Advertisement

The Large Hadron Collider at CERN

  • Nicolas Maximilian KöhlerEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The Large Hadron Collider at CERN is the currently most powerful accelerator of the world. It serves as an ideal laboratory to search for new particles.

References

  1. 1.
    De Broglie M (1921) Les phénoménes photo-électriques pour les rayons X et les spectres corpusculaires des éléments. J Phys Radium 2:9.  https://doi.org/10.1051/jphys-rad:0192100209026500
  2. 2.
    Gaisser TK, Engel R, Resconi E (2016) Cosmic rays and particle physics. Cambridge University Press. isbn: 9781316598436Google Scholar
  3. 3.
    Lemoine M, Sigl G (2001) Physics and astrophysics of ultra high energy cosmic rays. Lecture notes in physics. Springer, Berlin Heidelberg. isbn: 9783540428992Google Scholar
  4. 4.
    Evans L, Bryant P (2008) LHC machine. J Instrum 3(08):S08001ADSCrossRefGoogle Scholar
  5. 5.
    LEP design report, vol 1. The LEP injector chain (1983). http://cds.cern.ch/record/98881
  6. 6.
    LEP design report: vol 2. The LEP main ring (1984). http://cds.cern.ch/record/102083
  7. 7.
    ATLAS Collaboration (2008) The ATLAS experiment at the CERN Large Hadron Collider. JINST 3:S08003.  https://doi.org/10.1088/1748-0221/3/08/S08003Google Scholar
  8. 8.
    CMS Collaboration (2008) The CMS experiment at the CERN LHC. JINST 3:S08004.  https://doi.org/10.1088/1748-0221/3/08/S08004Google Scholar
  9. 9.
    Aamodt K et al (2008) The ALICE experiment at the CERN LHC. JINST 3:S08002.  https://doi.org/10.1088/1748-0221/3/08/S08002Google Scholar
  10. 10.
    Alves A et al (2008) The LHCb detector at the LHC. JINST 3:S08005.  https://doi.org/10.1088/1748-0221/3/08/S08005ADSGoogle Scholar
  11. 11.
    Bruning O et al (2004) LHC design report: vol 2. The LHC infrastructure and general services. http://cds.cern.ch/record/815187
  12. 12.
    Bruning OS et al (2004) LHC design report: vol 1. The LHC main ring. http://cds.cern.ch/record/782076
  13. 13.
    Casas J et al (1992) Design concept and first experimental validation of the superfluid helium system for the Large Hadron Collider (LHC) project at CERN. In: Proceedings of the fourteenth international cryogenic engineering conference and international cryogenic materials conference cryogenic engineering & superconductor technology. Cryogenics, vol 32, pp 118–121. issn: 0011-2275.  https://doi.org/10.1016/0011-2275(92)90122-QADSCrossRefGoogle Scholar
  14. 14.
    Benedikt M et al (2004) LHC design report: vol 3. The LHC injector chain. http://cds.cern.ch/record/823808
  15. 15.
    Wiedemann H (1999) Particle accelerator physics I, vol 1. Springer. isbn: 9783540646716. https://books.google.de/books?id=nTJOUx5oQQ0CCrossRefGoogle Scholar
  16. 16.
    Frauenfelder H, Henley EM, Reck M (1999) Teilchen und Kerne: dieWelt der subatomaren Physik. Oldenbourg. isbn: 9783486244175Google Scholar
  17. 17.
    Haffner J (2013) The CERN accelerator complex. https://cds.cern.ch/record/1621894
  18. 18.
    Adriani O et al (2008) The LHCf detector at the CERN Large Hadron Collider. JINST 3:S08006.  https://doi.org/10.1088/1748-0221/3/08/S08006Google Scholar
  19. 19.
    Anelli G et al (2008) The TOTEM experiment at the CERN Large Hadron Collider. JINST 3:S08007.  https://doi.org/10.1088/1748-0221/3/08/S08007Google Scholar
  20. 20.
    Pinfold J et al (2009) Technical design report of the MoEDAL experiment. CERN-LHCC-2009-006Google Scholar
  21. 21.
  22. 22.
    Campbell JM, Huston JW, Stirling WJ (2007) Hard interactions of quarks and gluons: a primer for LHC physics. Rep Prog Phys 70:89.  https://doi.org/10.1088/0034-4885/70/1/R02ADSCrossRefGoogle Scholar
  23. 23.
    Field RD (2001) The underlying event in hard scattering processes. In: eConf C010630, p P501. arXiv: hep-ph/0201192 [hep-ph]
  24. 24.
    Moraes A, Buttar C, Dawson I (2007) Prediction for minimum bias and the underlying event at LHC energies. Eur Phys J C 50:435–466.  https://doi.org/10.1140/epjc/s10052-007-0239-1ADSCrossRefGoogle Scholar
  25. 25.
    Collins JC, Soper DE, Sterman GF (1989) Factorization of hard processes in QCD. Adv Ser Direct High Energy Phys 5:1–91.  https://doi.org/10.1142/9789814503266_0001ADSCrossRefzbMATHGoogle Scholar
  26. 26.
    Martin AD et al (2009) Parton distributions for the LHC. Eur Phys J C 63:189–285.  https://doi.org/10.1140/epjc/s10052-009-1072-5ADSCrossRefzbMATHGoogle Scholar
  27. 27.
    Pumplin J et al (2002) New generation of parton distributions with uncertainties from global QCD analysis. JHEP 07:012.  https://doi.org/10.1088/1126-6708/2002/07/012CrossRefGoogle Scholar
  28. 28.
    Ball RD et al (2013) Parton distributions with LHC data. Nucl Phys B 867:244–289.  https://doi.org/10.1016/j.nuclphysb.2012.10.003ADSCrossRefGoogle Scholar
  29. 29.
    Ball RD et al (2011) Impact of heavy quark masses on parton distributions and LHC phenomenology. Nucl Phys B 849:296–363.  https://doi.org/10.1016/j.nuclphysb.2011.03.021ADSCrossRefGoogle Scholar
  30. 30.
    Bhatti A, Lincoln D (2010) Jet physics at the tevatron. Annu Rev Nucl Part Sci 60:267–297.  https://doi.org/10.1146/annurev.nucl.012809.104430ADSCrossRefGoogle Scholar
  31. 31.
    Duckeck G et al (2005) ATLAS computing: technical design reportGoogle Scholar
  32. 32.
    Bird I et al (2005) LHC computing grid. Technical design reportGoogle Scholar
  33. 33.
    Worldwide LHC computing grid (2018). http://wlcg.web.cern.ch/

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Experimental PhysicsCERNMeyrinSwitzerland

Personalised recommendations