 cases. Neurol Med Chir (Tokyo). 2018;58(2):91–5.CrossRefGoogle Scholar
  13. 13.
    Sairyo K, Sakai T, Mase Y, Kon T, Shibuya I, Kanamori Y, et al. Painful lumbar spondylolysis among pediatric sports players: a pilot MRI study. Arch Orthop Trauma Surg. 2011;131(11):1485–9.CrossRefGoogle Scholar
  14. 14.
    Fredrickson BE, Baker D, McHolick WJ, Yuan HA, Lubicky JP. The natural history of spondylolysis and spondylolisthesis. J Bone Joint Surg Am. 1984;66(5):699–707.CrossRefGoogle Scholar
  15. 15.
    Seitsalo S, Osterman K, Hyvãrinen H, Tallroth K, Schlenzka D, Poussa M. Progression of spondylolisthesis in children and adolescents. A long-term follow-up of 272 patients. Spine (Phila Pa 1976). 1991;16(4):417–21.CrossRefGoogle Scholar
  16. 16.
    Sairyo K, Katoh S, Ikata T, Fujii K, Kajiura K, Goel VK. Development of spondylolytic olisthesis in adolescents. Spine J. 2001;1(3):171–5.CrossRefGoogle Scholar
  17. 17.
    Sairyo K, Goel VK, Grobler LJ, Ikata T, Katoh S. The pathomechanism of isthmic lumbar spondylolisthesis. A biomechanical study in immature calf spines. Spine (Phila Pa 1976). 1998;23(13):1442–6.CrossRefGoogle Scholar
  18. 18.
    Kajiura K, Katoh S, Sairyo K, Ikata T, Goel VK, Murakami RI. Slippage mechanism of pediatric spondylolysis: biomechanical study using immature calf spines. Spine (Phila Pa 1976). 2001;26(20):2208–12; discussion 2212–3.CrossRefGoogle Scholar
  19. 19.
    Sakamaki T, Sairyo K, Katoh S, Endo H, Komatsubara S, Sano T, Yasui N. The pathogenesis of slippage and deformity in the pediatric lumbar spine: a radiographic and histologic study using a new rat in vivo model. Spine (Phila Pa 1976). 2003;28(7):645–50; discussion 650–1.Google Scholar
  20. 20.
    Sairyo K, Katoh S, Sakamaki T, Inoue M, Komatsubara S, Ogawa T, et al. Vertebral forward slippage in immature lumbar spine occurs following epiphyseal separation and its occurrence is unrelated to disc degeneration: is the pediatric spondylolisthesis a physis stress fracture of vertebral body? Spine (Phila Pa 1976). 2004;29(5):524–7.CrossRefGoogle Scholar
  21. 21.
    Tezuka F, Sairyo K, Sakai T, Dezawa A. Etiology of adult-onset stress fracture in the lumbar spine. Clin Spine Surg. 2017;30(3):E233–8.CrossRefGoogle Scholar
  22. 22.
    Sakai T, Tezuka F, Yamashita K, Takata Y, Higashino K, Nagamachi A, Sairyo K. Conservative treatment for bony healing in pediatric lumbar spondylolysis. Spine (Phila Pa 1976). 2017;42(12):E716–20.CrossRefGoogle Scholar
  23. 23.
    Cook G. Movement: functional movement system. Aptos: Target Publications; 2010.Google Scholar
  24. 24.
    Sairyo K, Kawamura T, Mase Y, Hada Y, Sakai T, et al. Jack-knife stretching promotes flexibility of tight hamstrings after 4 weeks: a pilot study. Eur J Orthop Surg Traumatol. 2013;23(6):657–63.CrossRefGoogle Scholar
  25. 25.
    Okubo Y, Kaneoka K, Imai A, Shiina I, Tatsumura M, Izumi S, Miyakawa S. Electromyographic analysis of transversus abdominis and lumbar multifidus using wire electrodes during lumbar stabilization exercises. J Orthop Sports Phys Ther. 2010;40(11):743–50.CrossRefGoogle Scholar
  26. 26.
    Overley SC, McAnany SJ, Andelman S, Kim J, Merrill RK, Cho SK, et al. Return to play in adolescent athletes with symptomatic spondylolysis without listhesis: a meta-analysis. Global Spine J. 2018;8(2):190–7.CrossRefGoogle Scholar
  27. 27.
    Nicol RO, Scott JH. Lytic spondylolysis. Repair by wiring. Spine (Phila Pa 1976). 1986;11:1027–30.CrossRefGoogle Scholar
  28. 28.
    Buck JE. Direct repair of the defect in spondylolisthesis. Preliminary report. J Bone Joint Surg Br. 1970;52:432–7.CrossRefGoogle Scholar
  29. 29.
    Tokuhashi Y, Matsuzaki H. Repair of defects in spondylolysis by segmental pedicle screw hook fixation. Spine. 1996;21:2041–5.CrossRefGoogle Scholar
  30. 30.
    Sairyo K, Sakai T, Yasui N. Minimally invasive technique for direct repair of pars interarticularis defects in adults using a percutaneous pedicle screw and hook-rod system. J Neurosurg Spine. 2009;10(5):492–5.CrossRefGoogle Scholar
  31. 31.
    Gillet P, Petit M. Direct repair of spondylolysis without spondylolisthesis, using a rod-screw construct and bone grafting of the pars defect. Spine. 1999;24:1252–6.CrossRefGoogle Scholar
  32. 32.
    Yamashita K, Higashino K, Sakai T, Takata Y, Hayashi F, Tezuka F, et al. The reduction and direct repair of isthmic spondylolisthesis using the smiley face rod method in adolescent athlete: technical note. J Med Investig. 2017;64(1.2):168–72.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Koichi Sairyo
    • 1
  • Toshinori Sakai
    • 2
  • Yoichiro Takata
    • 2
  • Kazuta Yamashita
    • 3
  • Fumitake Tezuka
    • 1
  • Hiroaki Manabe
    • 1
  1. 1.Department of OrthopedicsTokushima UniversityTokushimaJapan
  2. 2.Department of OrthopedicsInstitute of Biomedical Sciences, Tokushima University Graduate SchoolTokushimaJapan
  3. 3.Department of OrthopaedicsTokushima University HospitalTokushimaJapan

Personalised recommendations