Characterization and Technical Analysis of Nanostructured Materials

  • T. Daniel ThangaduraiEmail author
  • N. Manjubaashini
  • Sabu Thomas
  • Hanna J. Maria
Part of the Engineering Materials book series (ENG.MAT.)


The morphology, structural and other properties of nanostructured materials are analyzed by different characterization techniques. In the below characterization studies, the shapes, sizes, and structures of nanostructured materials and their distribution are investigated. This chapter discuss briefly on analysis techniques.


  1. 1.
    Ramrakhiani M (2012) Nanostructures and their applications. Recent Res Sci Technol 4:14–19Google Scholar
  2. 2.
    Winhold M, Leitner M, Lieb A et al (2017) Correlative in-situ AFM & SEM & EDX analysis of nanostructured materials. Microsc Microanal 23:26–27CrossRefGoogle Scholar
  3. 3.
    Bukharaev AA, Nurgazizov N, Mozhanova AA et al (1999) Atomic force microscopy characterization of nanostructured materials using selective chemical etching. Nanostruct Phys Technology 7:236–239Google Scholar
  4. 4.
    Knauth P, Schoonman J (2004) Nanostructured materials selected synthesis methods, properties and applications. Kluwer Academic Publishers, New YorkGoogle Scholar
  5. 5.
    Fink HW (1986) Mono-atomic tips for scanning tunneling microscopy. IBM J Res Div 30:460–465CrossRefGoogle Scholar
  6. 6.
    Paul W, Grutter P (2015) Field ion microscopy for the characterization of scanning probes. In: Surface science tools for nanomaterials characterization. Springer, Berlin, pp 159–198CrossRefGoogle Scholar
  7. 7.
    Scepanovic MJ, Grujic-Brojcin M, Dohcevic-Mitrovic Z et al (2007) Vibrational spectroscopy methods in the characterization of nanostructured materials. JOAM 9:30–36Google Scholar
  8. 8.
    Zhu KR, Zhang MS, Chen Q et al (2005) Size and phonon-confinement effects on low frequency Raman mode of anatase TiO2 nanocrystal. Phys Lett A 340:220–227CrossRefGoogle Scholar
  9. 9.
    Beshkar F, Amiri O, Salehi Z (2017) Synthesis of ZnSnO3 nanostructures by using novel gelling agents and their application in degradation of textile dye. Sep Purif Technol 184:66–71CrossRefGoogle Scholar
  10. 10.
    Schmitt SW, Sarau G, Christiansen S (2015) Observation of strongly enhanced photoluminescence from inverted cone-shaped silicon nanostructures. Sci Rep 5:17089CrossRefGoogle Scholar
  11. 11.
    Jusman Y, Ng SC, Abu Osman NA (2014) Investigation of CPD and HMDS sample preparation techniques for cervical cells in developing computer-aided screening system based on FE-SEM/EDX. Sci World J 289817:1–11Google Scholar
  12. 12.
    Sall T, Mollar M, Mari B (2016) Substrate influences on the properties of SnS thin films deposited by chemical spray pyrolysis technique for photovoltaic applications. J Mater Sci 51:7607–7613CrossRefGoogle Scholar
  13. 13.
    Chu KKW, Chen JS, Der Chang L et al (2017) Graphene-edge probes for scanning tunneling microscopy. Optik 130:976–980CrossRefGoogle Scholar
  14. 14.
    Fulwyler M, Hanley QS, Schnetter C et al (2005) Selective photoreactions in a programmable array microscope (PAM): Photoinitiated polymerization, photodecaging, and photochromic conversion. Cytometry A 67:68–75CrossRefGoogle Scholar
  15. 15.
    Brundl CR, Evans CA, Wilson S (1992) Encyclopedia of materials characterization: surfaces, interfaces, thin films. Gulf Professional Publishing, TexasGoogle Scholar
  16. 16.
    Barbin V (2013) Application of cathodoluminescence microscopy to recent and past biological materials: a decade of progress. Mineral Petrol 107:353–362CrossRefGoogle Scholar
  17. 17.
    Matthew J (2004) Surface analysis by Auger and x-ray photoelectron spectroscopy. In: Briggs D, Grant JT (eds). IMPublications, Chichester, UK and Surface Spectra, Manchester, UK, 2003, 900 pp. ISBN 1-901019-04-7Google Scholar
  18. 18.
    Ahad IU, Budner B, Fiedorowicz H et al (2013) Nitrogen doping in biomaterials by extreme ultraviolet (EUV) surface modification for biocompatibility control. Eur Cell Mater 26:145–146Google Scholar
  19. 19.
    Jenkins TE (1998) Semiconductor science; growth and characterization techniques. Prentice Hall, Harlow, EssexGoogle Scholar
  20. 20.
    Gao XL, Pan JS, Hsu CY (2006) Laser-fluoride effect on root demineralization. J Dent Res 85:919–923CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • T. Daniel Thangadurai
    • 1
    Email author
  • N. Manjubaashini
    • 2
  • Sabu Thomas
    • 3
  • Hanna J. Maria
    • 4
  1. 1.Department of Nanoscience and TechnologySri Ramakrishna Engineering CollegeCoimbatoreIndia
  2. 2.Department of Nanoscience and TechnologySri Ramakrishna Engineering CollegeCoimbatoreIndia
  3. 3.IIUCNNMahatma Gandhi UniversityKottayamIndia
  4. 4.IIUCNNMahatma Gandhi UniversityKottayamIndia

Personalised recommendations