Advertisement

Quantum Effects, CNTs, Fullerenes and Dendritic Structures

  • T. Daniel ThangaduraiEmail author
  • N. Manjubaashini
  • Sabu Thomas
  • Hanna J. Maria
Chapter
  • 87 Downloads
Part of the Engineering Materials book series (ENG.MAT.)

Abstract

Nanostructural materials have wide classification of structures based on their fabrication methods. Fullerenes are close-caged molecules containing only hexagonal and pentagonal interatomic bonding networks. Carbon nanotubes are large, linear fullerenes with aspect ratios as large as 103–105. Nanotubes as many derivatives like nanocones, nanosprings, etc. The chapter detailed about different nanostructures and its properties.

References

  1. 1.
    Lopez AM, Alonso AM, Prato M (2011) Materials chemistry of fullerene C60 derivatives. J Mater Chem 21:1305–1318CrossRefGoogle Scholar
  2. 2.
    Yanilkin VV, Gubskaya VP, Morozov VI et al (2003) Electrochemistry of fullerenes and their derivatives. Russ J Electrochem 39:1147–1165CrossRefGoogle Scholar
  3. 3.
    Prato M, Maggini M (1998) Fulleropyrrolidines: a family of full-fledged fullerene derivatives. Acc Chem Res 31:519–526CrossRefGoogle Scholar
  4. 4.
    Denis PA (2018) On the estimation of the strength of supramolecular complexes of fullerenes. Int J Quantum Chem 25670:1–5Google Scholar
  5. 5.
    Alonso AM, Tagmatarchis N, Prato M (2006) Fullerenes and their derivatives. Nanomaterials handbook. Taylor & Francis Group, LLC, New York, p 40–79Google Scholar
  6. 6.
    Huang Y, Duan X, Wei Q (2001) Directed assembly of one-dimensional nanostructures into functional networks. Science 291:630–633CrossRefGoogle Scholar
  7. 7.
    Cao G, Wang Y (2004) One-dimensional nanostructures: nanowires and nanorods. Nanostructures and nanomaterials. Imperial College Press, London, pp 110–172Google Scholar
  8. 8.
    Duan X, Lieber CM (2000) Laser-assisted catalytic growth of single crystal GaN nanowires. J Am Chem Soc 122:188–189CrossRefGoogle Scholar
  9. 9.
    Ren Z, Guo Y, Liu CH et al (2013) Hierarchically nanostructured materials for sustainable environmental applications. Front Chem 1:1–22Google Scholar
  10. 10.
    Li J, Wang D, LaPierre RR (2011) Advances in III-V semiconductor nanowires and nanodevices.  https://doi.org/10.2174/97816080505291110101Google Scholar
  11. 11.
    Wang ZL (2004) Mechanical properties of nanowires and nanobelts. Dekker encyclopedia of nanoscience and nanotechnology. Marcel Dekker, Inc., New YorkGoogle Scholar
  12. 12.
    Liu S, Sun N, Liu M et al (2018) Nanostructured SnSe: synthesis, doping, and thermoelectric properties. J Appl Phys 123:115109–115115CrossRefGoogle Scholar
  13. 13.
    Huang Q, Lilley CM, Bode M et al (2008) Electrical properties of Cu nanowires. In: IEEE conference on nanotechnology.  https://doi.org/10.1109/nano.2008.163
  14. 14.
    Bauer J, Fleischer F, Breitenstein O et al (2007) Electrical properties of nominally undoped silicon nanowires grown by molecular-beam epitaxy. Appl Phys Lett 90:012105–012108CrossRefGoogle Scholar
  15. 15.
    Joyce HJ, Boland JL, Davies CL et al (2016) A review of the electrical properties of semiconductor nanowires: insights gained from terahertz conductivity spectroscopy. Semicond Sci Tech 31:103003–103023CrossRefGoogle Scholar
  16. 16.
    Spanier JE (2006) One-dimensional semiconductor and oxide nanostructures. Nanomaterials Handbook. Taylor & Francis Group, LLC, New York, pp 294–327Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • T. Daniel Thangadurai
    • 1
    Email author
  • N. Manjubaashini
    • 2
  • Sabu Thomas
    • 3
  • Hanna J. Maria
    • 4
  1. 1.Department of Nanoscience and TechnologySri Ramakrishna Engineering CollegeCoimbatoreIndia
  2. 2.Department of Nanoscience and TechnologySri Ramakrishna Engineering CollegeCoimbatoreIndia
  3. 3.IIUCNNMahatma Gandhi UniversityKottayamIndia
  4. 4.IIUCNNMahatma Gandhi UniversityKottayamIndia

Personalised recommendations