Advertisement

The Standard Model of Particle Physics

  • Nicolas Maximilian KöhlerEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The chapter introduces the Standard Model of Particle Physics which describes the electroweak and the strong interaction as well as all currently known matter particles.

References

  1. 1.
    Einstein A (2005) Zur Elektrodynamik bewegter Körper [AdP 17, 891 (1905)]. Annalen der Physik 14(S1):194–224.  https://doi.org/10.1002/andp.200590006ADSCrossRefGoogle Scholar
  2. 2.
    Ade PAR et al (2014) Planck 2013 results. I. Overview of products and scientific results. Astron Astrophys 571:A1.  https://doi.org/10.1051/0004-6361/201321529CrossRefGoogle Scholar
  3. 3.
    Einstein A (1916) The foundations of the theory of general relativity. German. AdP 354(7):769–822.  https://doi.org/10.1002/andp.19163540702CrossRefGoogle Scholar
  4. 4.
    Greiner W, Müller B (2009) Gauge theory of weak interactions, 4th edn. Springer, Berlin, p 2CrossRefGoogle Scholar
  5. 5.
    Dodelson S (2003) Modern cosmology. Academic Press, Elsevier Science, CambridgeGoogle Scholar
  6. 6.
    Green MB, Schwarz JH, Witten E (1987) Superstring theory. Cambridge University Press, CambridgezbMATHGoogle Scholar
  7. 7.
    Glashow SL (1961) Partial symmetries of weak interactions. Nucl Phys 22:579–588.  https://doi.org/10.1016/0029-5582(61)90469-2CrossRefGoogle Scholar
  8. 8.
    Steven W (1967) A model of leptons. Phys Rev Lett 19:1264–1266.  https://doi.org/10.1103/PhysRevLett.19.1264CrossRefGoogle Scholar
  9. 9.
    Salam A (1968) Elementary particle theory. Almqvist and Wiksell, SwedenGoogle Scholar
  10. 10.
    Srednicki M (2007) Quantum field theory. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  11. 11.
    Rochester GD, Butler CC (1947) Evidence for the existence of newunstable elementary particles. Nature 160:855–857.  https://doi.org/10.1038/160855a0ADSCrossRefGoogle Scholar
  12. 12.
    Powell CF, Occhialini GPS (1947) Nuclear physics in photographs: tracks of charged particles in photographic emulsions. Clarendon Press, Oxford. http://cds.cern.ch/record/1030134
  13. 13.
    Chamberlain O et al (1955) Observation of antiprotons. Phys Rev 100:947–950.  https://doi.org/10.1103/PhysRev.100.947ADSCrossRefGoogle Scholar
  14. 14.
    Hollik W (2010) Quantum field theory and the Standard Model. In: High-energy physics. Proceedings of 17th European School, ESHEP 2009, Bautzen, Germany, June 14–27, 2009. arXiv:1012.3883[hep-ph]
  15. 15.
    Fock V (1932) Konfigurationsraum und zweite Quantelung. Zeitschrift für Physik 75(9):622–647.  https://doi.org/10.1007/BF01344458ADSCrossRefzbMATHGoogle Scholar
  16. 16.
    Nakano T, Nishijima K (1953) Charge independence for V-particles*. Prog Theor Phys 10(5):581–582.  https://doi.org/10.1143/PTP.10.581ADSCrossRefGoogle Scholar
  17. 17.
    Englert F, Brout R (1964) Broken symmetry and the mass of gauge vector mesons. Phys Rev Lett 13:321–323.  https://doi.org/10.1103/PhysRevLett.13.321ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Higgs PW (1964) Broken symmetries and the masses of gauge bosons. Phys Rev Lett 13:508–509.  https://doi.org/10.1103/PhysRevLett.13.508ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Higgs PW (1966) Spontaneous symmetry breakdown without massless bosons. Phys Rev 145:1156–1163.  https://doi.org/10.1103/PhysRev.145.1156ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Cabibbo N (1963) Unitary symmetry and leptonic decays. Phys Rev Lett 10:531–533.  https://doi.org/10.1103/PhysRevLett.10.531ADSCrossRefGoogle Scholar
  21. 21.
    Kobayashi M, Maskawa T (1973) CP violation in the renormalizable theory of weak interaction. Prog Theor Phys 49:652–657.  https://doi.org/10.1143/PTP.49.652ADSCrossRefGoogle Scholar
  22. 22.
    Ellis J (2000) Standard model of particle physics. Encycl Astron Astrophys. Institute of Physics Publishing.  https://doi.org/10.1888/0333750888/2104
  23. 23.
    Schael S et al (2013) Electroweak measurements in electron-positron collisions at w-boson-pair energies at LEP. Phys Rep 532:119–244.  https://doi.org/10.1016/j.physrep.2013.07.004CrossRefGoogle Scholar
  24. 24.
    Schael S et al (2006) Precision electroweak measurements on the Z resonance. Phys Rep 427:257–454.  https://doi.org/10.1016/j.physrep.2005.12.006CrossRefGoogle Scholar
  25. 25.
    Arnison G et al (1983) Experimental observation of lepton pairs of invariant mass around 95 GeV/c2 at the CERN SPS collider. Phys Lett B 126:398–410.  https://doi.org/10.1016/0370-2693(83)90188-0ADSCrossRefGoogle Scholar
  26. 26.
    Abe F et al (1995) Observation of top quark production in \(\bar{p}p\) collisions. Phys Rev Lett 74:2626–2631.  https://doi.org/10.1103/PhysRevLett.74.2626
  27. 27.
    ATLAS Collaboration (2014) Measurement of the top-quark mass in \(t=\bar{t}\) events with lepton+jets final states in pp collisions at \(\sqrt{s} = 8 TeV\). Technical report CMS-PAS-TOP-14-001. Geneva: CERNGoogle Scholar
  28. 28.
    ATLAS, CDF, CMS and DØ Collaborations (2014) First combination of Tevatron and LHC measurements of the top-quark mass. ATLAS-CONF-2014-008Google Scholar
  29. 29.
    ATLAS Collaboration (2012) Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC. Phys Lett B 716:1.  https://doi.org/10.1016/j.physletb.2012.08.020ADSCrossRefGoogle Scholar
  30. 30.
    CMS Collaboration (2012) Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys Lett B 716:30.  https://doi.org/10.1016/j.physletb.2012.08.021ADSCrossRefGoogle Scholar
  31. 31.
    ATLAS Collaboration (2013) Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC. Phys Lett B 726:88.  https://doi.org/10.1016/j.physletb.2014.05.011ADSCrossRefGoogle Scholar
  32. 32.
    ATLAS Collaboration (2014) Measurement of the Higgs boson mass from the \(H\rightarrow \gamma \gamma \) and \(H \rightarrow ZZ^{\ast }4 \ell \) channels in pp collisions at center-of-massenergies of 7 and 8 TeV with the ATLAS detector. Phys Rev D 90:052004.  https://doi.org/10.1103/PhysRevD.90.052004
  33. 33.
    ATLAS Collaboration (2012) Coupling properties of the new Higgs-like boson observed with the ATLAS detector at the LHC. ATLAS-CONF-2012-127. https://cds.cern.ch/record/1476765
  34. 34.
    ATLAS Collaboration (2012) Updated results and measurements of properties of the new Higgs-like particle in the four lepton decay channel with the ATLAS detector. ATLAS-CONF-2012-169. https://cds.cern.ch/record/1499628
  35. 35.
    ATLAS Collaboration (2013) Measurements of the properties of the Higgs-like boson in the two photon decay channel with the ATLAS detector using 25 \(fb^{1}\) of proton-proton collision data. ATLAS-CONF-2013-012. https://cds.cern.ch/record/1523698
  36. 36.
    ATLAS Collaboration (2013) Measurements of the properties of the Higgs-like boson in the four lepton decay channel with the ATLAS detector using 25 \(fb^{1}\) of proton-proton collision data. ATLAS-CONF-2013-013. https://cds.cern.ch/record/1523699
  37. 37.
    ATLAS Collaboration (2013) Measurements of the properties of the Higgs-like boson in the \(WW^(\ast )\rightarrow \ell \nu \nu \) decay channel with the ATLAS detector using 25 \(fb^{1}\) of proton-proton collision data. ATLAS-CONF-2013-030. https://cds.cern.ch/record/1527126
  38. 38.
    ATLAS Collaboration (2013) Study of the spin properties of the Higgs-like boson in the \(H \rightarrow WW(\ast ) \rightarrow e \nu \mu \nu \) channel with 21 \(fb^{1}\) of \(\sqrt{s} = 8 TeV\) data collected with the ATLAS detector. ATLAS-CONF-2013-031. https://cds.cern.ch/record/1527127
  39. 39.
    ATLAS Collaboration (2016) Study of the Higgs boson properties and search for high-mass scalar resonances in the \(H \rightarrow ZZ^{\ast }\rightarrow 4\ell \) decay channel at \(\sqrt{s} = 13 TeV\) with the ATLAS detector. ATLAS-CONF-2016-079. https://cds.cern.ch/record/2206253
  40. 40.
    ATLAS Collaboration (2017) Measurement of the Higgs boson coupling properties in the \(H\rightarrow ZZ^{\ast }\rightarrow 4 \ell \) decay channel at \(\sqrt{s} = 13 TeV\) with the ATLAS detector. ATLAS-CONF-2017-043. https://cds.cern.ch/record/2273849
  41. 41.
    ATLAS Collaboration (2017) Measurements of Higgs boson properties in the diphoton decay channel with 36.1 \(fb^{-1}\) pp collision data at the center-of-mass energy of \(13 TeV\) with the ATLAS detector. ATLAS-CONF-2017-045. https://cds.cern.ch/record/2273852
  42. 42.
    CMS Collaboration (2014) Observation of the diphoton decay of the Higgs boson and measurement of its properties. Eur Phys J C 74:3076.  https://doi.org/10.1140/epjc/s10052-014-3076-zCrossRefGoogle Scholar
  43. 43.
    CMS Collaboration (2014) Measurement of the properties of a Higgs boson in the four-lepton final state. Phys Rev D 89:092007.  https://doi.org/10.1103/PhysRevD.89.092007ADSCrossRefGoogle Scholar
  44. 44.
    CMS Collaboration (2014) Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states. JHEP 01:096.  https://doi.org/10.1007/JHEP01(2014)096ADSCrossRefGoogle Scholar
  45. 45.
    CMS Collaboration (2017) Measurements of properties of the Higgs boson decaying into the four-lepton final state in \(pp\) collisions at \(\sqrt{s} = 13 TeV\). JHEP 11:047.  https://doi.org/10.1007/JHEP11(2017)047
  46. 46.
    Baak M, Kogler R (2013) The global electroweak standard model fit after the Higgs discovery. In: Proceedings of 48th Rencontres de Moriond on Electroweak Interactions and Unified Theories: La Thuile, Italy, March 2–9, pp 349–358. arXiv: 1306.0571[hep-ph]
  47. 47.
    ATLAS Collaboration (2018) Measurement of the W-boson mass in pp collisions at \(\sqrt{s} = 7 TeV\) with the ATLAS detector. Eur Phys J C 78:110.  https://doi.org/10.1140/epjc/s10052-017-5475-4
  48. 48.
    Forero DV, Tortola M, Valle JWF (2012) Global status of neutrino oscillation parameters after Neutrino-2012. Phys Rev D 86:073012.  https://doi.org/10.1103/PhysRevD.86.073012ADSCrossRefGoogle Scholar
  49. 49.
    Zwicky F (1933) Spectral displacement of extra galactic nebulae. Helv Phys Acta 6:110–127ADSzbMATHGoogle Scholar
  50. 50.
    Begeman KG, Broeils AH, Sanders RH (1991) Extended rotation curves of spiral galaxies: dark haloes and modified dynamics. Mon Not R Astron Soc 249:523ADSCrossRefGoogle Scholar
  51. 51.
    Komatsu E et al (2009) Five-year wilkinson microwave anisotropy probe observations: cosmological interpretation. Astrophys J 180(2):330CrossRefGoogle Scholar
  52. 52.
    Bertone G, Hooper D, Silk J (2005) Particle dark matter: evidence, candidates and constraints. Phys Rep 405:279–390.  https://doi.org/10.1016/j.physrep.2004.08.031ADSCrossRefGoogle Scholar
  53. 53.
    Feng JL (2010) Dark matter candidates from particle physics and methods of detection. Annu Rev Astron Astrophys 48(1):495–545.  https://doi.org/10.1146/annurev-astro-082708-101659ADSCrossRefGoogle Scholar
  54. 54.
    Frieman J, Turner M, Huterer D (2008) Dark energy and the accelerating universe. Ann Rev Astron Astrophys 46:385–432.  https://doi.org/10.1146/annurev.astro.46.060407.145243ADSCrossRefGoogle Scholar
  55. 55.
    Sakharov AD (1967) Violation of CP invariance, asymmetry, and baryon asymmetry of the universe. Pisma Zh Eksp Teor Fiz 5:32–35.  https://doi.org/10.1070/PU1991v034n05ABEH002497CrossRefGoogle Scholar
  56. 56.
    Cline JM (2000) Status of electroweak phase transition and baryogenesis. Pramana 55:33–42.  https://doi.org/10.1007/s12043-000-0081-6ADSCrossRefGoogle Scholar
  57. 57.
    CMS Collaboration (2015) Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV. Eur Phys J C 75:212.  https://doi.org/10.1140/epjc/s10052-015-3351-7ADSCrossRefGoogle Scholar
  58. 58.
    Burdman G (2007) New solutions to the hierarchy problem. Braz J Phys 37:506–513.  https://doi.org/10.1590/S0103-97332007000400006ADSCrossRefGoogle Scholar
  59. 59.
    Hooft G et al (1980) Recent developments in gauge theories. In: Nato advanced study institute, Cargese, France, August 26–September 8, 1979, vol. 59Google Scholar
  60. 60.
    Harris PG et al (1999) New experimental limit on the electric dipole moment of the neutron. Phys Rev Lett 82:904–907.  https://doi.org/10.1103/PhysRevLett.82.904ADSCrossRefGoogle Scholar
  61. 61.
    Pospelov M, Ritz A (2005) Electric dipole moments as probes of new physics. Ann Phys 318:119–169.  https://doi.org/10.1016/j.aop.2005.04.002ADSCrossRefzbMATHGoogle Scholar
  62. 62.
    Kim JE, Carosi G (2010) Axions and the strong CP problem. Rev Mod Phys 82:557–602.  https://doi.org/10.1103/RevModPhys.82.557ADSCrossRefGoogle Scholar
  63. 63.
    Gross DJ, Wilczek F (1973) Ultraviolet behavior of non-abelian gauge theories. Phys Rev Lett 30:1343–1346.  https://doi.org/10.1103/PhysRevLett.30.1343ADSCrossRefGoogle Scholar
  64. 64.
    David Politzer H (1974) Asymptotic freedom: an approach to strong interactions. Phys Rep 14:129–180.  https://doi.org/10.1016/0370-1573(74)ADSCrossRefGoogle Scholar
  65. 65.
    de Boer W (1994) Grand unified theories and supersymmetry in particle physics and cosmology. Prog Part Nucl Phys 33:201–302.  https://doi.org/10.1016/0146-6410(94)90045-0ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Experimental PhysicsCERNMeyrinSwitzerland

Personalised recommendations