Mathematical Finance pp 617-661 | Cite as

# Utility-Based Valuation and Hedging of Derivatives

Chapter

First Online:

## Abstract

Valuation based on quadratic hedging is easy to understand and mathematically tractable compared to other approaches. Its economic justification is less obvious.

## References

- 4.P. Artzner, F. Delbaen, J. Eber, D. Heath, Coherent measures of risk. Math. Finance
**9**(3), 203–228 (1999)MathSciNetCrossRefGoogle Scholar - 11.P. Barrieu, N. El Karoui, Optimal derivatives design under dynamic risk measures, in
*Mathematics of Finance*, vol. 351 (Amer. Math. Soc., Providence, 2004), pp. 13–25zbMATHGoogle Scholar - 12.P. Barrieu, N. El Karoui, Inf-convolution of risk measures and optimal risk transfer. Finance Stochast.
**9**(2), 269–298 (2005)MathSciNetCrossRefGoogle Scholar - 19.D. Becherer, Rational hedging and valuation of integrated risks under constant absolute risk aversion. Insurance Math. Econom.
**33**(1), 1–28 (2003)MathSciNetCrossRefGoogle Scholar - 20.D. Becherer, Bounded solutions to backward SDE’s with jumps for utility optimization and indifference hedging. Ann. Appl. Probab.
**16**(4), 2027–2054 (2006)MathSciNetCrossRefGoogle Scholar - 25.S. Biagini, M. Frittelli, M. Grasselli, Indifference price with general semimartingales. Math. Finance
**21**(3), 423–446 (2011)MathSciNetCrossRefGoogle Scholar - 45.R. Carmona (ed.),
*Indifference Pricing: Theory and Applications*(Princeton Univ. Press, Princeton, 2009)zbMATHGoogle Scholar - 74.F. Delbaen, P. Grandits, T. Rheinländer, D. Samperi, M. Schweizer, C. Stricker, Exponential hedging and entropic penalties. Math. Finance
**12**(2), 99–123 (2002)MathSciNetCrossRefGoogle Scholar - 116.H. Föllmer, A. Schied, Convex measures of risk and trading constraints. Finance Stochast.
**6**(4), 429–447 (2002)MathSciNetCrossRefGoogle Scholar - 117.H. Föllmer, A. Schied,
*Stochastic Finance: An Introduction in Discrete Time*, 3rd edn. (De Gruyter, Berlin, 2011)CrossRefGoogle Scholar - 121.M. Frittelli, E. Rosazza Gianin, Putting order in risk measures. J. Bank. Financ.
**26**(7), 1473–1486 (2002)CrossRefGoogle Scholar - 139.D. Heath, H. Ku, Pareto equilibria with coherent measures of risk. Math. Finance
**14**(2), 163–172 (2004)MathSciNetCrossRefGoogle Scholar - 141.V. Henderson, Valuation of claims on nontraded assets using utility maximization. Math. Finance
**12**(4), 351–373 (2002)MathSciNetCrossRefGoogle Scholar - 145.S. Hodges, A. Neuberger, Optimal replication of contingent claims under transaction costs. Rev. Futur. Mark.
**8**, 222–239 (1989)Google Scholar - 164.J. Kallsen, A utility maximization approach to hedging in incomplete markets. Math. Methods Oper. Res.
**50**(2), 321–338 (1999)MathSciNetCrossRefGoogle Scholar - 166.J. Kallsen, Derivative pricing based on local utility maximization. Finance Stochast.
**6**(1), 115–140 (2002)MathSciNetCrossRefGoogle Scholar - 180.J. Kallsen, T. Rheinländer, Asymptotic utility-based pricing and hedging for exponential utility. Stat. Decis.
**28**(1), 17–36 (2011)MathSciNetzbMATHGoogle Scholar - 198.D. Kramkov, M. Sîrbu, Sensitivity analysis of utility-based prices and risk-tolerance wealth processes. Ann. Appl. Probab.
**16**(4), 2140–2194 (2006)MathSciNetCrossRefGoogle Scholar - 199.D. Kramkov, M. Sîrbu, Asymptotic analysis of utility-based hedging strategies for small number of contingent claims. Stoch. Process. Appl.
**117**(11), 1606–1620 (2007)MathSciNetCrossRefGoogle Scholar - 211.D. Madan, P. Carr, E. Chang, The variance gamma process and option pricing. Eur. Finance Rev.
**2**(1), 79–105 (1998)CrossRefGoogle Scholar - 212.M. Mania, M. Schweizer, Dynamic exponential utility indifference valuation. Ann. Appl. Probab.
**15**(3), 2113–2143 (2005)MathSciNetCrossRefGoogle Scholar - 216.A. McNeil, R. Frey, P. Embrechts,
*Quantitative Risk Management: Concepts, Techniques and Tools*, 2nd edn. (Princeton Univ. Press, Princeton, 2015)zbMATHGoogle Scholar - 242.T. Rheinländer, J. Sexton,
*Hedging Derivatives*(World Scientific, Hackensack, 2011)CrossRefGoogle Scholar - 253.R. Rouge, N. El Karoui, Pricing via utility maximization and entropy. Math. Finance
**10**(2), 259–276 (2000)MathSciNetCrossRefGoogle Scholar - 286.A. Toussaint, R. Sircar, A framework for dynamic hedging under convex risk measures.
*Seminar on Stochastic Analysis, Random Fields and Applications VI*(Birkhäuser, Basel, 2011), pp. 429–451CrossRefGoogle Scholar

## Copyright information

© Springer Nature Switzerland AG 2019