Advertisement

Theoretical Insights into the Electronic Structure and Catalytic Activity on MoS2-Based Catalyst

  • Xiaodong WenEmail author
  • Tao Yang
  • Manuel Ramos
  • Gabriel A. Gonzalez
  • Russell R. Chianelli
Chapter

Abstract

Transition metal sulfides like molybdenum disulfide (MoS2) have been extensively used in liquid fuel production in an industrial process called hydrotreatment for more than 70 years. MoS2 possesses highly catalytic activity for hydrogenation (HYD), hydrodesulfurization (HDS), and hydrodenitrogenation (HDN) when compared to commercial catalyst for reactions to achieve industrial production of less contaminant liquid fuels, mainly gasoline and diesel. Several studies made in the HDS field are focused mainly on the understanding of electronic structure to correlate that information to its catalytic activity and reaction mechanisms. This had been done applying extended X-ray absorption fine structure (EXAFS), atomic force microscopy (AFM), high-resolution transmission electron microscopy (HREM), infrared spectroscopy (IRS), X-ray photoelectron spectroscopy (XPS), and temperature-programed reduction (TPR) among other techniques. However, computer-assisted numerical simulation based on density functional theory had been applied as a complementary technique to undergo the study of electronic structure on many catalytic materials. In this particular chapter, we present several cases of study made on MoS2-based catalyst, with emphasis on carburization and oxidation processes near catalytic material surface along with some reaction mechanisms to describe HDS process.

Keywords

MoS2 Catalysts Carburization Hydrogenation Hydrodesulfurization Hydrodenitrogenation Sulfur compounds Nitrogen compounds Density functional theory 

References

  1. 1.
  2. 2.
    A. Stanislaus, B.H. Cooper, Catal. Rev. Sci. Eng. 36, 75 (1994)CrossRefGoogle Scholar
  3. 3.
    N. Topsøe, H. Topsøe, J. Catal. 75, 354 (1982)CrossRefGoogle Scholar
  4. 4.
    X. Gao, Q. Xin, Catal. Lett. 18, 409 (1993)CrossRefGoogle Scholar
  5. 5.
    Y.W. Li, X.Y. Pang, B. Delmon, J. Phys. Chem. A 104, 11375 (2000)CrossRefGoogle Scholar
  6. 6.
    L.S. Byskov, J.K. Nørskov, B.S. Clausen, H. Topsøe, Catal. Lett. 64, 95 (2000)CrossRefGoogle Scholar
  7. 7.
    J.V. Lauritsen, M.V. Bollinger, E. Lægsgaard, K.W. Jacobsen, J.K. Nøskov, B.S. Clausen, H. Topsøe, F. Besenbacher, J. Catal. 221, 510 (2004)CrossRefGoogle Scholar
  8. 8.
    L.S. Byskov, B. Hammer, J.K. Nørskov, B.S. Clausen, H. Topsøe, Catal. Lett. 47, 177 (1997)CrossRefGoogle Scholar
  9. 9.
    L.S. Byskov, J.K. Nørskov, B.S. Clausen, H. Topsøe, J. Catal. 187, 109 (1999)CrossRefGoogle Scholar
  10. 10.
    P. Raybaud, J. Hafner, G. Kresse, H. Toulhoat, Phys. Rev. Lett. 80, 1481 (1998)CrossRefGoogle Scholar
  11. 11.
    P. Raybaud, J. Hafner, G. Kresse, H. Toulhoat, Surf. Sci. 407, 237 (1998)CrossRefGoogle Scholar
  12. 12.
    H. Toulhoat, P. Raybaud, S. Kasztelan, G. Kresse, J. Hafner, Catal. Today 50, 629 (1999)CrossRefGoogle Scholar
  13. 13.
    P. Raybaud, J. Hafner, G. Kresse, S. Kasztelan, H. Toulhoat, J. Catal. 189, 129 (2000)CrossRefGoogle Scholar
  14. 14.
    P. Raybaud, J. Hafner, G. Kresse, S. Kasztelan, H. Toulhoat, J. Catal. 190, 128 (2000)CrossRefGoogle Scholar
  15. 15.
    S. Cristol, J.F. Paul, E. Payen, D. Bougeard, J. Hafner, F. Hutschka, Stud. Surf. Sci. Catal. 127, 327 (1999)CrossRefGoogle Scholar
  16. 16.
    S. Cristol, J.F. Paul, E. Payen, D. Bougeard, S. Clémendot, F. Hutschka, J. Phys. Chem. B 104, 11220 (2000)CrossRefGoogle Scholar
  17. 17.
    A. Travert, H. Nakamura, R.A. van Santen, S. Cristol, J.F. Paul, E. Payen, J. Am. Chem. Soc. 124, 7084 (2002)CrossRefGoogle Scholar
  18. 18.
    J.F. Paul, E. Payen, J. Phys. Chem. B 107, 4057 (2003)CrossRefGoogle Scholar
  19. 19.
    S. Cristol, J.F. Paul, E. Payen, D. Bougeard, F. Hutschka, S. Clémendot, J. Catal. 224, 138 (2004)CrossRefGoogle Scholar
  20. 20.
    M. Sun, A.E. Nelson, J. Adjaye, J. Catal. 226, 32 (2004)CrossRefGoogle Scholar
  21. 21.
    A. Sierraalta, A. Herize, R. Añez, J. Phys. Chem. A 105, 6519 (2001)CrossRefGoogle Scholar
  22. 22.
    R. Pis Diez, A.H. Jubert, J. Mol. Catal. 73, 65 (1992)CrossRefGoogle Scholar
  23. 23.
    A.E. Gainza, E.N. Rodríguez-Arias, F. Ruette, J. Mol. Catal. 85, 345 (1993)CrossRefGoogle Scholar
  24. 24.
    R. Chen, Q. Xin, J. Mol. Catal. 64, 321 (1991)CrossRefGoogle Scholar
  25. 25.
    K. Teraishi, J. Mol. Catal. A 126, 73 (1997)CrossRefGoogle Scholar
  26. 26.
    H. Jiao, Y.W. Li, B. Delmon, J.F. Halet, J. Am. Chem. Soc. 123, 7334 (2001)CrossRefGoogle Scholar
  27. 27.
    R. Pis Diez, A.H. Jubert, J. Mol. Catal. 83, 219 (1993)CrossRefGoogle Scholar
  28. 28.
    X. Ma, H.H. Schobert, J. Mol. Catal. A 160, 409 (2000)CrossRefGoogle Scholar
  29. 29.
    R. Chen, Q. Xin, C. Wang, J. Mol. Catal. 89, 345 (1994)CrossRefGoogle Scholar
  30. 30.
    J.A. Rodriguez, J. Phys. Chem. B 101, 7524 (1997)CrossRefGoogle Scholar
  31. 31.
    H. Yang, C. Fairbridge, Z. Ring, Energy Fuel 17, 387 (2003)CrossRefGoogle Scholar
  32. 32.
    H. Yang, C. Fairbridge, J. Chen, Z. Ring, Catal. Lett. 97, 217 (2004)CrossRefGoogle Scholar
  33. 33.
    P. Faye, E. Payen, D. Bougeard, J. Catal. 179, 560 (1998)CrossRefGoogle Scholar
  34. 34.
    P. Faye, E. Payen, D. Bougeard, J. Mol. Model. 5, 63 (1999)CrossRefGoogle Scholar
  35. 35.
    H. Orita, K. Uchida, N. Itoh, Appl. Catal. A: Gen. 258, 115 (2004)CrossRefGoogle Scholar
  36. 36.
    T. Zeng, X.-D. Wen, G.-S. Wu, Y.-W. Li, H. Jiao, J. Phys. Chem. B 109, 2846 (2005)CrossRefGoogle Scholar
  37. 37.
    R. Pis Diez, A.H. Jubert, J. Mol. Struct. 210, 329 (1990)CrossRefGoogle Scholar
  38. 38.
    H. Orita, K. Uchida, N. Itoh, J. Mol. Catal. A 195, 173 (2003)CrossRefGoogle Scholar
  39. 39.
    X.-D. Wen, T. Zeng, Y.-W. Li, J. Wang, H. Jiao, J. Phys. Chem. B 109, 18491–18499 (2005)CrossRefGoogle Scholar
  40. 40.
    H. Schweiger, P. Raybaud, G. Kresse, H. Toulhoat, J. Catal. 207, 76 (2002)CrossRefGoogle Scholar
  41. 41.
    F. Delannay, Appl. Catal. 161, 135 (1985)CrossRefGoogle Scholar
  42. 42.
    A.N. Startsev, V.I. Zaikovskii, Kinet. Katal. 35, 288 (1994)Google Scholar
  43. 43.
    B. Delmon, in Catalysts in Petroleum Refining, ed. by D. L. Trimm, S. Akashah, M. Absi-Halabi, A. Bishara, (Elsevier, Amsterdam, 1989), p. 1990Google Scholar
  44. 44.
    H. Topsøe, B.S. Clausen, R. Candia, C. Wivel, S. Morup, J. Catal. 68, 433 (1984)CrossRefGoogle Scholar
  45. 45.
    G.A. Gonzalez, M. Alvarado, M.A. Ramos, G. Berhault, R.R. Chianelli, Comput. Mater. Sci. 121, 240–247 (2016)CrossRefGoogle Scholar
  46. 46.
    M. Ramos, G. Berhault, D.A. Ferrer, B. Torres, R.R. Chianelli, Cat. Sci. Technol. 2, 164 (2012)CrossRefGoogle Scholar
  47. 47.
    G.A. Gonzalez, M. Alvarado, M.A. Ramos, G. Berhault, R.R. Chianelli, Comput. Mater. Sci. 123, 93–105 (2016)CrossRefGoogle Scholar
  48. 48.
    R.R. Chianelli, T.A. Pecoraro, U.S. Patent 4,288,422, 1981Google Scholar
  49. 49.
    T.A. Pecoraro, R.R. Chianelli, J. Catal. 67, 430 (1981)CrossRefGoogle Scholar
  50. 50.
    R.L. Seiver, R.R. Chianelli, U.S. Patent 4430,443, 1984Google Scholar
  51. 51.
    H. Hallie, Ketjen Catalysts Symposium (Elsevier, Amsterdam, 1982), p. 58Google Scholar
  52. 52.
    S. Kasztelan, C. R. Acad. Sci. Paris Ser. II 307, 727 (1988)Google Scholar
  53. 53.
    R.R. Chianelli, G. Berhault, Catal. Today 53, 357 (1999)CrossRefGoogle Scholar
  54. 54.
    X.-D. Wen, Z. Cao, Y.-W. Li, J. Wang, H. Jiao, J. Phys. Chem. B 110(47), 23860–23869 (2006)CrossRefGoogle Scholar
  55. 55.
    H. Ge, X.-D. Wen, M.A. Ramos, R.R. Chianelli, S. Wang, J. Wang, Z. Qin, Z. Lyu, X. Li, ACS Catal. 4, 2556–2565 (2014)CrossRefGoogle Scholar
  56. 56.
    X. Liu, D. Cao, T. Yang, H. Li, H. Ge, M. Ramos, Q. Peng, A.K. Dearden, Z. Cao, Y. Yang, Y.-W. Li, X.-D. Wen, RSC Adv. 7, 9513–9520 (2017)CrossRefGoogle Scholar
  57. 57.
    C.J. Wright, C. Sampson, D. Fraser, R.B. Moyes, P.B. Wells, C. Riekel, J. Chem. Soc. Faraday Trans. 176, 1585 (1980)CrossRefGoogle Scholar
  58. 58.
    J. Polz, H. Zeilinger, B. Müller, H. Knözinger, J. Catal. 120, 22 (1989)CrossRefGoogle Scholar
  59. 59.
    W.P. Dianis, Appl. Catal. 30, 99 (1987)CrossRefGoogle Scholar
  60. 60.
    A.B. Anderson, Z.Y. Al-Saigh, W.K. Hall, J. Phys. Chem. 92, 803 (1988)CrossRefGoogle Scholar
  61. 61.
    M.R. Dubois, M.C. van Der Veer, D.L. Dubois, R.C. Haltiwanger, N.K. Miller, J. Am. Chem. Soc. 102, 7456 (1980)CrossRefGoogle Scholar
  62. 62.
    M. Neurock, R.A. van Santen, J. Am. Chem. Soc. 116, 4427 (1994)CrossRefGoogle Scholar
  63. 63.
    F. Frechard, P. Sautet, Surf. Sci. 389, 131 (1997)CrossRefGoogle Scholar
  64. 64.
    L.S. Byskov, M. Bollinger, J.K. Nørskov, B.S. Clausen, H. Topsøe, J. Mol. Catal. A 163, 117 (2000)CrossRefGoogle Scholar
  65. 65.
    M.V. Bollinger, K.W. Jaconben, J.K. Nørskov, Phys. Rev. B 67, 085410 (2003)CrossRefGoogle Scholar
  66. 66.
    X.-D. Wen, T. Zeng, B.-T. Teng, F.-Q. Zhang, Y.-W. Li, J. Wang, H. Jiao, J. Mol. Catal. A 249, 191–200 (2006)CrossRefGoogle Scholar
  67. 67.
    P. Mills, S. Korlann, M.E. Bussell, J. Phys. Chem. A 105, 4418 (2001)CrossRefGoogle Scholar
  68. 68.
    P.C.H. Mitchell, D.A. Green, E. Payen, J. Tomkinson, S.F. Parker, Phys. Chem. Chem. Phys. 1, 3357 (1999)CrossRefGoogle Scholar
  69. 69.
    S. Harris, R.R. Chianelli, J. Catal. 98, 17 (1986)CrossRefGoogle Scholar
  70. 70.
    D.L. Sullivan, J.G. Ekerdt, J. Catal. 178, 226 (1998)CrossRefGoogle Scholar
  71. 71.
    G.D. Atter, D.M. Chapman, R.E. Hester, D.A. Green, P.C.H. Mitchell, J. Tomkinson, J. Chem. Soc. Faraday Trans. 93, 2977 (1997)CrossRefGoogle Scholar
  72. 72.
    P. Raybaud, G. Kresse, J. Hafner, H. Toulhoat, Phys. Rev. Lett. 80, 1481 (1998)CrossRefGoogle Scholar
  73. 73.
    R.M. Martin, Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, Cambridge, 2004). ISBN-13: 978-0521534406CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Xiaodong Wen
    • 1
    • 2
    Email author
  • Tao Yang
    • 3
  • Manuel Ramos
    • 4
  • Gabriel A. Gonzalez
    • 5
  • Russell R. Chianelli
    • 5
  1. 1.State Key Laboratory of Coal ConversionInstitute of Coal Chemistry Chinese Academy of SciencesTaiyuanChina
  2. 2.Synfuels China Co. LtdBeijingChina
  3. 3.Beijing Advanced Innovation Center for Materials Genome Engineering, School of Computer ScienceBeijing Information Science and Technology UniversityBeijingChina
  4. 4.Department of Physics and MathematicsUniversidad Autónoma de Cd. JuárezJuárezMexico
  5. 5.Materials Research and Technology InstituteUniversity of Texas at El PasoEl PasoUSA

Personalised recommendations