Advertisement

Dark Matter and Dark Energy

  • Nicolas Maximilian KöhlerEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The existence of Dark Matter would explain several astrophysical observations not covered by the Standard Model of particle physics. The chapter introduces the Standard Model of cosmology and the currently most favoured candidate for Dark Matter, the weakly interacting massive particle.

References

  1. 1.
    Landim RCG (2017) Dark sector cosmology. PhD thesis, Sao Paulo U. arXiv: 1702.06024 [gr-qc]
  2. 2.
    Pettinari GW (2015) The intrinsic bispectrum of the cosmic microwave background. Springer theses, Springer International Publishing. isbn: 9783319218823Google Scholar
  3. 3.
    Einstein A (1916) The foundations of the theory of general relativity, German. AdP 354(7):769–822.  https://doi.org/10.1002/andp.19163540702CrossRefGoogle Scholar
  4. 4.
    Maartens R (2011) Is the universe homogeneous? Philos Trans R Soc Lond A369:5115–5137.  https://doi.org/10.1098/rsta.2011.0289ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bennett CL et al (1996) Four year COBE DMR cosmic microwave background observations: maps and basic results. Astrophys J 464:L1–L4.  https://doi.org/10.1086/310075ADSCrossRefGoogle Scholar
  6. 6.
    Scharf CA et al (2000) The 2–10 keV XRB dipole and its cosmological implications. Astrophys J 544:49.  https://doi.org/10.1086/317174ADSCrossRefGoogle Scholar
  7. 7.
    Peebles PJE (1994) Principles of physical cosmologyADSCrossRefGoogle Scholar
  8. 8.
    Wartofsky MW, Cohen RS (1984) In: Cohen RS, Wartofsky MW (eds) Physical sciences and history of physics. English: D. Reidel; Distributed in the USA and Canada by Kluwer Academic Publishers Dordrecht; Boston: Hingham, MA, USA, ix, 259 p. isbn: 9027716153Google Scholar
  9. 9.
    Slipher VM (1913) The radial velocity of the Andromeda Nebula. Lowell Obs Bull 2:56–57ADSGoogle Scholar
  10. 10.
    Slipher VM (1915) Spectrographic observations of nebulae. Popul Astron 23:21–24ADSGoogle Scholar
  11. 11.
    Hubble E (1929) A relation between distance and radial velocity among extragalactic nebulae. Proc Natl Acad Sci 15(3):168-173. issn: 0027-8424.  https://doi.org/10.1073/pnas.15.3.168ADSCrossRefGoogle Scholar
  12. 12.
    Ade PAR et al (2016) Planck 2015 results. XIII. Cosmological parameters. Astron Astrophys 594:A13.  https://doi.org/10.1051/0004-6361/201525830
  13. 13.
    Friedmann A (1922) Über die Krümmung des Raumes. Z Phys 10:377–386.  https://doi.org/10.1007/BF01332580ADSCrossRefzbMATHGoogle Scholar
  14. 14.
    Lemaǐtre G (1931) Expansion of the universe, a homogeneous universe of constant mass and increasing radius accounting for the radial velocity of extra-galactic nebulae. Mon Not R Astron Soc 91:483–490.  https://doi.org/10.1093/mnras/91.5.483ADSCrossRefzbMATHGoogle Scholar
  15. 15.
    Robertson HP (1935) Kinematics and world-structure. Astrophys J 82:284.  https://doi.org/10.1086/143681ADSCrossRefGoogle Scholar
  16. 16.
    Walker AG (1937) On Milne’s theory of world-structure. Proc Lond Math Soc s2-42(1):90-127.  https://doi.org/10.1112/plms/s2-42.1.90MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hinshaw G et al (2013) Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological parameter results. Astrophys J Suppl 208:19.  https://doi.org/10.1088/0067-0049/208/2/19ADSCrossRefGoogle Scholar
  18. 18.
    Rubin VC, Ford WK Jr (1970) Rotation of the Andromeda Nebula from a spectroscopic survey of emission regions. Astrophys J 159:379.  https://doi.org/10.1086/150317ADSCrossRefGoogle Scholar
  19. 19.
    Rubin VC, Thonnard N, Ford WK Jr (1978) Extended rotation curves of high-luminosity spiral galaxies. IV—Systematic dynamical properties, SA through SC. Astrophys J 225:L107–L111.  https://doi.org/10.1086/182804ADSCrossRefGoogle Scholar
  20. 20.
    Bertone G, Hooper D, Silk J (2005) Particle dark matter: evidence, candidates and constraints. Phys Rep 405:279–390.  https://doi.org/10.1016/j.physrep.2004.08.031ADSCrossRefGoogle Scholar
  21. 21.
    Taylor AN et al (1998) Gravitational lens magnification and the mass of Abell 1689. Astrophys J 501:539.  https://doi.org/10.1086/305827ADSCrossRefGoogle Scholar
  22. 22.
    Hoekstra H, Yee H, Gladders M (2002) Current status of weak gravitational lensing. New Astron Rev 46:767–781.  https://doi.org/10.1016/S1387-6473(02)00245-2ADSCrossRefGoogle Scholar
  23. 23.
    Zwicky F (1933) Die Rotverschiebung von extragalaktischen Nebeln. Helv Phys Acta 6:110–127ADSzbMATHGoogle Scholar
  24. 24.
    Bahcall NA (2000) Cosmology with clusters of galaxies. Phys Scr 2000(T85):32ADSCrossRefGoogle Scholar
  25. 25.
    Kashlinsky A (1998) Determining \(\Sigma \) from the cluster correlation function. Phys Rep 307(1):67–73. issn: 0370-1573.  https://doi.org/10.1016/S0370-1573(98)00050-7ADSCrossRefGoogle Scholar
  26. 26.
    Clowe D, Gonzalez A, Markevitch M (2004) Weak lensing mass reconstruction of the interacting cluster 1E0657-558: direct evidence for the existence of dark matter. Astrophys J 604:596–603.  https://doi.org/10.1086/381970ADSCrossRefGoogle Scholar
  27. 27.
    Markevitch M et al (2004) Direct constraints on the dark matter self-interaction cross-section from the merging galaxy cluster 1E0657-56. Astrophys J 606:819–824.  https://doi.org/10.1086/383178ADSCrossRefGoogle Scholar
  28. 28.
    Milgrom M (1983) A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys J 270:365–370.  https://doi.org/10.1086/161130ADSCrossRefGoogle Scholar
  29. 29.
    Pointecouteau E, Silk J (2005) New constraints on MOND from galaxy clusters. Mon Not R Astron Soc 364:654–658.  https://doi.org/10.1111/j.1365-2966.2005.09590.xADSCrossRefGoogle Scholar
  30. 30.
    Scott D et al (2001) Cosmological difficulties with modified Newtonian dynamics (or, La Fin du MOND?). Mon Not R Astron Soc (submitted for publication)Google Scholar
  31. 31.
    Bennett DP et al (1996) The MACHO project dark matter search. ASP Conf Ser 88:95Google Scholar
  32. 32.
    Raine D, Thomas EG (2001) An introduction to the science of cosmology. Series in astronomy and astrophysics. Taylor & Francis. isbn: 9780750304054Google Scholar
  33. 33.
    Kusenko A, Takahashi F, Yanagida TT (2010) Dark matter from split seesaw. Phys Lett B 693:144–148.  https://doi.org/10.1016/j.physletb.2010.08.031ADSCrossRefGoogle Scholar
  34. 34.
    Krauss LM, Nasri S, Trodden M (2003) A model for neutrino masses and dark matter. Phys Rev D 67:085002.  https://doi.org/10.1103/PhysRevD.67.085002
  35. 35.
    Aartsen MG et al (2016) Searches for sterile neutrinos with the icecube detector. Phys Rev Lett 117(7):071801.  https://doi.org/10.1103/PhysRevLett.117.071801
  36. 36.
    Rosenberg LJ, van Bibber KA (2000) Searches for invisible axions. Phys Rep 325:1–39.  https://doi.org/10.1016/S0370-1573(99)00045-9ADSCrossRefGoogle Scholar
  37. 37.
    Peccei RD (2008) The strong CP problem and axions. Lect Notes Phys 741:3–17.  https://doi.org/10.1007/978-3-540-73518-2_1ADSCrossRefGoogle Scholar
  38. 38.
    Anastassopoulos V et al (2017) New CAST limit on the axion-photon interaction. Nat Phys 13:584–590.  https://doi.org/10.1038/nphys4109CrossRefGoogle Scholar
  39. 39.
    Lee BW, Weinberg S (1977) Cosmological lower bound on heavy-neutrino masses. Phys Rev Lett 39:165–168.  https://doi.org/10.1103/PhysRevLett.39.165ADSCrossRefGoogle Scholar
  40. 40.
    Boehm C, Fayet P (2004) Scalar dark matter candidates. Nucl Phys B 683:219–263.  https://doi.org/10.1016/j.nuclphysb.2004.01.015ADSCrossRefGoogle Scholar
  41. 41.
    Chun EJ, Kim HB (2006) Axino light dark matter and neutrino masses with R-parity violation. JHEP 10:082.  https://doi.org/10.1088/1126-6708/2006/10/082CrossRefGoogle Scholar
  42. 42.
    Arkani-Hamed N, Cohen AG, Georgi H (2001) Electroweak symmetry breaking from dimensional deconstruction. Phys Lett B 513:232–240.  https://doi.org/10.1016/S0370-2693(01)00741-9ADSCrossRefzbMATHGoogle Scholar
  43. 43.
    Arkani-Hamed N et al (2002) Phenomenology of electroweak symmetry breaking from theory space. JHEP 08:020.  https://doi.org/10.1088/1126-6708/2002/08/020MathSciNetCrossRefGoogle Scholar
  44. 44.
    Arkani-Hamed N et al (2002) The minimal moose for a little Higgs. JHEP 08:021.  https://doi.org/10.1088/1126-6708/2002/08/021MathSciNetCrossRefGoogle Scholar
  45. 45.
    Arkani-Hamed N et al (2002) The littlest Higgs. JHEP 07:034.  https://doi.org/10.1088/1126-6708/2002/07/034MathSciNetCrossRefGoogle Scholar
  46. 46.
    Agashe K, Servant G (2004) Warped unification, proton stability and dark matter. Phys Rev Lett 93:231805.  https://doi.org/10.1103/PhysRevLett.93.231805
  47. 47.
    Kolb EW, Chung DJH, Riotto A (1999) WIMPzillas! AIP Conf Proc 484(1):91–105.  https://doi.org/10.1063/1.59655
  48. 48.
    Chang S, Coriano C, Faraggi AE (1996) Stable superstring relics. Nucl Phys B 477:65–104.  https://doi.org/10.1016/0550-3213(96)00371-9ADSCrossRefGoogle Scholar
  49. 49.
    Kusenko A et al (1998) Experimental signatures of supersymmetric dark matter Q balls. Phys Rev Lett 80:3185–3188.  https://doi.org/10.1103/PhysRevLett.80.3185ADSCrossRefGoogle Scholar
  50. 50.
    Kusenko A, Shaposhnikov ME (1998) Supersymmetric Q balls as dark matter. Phys Lett B 418:46–54.  https://doi.org/10.1016/S0370-2693(97)01375-0ADSCrossRefGoogle Scholar
  51. 51.
    Kamionkowski M (1997) WIMP and axion dark matter. In: High-energy physics and cosmology. Proceedings, Summer School, Trieste, Italy, 2 June–4 July 1997, pp 394–411Google Scholar
  52. 52.
    Steigman G, Turner MS (1985) Cosmological constraints on the properties of weakly interacting massive particles. Nucl Phys B 253:375–386. issn: 0550-3213.  https://doi.org/10.1016/0550-3213(85)90537-1ADSCrossRefGoogle Scholar
  53. 53.
    Salati P (2014) Dark matter annihilation in the universe. Int J Mod Phys Conf Ser 30:1460256.  https://doi.org/10.1142/S2010194514602567Google Scholar
  54. 54.
    Jungman G, Kamionkowski M, Griest K (1996) Supersymmetric dark matter. Phys Rep 267(5):195–373. issn: 0370-1573.  https://doi.org/10.1016/0370-1573(95)00058-5ADSCrossRefGoogle Scholar
  55. 55.
    Perlmutter S et al (1999) Measurements of Omega and Lambda from 42 high redshift supernovae. Astrophys J 517:565–586.  https://doi.org/10.1086/307221ADSCrossRefzbMATHGoogle Scholar
  56. 56.
    Riess AG et al (1998) Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron J 116:1009–1038.  https://doi.org/10.1086/300499ADSCrossRefGoogle Scholar
  57. 57.
    Brax P (2018) What makes the universe accelerate? A review on what dark energy could be and how to test it. Rep Prog Phys 81(1):016902ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    Joyce A et al (2015) Beyond the cosmological standard model. Phys Rep 568:1–98.  https://doi.org/10.1016/j.physrep.2014.12.002ADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    Horndeski GW (1974) Second-order scalar-tensor field equations in a four-dimensional space. Int J Theor Phys 10:363–384.  https://doi.org/10.1007/BF01807638MathSciNetCrossRefGoogle Scholar
  60. 60.
    Brax P et al (2016) LHC signatures of scalar dark energy. Phys Rev D 94(8):084054.  https://doi.org/10.1103/PhysRevD.94.084054

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Experimental PhysicsCERNMeyrinSwitzerland

Personalised recommendations