Advertisement

The Search for Dark Matter

  • Nicolas Maximilian KöhlerEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

To search for DM at the LHC without assuming the existence of SUSY, several searches for different DM production processes and decays are performed by both ATLAS and CMS. The chapter presents a search for weakly interacting massive particles produced through a spin-0 mediator in signatures with jets and missing transverse momentum.

References

  1. 1.
    Giorgio B et al (2014) On the validity of the effective field theory for dark matter searches at the LHC. Phys Lett B 728:412–421.  https://doi.org/10.1016/j.physletb.2013.11.069CrossRefGoogle Scholar
  2. 2.
    Busoni G et al (2014) On the validity of the effective field theory for dark matter searches at the LHC, Part II: complete analysis for the \(s\)-channel. JCAP 1406:060.  https://doi.org/10.1088/1475-7516/2014/06/060MathSciNetCrossRefGoogle Scholar
  3. 3.
    Busoni G et al (2014) On the validity of the effective field theory for dark matter searches at the LHC Part III: analysis for the \(t\)-channel. JCAP 1409:022.  https://doi.org/10.1088/1475-7516/2014/09/022CrossRefGoogle Scholar
  4. 4.
    Abercrombie D et al (2015) Dark matter benchmark models for early LHC Run-2 searches: report of the ATLAS/CMS dark matter forum. In: Boveia A et al (ed). arXiv: 1507.00966 [hep-ex]
  5. 5.
    D’Ambrosio G et al (2002) Minimal flavor violation: an effective field theory approach. In: Nucl Phys B645 155-187.  https://doi.org/10.1016/S0550-3213(02)00836-2. arXiv: hep-ph/0207036 [hep-ph]ADSCrossRefGoogle Scholar
  6. 6.
    Haisch U, Re E (2015) Simplified dark matter top-quark interactions at the LHC. JHEP 06:078.  https://doi.org/10.1007/JHEP06(2015)078
  7. 7.
    Buckley M.R., Feld D, Goncalves D (2015) Scalar simplified models for dark matter. Phys Rev D91:015017.  https://doi.org/10.1103/PhysRevD.91.015017
  8. 8.
    ATLAS Collaboration (2018) Search for dark matter produced in association with bottom or top quarks in \(\sqrt{s} = 13 TeV pp\) collisions with the ATLAS detector. Eur Phys J C 78:18Google Scholar
  9. 9.
    Busoni G et al (2016) Recommendations on presenting LHC searches for missing transverse energy signals using simplified s-channel models of dark matter. In: Boveia A et al (ed) arXiv: 1603 04156 [hep-ex]
  10. 10.
    Akerib DS et al (2017) Results from a search for dark matter in the complete LUX exposure. Phys Rev Lett 118.2:021303.  https://doi.org/10.1103/PhysRevLett.118.021303.
  11. 11.
    Tan A et al (2016) Dark matter results from first 98.7 days of data from the PandaX-II experiment. Phys Rev Lett 117.12:121303.  https://doi.org/10.1103/PhysRevLett.117.121303
  12. 12.
    Aprile E et al (2017) First dark matter search results from the XENON1T experiment. Phys Rev Lett 119.18:181301.  https://doi.org/10.1103/PhysRevLett.119.181301
  13. 13.
    Agnese R et al (2016) New results from the search for low-mass weakly interacting massive particles with the CDMS Low Ionization Threshold experiment. Phys Rev Lett 116(7 Feb 2016):071301.  https://doi.org/10.1103/PhysRevLett.116.071301
  14. 14.
    Angloher G et al (2016) Results on light dark matter particles with a low-threshold CRESST-II detector. Eur Phys J C76.1:25.  https://doi.org/10.1140/epjc/s10052-016-3877-3

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Experimental PhysicsCERNMeyrinSwitzerland

Personalised recommendations