Advertisement

Experimental Analysis of Titanium Drilling

  • Albert J. Shih
  • Bruce L. Tai
  • Rui Li
Chapter

Abstract

Drill temperature is a critical factor in drilling of Ti alloys. As a result of the low thermal conductivity of the Ti alloys as the work-material, most of the heat generated in the tool–chip interface transfers to the tool and generates high drill temperature in drilling of Ti alloys. This chapter outlines experimental study of drilling of Ti alloys.

References

  1. 1.
    Stephenson DA, Agapiou JS (2016) Metal cutting theory and practice, 3rd edn. CRC Press, Boca RatonCrossRefGoogle Scholar
  2. 2.
    Ernst H, Haggerty WA (1958) Spiral point drill-new concept in drill point geometry. ASME Trans 80:1059–1072Google Scholar
  3. 3.
    Li R, Riester L, Watkins TR, Blau PJ, Shih AJ (2008) Metallurgical analysis and nanoindentation characterization of Ti–6Al–4V workpiece and chips in high-throughput drilling. Mater Sci Eng A 472:115–124CrossRefGoogle Scholar
  4. 4.
    Center MD (1980) Machining data handbook, 3rd edn. TechSolve, CincinnatiGoogle Scholar
  5. 5.
    Kitagawa T, Kubo A, Maekawa K (1997) Temperature and wear of cutting tools in high-speed machining of inconel 718 and Ti-6Al-6V-2Sn. Wear 202:142–148CrossRefGoogle Scholar
  6. 6.
    Zareena A, Rahman M, Wong Y (2001) High speed machining of aerospace alloy Ti–6Al–4V. In: 33rd international SAMPE technical conference. Advancing affordable materials technology, Seattle, WA, vol 33. SAMPE, pp 739–750Google Scholar
  7. 7.
    Trent EM, Wright PK (2000) Metal cutting. Butterworth-Heinemann, BostonCrossRefGoogle Scholar
  8. 8.
    Ke F (2003) Analysis and modeling of chip ejection in deep hole drilling process. University of Michigan, Ann ArborGoogle Scholar
  9. 9.
    Ulutan D, Ozel T (2011) Machining induced surface integrity in titanium and nickel alloys: a review. Int J Mach Tools Manuf 51:250–280CrossRefGoogle Scholar
  10. 10.
    Mantle AL, Aspinwall DK (2001) Surface integrity of a high speed milled gamma titanium aluminide. J Mater Process Technol 118:143–150CrossRefGoogle Scholar
  11. 11.
    Che-Haron CH (2001) Tool life and surface integrity in turning titanium alloy. J Mater Process Technol 118:231–237CrossRefGoogle Scholar
  12. 12.
    Shaw MC, Dirke SO, Smith P, Cook NH, Loewen EG, Yang CT (1954) Machining titanium: a report prepared for the United States air force. MIT Press, CambridgeGoogle Scholar
  13. 13.
    Komanduri R, Von Turkovich BF (1981) New observations on the mechanism of chip formation when machining titanium alloys. Wear 69:179–188CrossRefGoogle Scholar
  14. 14.
    Komanduri R (1982) Some clarifications on the mechanics of chip formation when machining titanium alloys. Wear 76:15–34CrossRefGoogle Scholar
  15. 15.
    Xie JQ, Bayoumi AE, Zbib HM (1996) A study on shear banding in chip formation of orthogonal machining. Int J Mach Tools Manuf 36:835–847CrossRefGoogle Scholar
  16. 16.
    Sheikh-Ahmad J, Bailey JA (1997) Flow instability in the orthogonal machining of CP titanium. J Manuf Sci Eng 119:307–313CrossRefGoogle Scholar
  17. 17.
    Barry J, Byrne G, Lennon D (2001) Observations on chip formation and acoustic emission in machining Ti–6Al–4V alloy. Int J Mach Tools Manuf 41:1055–1070CrossRefGoogle Scholar
  18. 18.
    Qu J, Riester L, Shih AJ, Scattergood RO, Lara-Curzio E, Watkins TR (2003) Nanoindentation characterization of surface layers of electrical discharge machined WC–Co. Mater Sci Eng A 344:125–131CrossRefGoogle Scholar
  19. 19.
    Machado A, Wallbank J (1990) Machining of titanium and its alloys—a review. Proc Inst Mech Eng B J Eng Manuf 204:53–60CrossRefGoogle Scholar
  20. 20.
    Cantero JL, Tardío M, Canteli JA, Marcos-Bárcena M, Miguélez MH (2005) Dry drilling of alloy Ti–6Al–4V. Int J Mach Tools Manuf 45:1246–1255CrossRefGoogle Scholar
  21. 21.
    Cullity BD (1978) Elements of x-ray diffraction. Addison-Wesley, ReadingGoogle Scholar
  22. 22.
    Donachie MJ (1988) Titanium: a technical guide. ASM International, Material ParkGoogle Scholar
  23. 23.
    Bayoumi AE, Xie JQ (1995) Some metallurgical aspects of chip formation in cutting TI-6AL-4V alloy. Mater Sci Eng A 190:173–180CrossRefGoogle Scholar
  24. 24.
    Reissig L, Völkl R, Mills MJ, Glatzel U (2004) Investigation of near surface structure in order to determine process-temperatures during different machining processes of Ti6Al4V. Scr Mater 50:121–126CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Albert J. Shih
    • 1
  • Bruce L. Tai
    • 2
  • Rui Li
    • 3
  1. 1.Mechanical EngineeringUniversity of MichiganAnn ArborUSA
  2. 2.Mechanical EngineeringTexas A&M UniversityCollege StationUSA
  3. 3.China Aerospace Science and Technology CorporationBeijingChina

Personalised recommendations