Advertisement

The Search for the Light Top Squark

  • Nicolas Maximilian KöhlerEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The lighter mass eigenstate of the superpartner of the top quark, the top squark, serves as a solution for the Hierarchy problem, if its mass is about 1 TeV. The chapter presents the search for the light top squark in signatures with jets and missing transverse momentum.

References

  1. 1.
    Collaboration ATLAS (2014) Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at \(\sqrt{s} = 8\) TeV with the ATLAS detector. JHEP 09:015.  https://doi.org/10.1007/JHEP09(2014)015CrossRefGoogle Scholar
  2. 2.
    Collaboration ATLAS (2014) Search for top squark pair production in final states with one isolated lepton, jets, and missing transverse momentum in \(\sqrt{s} = 8\) TeV \(pp\) collisions with the ATLAS detector. JHEP 11:118.  https://doi.org/10.1007/JHEP11(2014)118CrossRefGoogle Scholar
  3. 3.
    Collaboration ATLAS (2014) Search for direct top-squark pair production in final states with two leptons in pp collisions at \(\sqrt{s} = 8\) TeV with the ATLAS detector. JHEP 06:124.  https://doi.org/10.1007/JHEP06(2014)124CrossRefGoogle Scholar
  4. 4.
    Collaboration ATLAS (2015) Measurement of Spin correlation in Top-Antitop quark events and search for top squark pair production in \(pp\) collisions at \(\sqrt{s} = 8\) TeV using the ATLAS detector. Phys Rev Lett 114:142001.  https://doi.org/10.1103/PhysRevLett.114.142001ADSCrossRefGoogle Scholar
  5. 5.
    Collaboration ATLAS (2015) ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider. Eur Phys J C 75:510.  https://doi.org/10.1140/epjc/s10052-015-3726-9CrossRefGoogle Scholar
  6. 6.
    Collaboration CMS (2015) Search for supersymmetry using razor variables in events with b-tagged jets in pp collisions at \(\sqrt{s} = 8\) TeV. Phys Rev D 91:052018.  https://doi.org/10.1103/PhysRevD.91.052018ADSCrossRefGoogle Scholar
  7. 7.
    Collaboration CMS (2017) Search for top squark pair production in compressedmass-spectrum scenarios in proton-proton collisions at \(\sqrt{s} = 8\) TeV using the \(\alpha _T\) variable. Phys Lett B 767:403.  https://doi.org/10.1016/j.physletb.2017.02.007ADSCrossRefGoogle Scholar
  8. 8.
    Collaboration CMS (2014) Search for pair production of third-generation scalar leptoquarks and top squarks in proton-proton collisions at \(\sqrt{s}= 8\) TeV. Phys Lett B 739:229.  https://doi.org/10.1016/j.physletb.2014.10.063. arXiv:1408.0806 [hep-ex]ADSCrossRefGoogle Scholar
  9. 9.
    Alwall J, Schuster P, Toro N (2009) Simplified models for a first characterization of new physics at the LHC. Phys Rev D 79:075020.  https://doi.org/10.1103/PhysRevD.79.075020ADSCrossRefGoogle Scholar
  10. 10.
    Alves D (2012) Simplified models for LHC new physics searches. J Phys G 39. Arkani-Hamed N et al (ed), p 105005.  https://doi.org/10.1088/0954-3899/39/10/105005ADSCrossRefGoogle Scholar
  11. 11.
    Alwall J et al (2014) The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP 07:079.  https://doi.org/10.1007/JHEP07(2014)079ADSCrossRefGoogle Scholar
  12. 12.
    Lange DJ (2001) The EvtGen particle decay simulation package. Nucl Instrum Methods 462(1–2):152–155.  https://doi.org/10.1016/S0168-9002(01)00089-4ADSCrossRefGoogle Scholar
  13. 13.
    Lönnblad L, Prestel S (2013) Merging multi-leg NLO matrix elements with parton showers. JHEP 03:166.  https://doi.org/10.1007/JHEP03(2013)166ADSCrossRefGoogle Scholar
  14. 14.
    Ball Richard D et al (2013) Parton distributions with LHC data. Nucl Phys B 867:244–289.  https://doi.org/10.1016/j.nuclphysb.2012.10.003ADSCrossRefGoogle Scholar
  15. 15.
    Beenakker W et al (1998) Stop production at hadron colliders. Nucl Phys B 515:3–14.  https://doi.org/10.1016/S0550-3213(98)00014-5ADSCrossRefGoogle Scholar
  16. 16.
    Beenakker W et al (2010) Supersymmetric top and bottom squark production at hadron colliders. JHEP 08:098.  https://doi.org/10.1007/JHEP08(2010)098ADSCrossRefzbMATHGoogle Scholar
  17. 17.
    Beenakker W et al (2011) Squark and gluino hadroproduction. Int J Mod Phys A 26:2637–2664.  https://doi.org/10.1142/S0217751X11053560ADSCrossRefGoogle Scholar
  18. 18.
    Borschensky C et al (2014) Squark and gluino production cross sections in pp collisions at \(\sqrt{s} = 13\), 14, 33 and 100 TeV. Eur Phys J C 74:3174.  https://doi.org/10.1140/epjc/s10052-014-3174-yADSCrossRefGoogle Scholar
  19. 19.
    ATLAS Collaboration (2010) The simulation principle and performance of the ATLAS fast calorimeter simulation FastCaloSim. ATL-PHYS-PUB-2010-013. https://cds.cern.ch/record/1300517
  20. 20.
    ATLAS Collaboration (2016) Electron efficiency measurements with the ATLAS detector using the 2015 LHC proton-proton collision data. ATLAS-CONF-2016-024. 2016. https://cds.cern.ch/record/2157687
  21. 21.
    Collaboration ATLAS (2016) Muon reconstruction performance of the ATLAS detector in proton-proton collision data at \(\sqrt{s} = 13\) TeV. Eur Phys J C 76:292CrossRefGoogle Scholar
  22. 22.
    Collaboration ATLAS (2017) Search for a scalar partner of the top quark in the jets plus missing transverse momentum final state at \(\sqrt{s} = 13\) TeV with the ATLAS detector. JHEP 12:085 arXiv:1709.04183 [hep-ex]Google Scholar
  23. 23.
    Collaboration ATLAS (2014) Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data. Eur Phys J C 74:3071.  https://doi.org/10.1140/epjc/s10052-014-3071-4CrossRefGoogle Scholar
  24. 24.
    Collaboration ATLAS (2017) Performance of the ATLAS trigger system in 2015. Eur Phys J C 77:317.  https://doi.org/10.1140/epjc/s10052-017-4852-3CrossRefGoogle Scholar
  25. 25.
    Olive KA et al (2014) Rev Part Phys Chin Phys C38:090001.  https://doi.org/10.1088/1674-1137/38/9/090001ADSCrossRefGoogle Scholar
  26. 26.
    Wasserstein Ronald L, Lazar Nicole A (2016) The ASA’s statement on p-values: context, process, and purpose. Am Stat 70(2):129–133.  https://doi.org/10.1080/00031305.2016.1154108MathSciNetCrossRefGoogle Scholar
  27. 27.
    Brun R, Rademakers F (1997) ROOT-an object oriented data analysis framework. Nucl Instrum Methods Phys Res Sect A: Accel Spectrom Detect Assoc Equip 389:81–86ADSCrossRefGoogle Scholar
  28. 28.
    Lester CG, Summers DJ (1999) Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders. Phys Lett B 463:99–103.  https://doi.org/10.1016/S0370-2693(99)00945-4ADSCrossRefGoogle Scholar
  29. 29.
    Barr A, Lester CG, Stephens P (2003) A variable for measuring masses at hadron colliders when missing energy is expected; m T2: the truth behind the glamour. Nucl Part Phys 29:2343ADSCrossRefGoogle Scholar
  30. 30.
    Jackson P, Rogan C, Santoni M (2017) Sparticles in motion: analyzing compressed SUSY scenarios with a new method of event reconstruction. Phys Rev D 95(3):035031.  https://doi.org/10.1103/PhysRevD.95.035031ADSCrossRefGoogle Scholar
  31. 31.
    Jackson P, Rogan C (2017) Recursive Jigsaw reconstruction: HEP event analysis in the presence of kinematic and combinatoric ambiguities. Phys Rev D 96(11):112007.  https://doi.org/10.1103/PhysRevD.96.112007ADSCrossRefGoogle Scholar
  32. 32.
    An H, Wang L-T (2015) Opening up the compressed region of top squark searches at 13 TeV LHC. Phys Rev Lett 115:181602.  https://doi.org/10.1103/PhysRevLett.115.181602ADSCrossRefGoogle Scholar
  33. 33.
    Macaluso S et al (2016) Revealing compressed stops using high-momentum recoils. JHEP 03:151.  https://doi.org/10.1007/JHEP03(2016)151ADSCrossRefGoogle Scholar
  34. 34.
    Chamseddine AH, Arnowitt RL, Nath P (1982) Locally supersymmetric grand unification. Phys Rev Lett 49:970.  https://doi.org/10.1103/PhysRevLett.49.970ADSCrossRefGoogle Scholar
  35. 35.
    Barbieri R, Ferrara S, Savoy CA (1982) Gauge models with Spontaneously Broken local supersymmetry. Phys Lett B 119:343.  https://doi.org/10.1016/0370-2693(82)90685-2ADSCrossRefGoogle Scholar
  36. 36.
    Kane Gordon L et al (1994) Study of constrained minimal supersymmetry. Phys Rev D 49:6173–6210.  https://doi.org/10.1103/PhysRevD.49.6173ADSCrossRefGoogle Scholar
  37. 37.
    Collaboration ATLAS (2016) Search for top squarks in final states with one isolated lepton, jets, and missing transverse momentum in \(\sqrt{s} = 13\) TeV \(pp\) collisions with the ATLAS detector. Phys Rev D 94:052009.  https://doi.org/10.1103/PhysRevD.94.052009ADSCrossRefGoogle Scholar
  38. 38.
    Fletcher GT (2015) Multijet background estimation ForSUSYSearches and particle flow offline reconstruction using the ATLAS Detector at the LHC. PhD thesis. SheffieldU, Mar 2015. http://inspirehep.net/record/1429579/files/fulltext_1Du5ll.pdf
  39. 39.
    Aad et al G (2009) Expected performance of the ATLAS experiment—detector, trigger and physics (2009). arXiv:0901.0512 [hep-ex]
  40. 40.
    ATLAS Collaboration (2013) Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using \(4.7 {\rm fb}^{-1}\) of \(\sqrt{s} = 7\) TeV proton-proton collision data. Phys Rev D 87:012008.  https://doi.org/10.1103/PhysRevD.87.012008
  41. 41.
    Schreyer M, Redelbach A, Ströhmer R (2015) Search for supersymmetry in events containing light leptons, jets and missing transverse momentum in \(\sqrt{s} = 8\) TeV \(pp\) collisions with the ATLAS detector. Presented 25 Sep 2015. June 2015. https://cds.cern.ch/record/2055513
  42. 42.
    Nachman B, Lester CG (2013) Significance Variables. Phys Rev D88.7:075013.  https://doi.org/10.1103/PhysRevD.88.075013
  43. 43.
    Collaboration ATLAS (2015) Jet energy measurement and its systematic uncertainty in proton-proton collisions at \(\sqrt{s} = 7\) TeV with the ATLAS detector. Eur Phys J C 75:17.  https://doi.org/10.1140/epjc/s10052-014-3190-yCrossRefGoogle Scholar
  44. 44.
    Collaboration ATLAS (2013) Jet energy resolution in proton-proton collisions at \(\sqrt{s} = 7\) TeV recorded in, (2010) with the ATLAS detector. Eur. Phys J C 73:2306.  https://doi.org/10.1140/epjc/s10052-013-2306-0CrossRefGoogle Scholar
  45. 45.
    Collaboration ATLAS (2016) Performance of b-jet identification in the ATLAS experiment. JINST 11:P04008.  https://doi.org/10.1088/1748-0221/11/04/P04008CrossRefGoogle Scholar
  46. 46.
    ATLAS Collaboration (2016) Optimisation of the ATLAS b-tagging performance for the 2016 LHC run. ATL-PHYS-PUB-2016-012. https://cds.cern.ch/record/2160731
  47. 47.
    Collaboration ATLAS (2017) Reconstruction of primary vertices at the ATLAS experiment in run 1 proton-proton collisions at the LHC. Eur Phys J C 77:332.  https://doi.org/10.1140/epjc/s10052-017-4887-5CrossRefGoogle Scholar
  48. 48.
    ATLAS Collaboration (2018) Performance of missing transverse momentum reconstruction with the ATLAS detector using proton-proton collisions at \(\sqrt{s} = 13\) TeV. arXiv:1802.08168 [hep-ex]
  49. 49.
    ATLAS Collaboration (2013) Pile-up subtraction and suppression for jets in ATLAS. ATLAS-CONF-2013-083. https://cds.cern.ch/record/1570994
  50. 50.
    ATLAS Collaboration (2014) Tagging and suppression of pileup jets with the ATLAS detector. ATLAS-CONF-2014-018. https://cds.cern.ch/record/1700870
  51. 51.
    ATLAS Collaboration (2016) Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run-1 data. arXiv:1606.01813 [hep-ex]
  52. 52.
    Gleisberg et al T (2009) Event generation with SHERPA 1.1. JHEP 02:007.  https://doi.org/10.1088/1126-6708/2009/02/007CrossRefGoogle Scholar
  53. 53.
    Bahr M et al (2008) Herwig++ physics and manual. Eur Phys J C 58:639–707.  https://doi.org/10.1140/epjc/s10052-008-0798-9ADSCrossRefGoogle Scholar
  54. 54.
    Mrenna S, Richardson P (2004) Matching matrix elements and parton showers with HERWIG and PYTHIA. JHEP 05:040.  https://doi.org/10.1088/1126-6708/2004/05/040. arXiv:hep-ph/0312274 [hep-ph]CrossRefGoogle Scholar
  55. 55.
    Alwall J et al (2007) A standard format for Les Houches event files. Comput Phys Commun 176:300–304.  https://doi.org/10.1016/j.cpc.2006.11.010ADSCrossRefGoogle Scholar
  56. 56.
    Gioacchino R (2012) The Profile likelihood ratio and the look elsewhere effect in high energy physics. Nucl Instrum Methods A661:77–85.  https://doi.org/10.1016/j.nima.2011.09.047CrossRefGoogle Scholar
  57. 57.
    Verkerke W, Kirkby DP (2003) The RooFit toolkit for data modeling. eConf C0303241:MOLT007. [physics]Google Scholar
  58. 58.
    Moneta L et al (2010) The roostats project. PoS ACAT2010 :057. arXiv:1009.1003 [physics.data-an]
  59. 59.
    Cranmer K et al (2012) HistFactory: a tool for creating statistical models for use with RooFit and RooStatsGoogle Scholar
  60. 60.
    Baak M et al (2014) HistFitter software framework for statistical data analysis. arXiv:1410.1280 [hep-ex]
  61. 61.
    ATLAS Collaboration (2011) Procedure for the LHC Higgs boson search combination in summer 2011. ATL-PHYS-PUB-2011-011. https://cds.cern.ch/record/1375842
  62. 62.
    Cowan G et al (2011) Asymptotic formulae for likelihood-based tests of new physics. Eur Phys J C 71:1554.  https://doi.org/10.1140/epjc/s10052-011-1554-0ADSCrossRefGoogle Scholar
  63. 63.
    Junk T (1999) Confidence level computation for combining searches with small statistics. Nucl Instrum Methods A434:435–443.  https://doi.org/10.1016/S0168-9002(99)00498-2ADSCrossRefGoogle Scholar
  64. 64.
    Read AL (2002) Presentation of search results: the CL(s) technique. J Phys G28:2693–2704.  https://doi.org/10.1088/0954-3899/28/10/313ADSCrossRefGoogle Scholar
  65. 65.
    Read AL (2000) Modified frequentist analysis of search results (The CL(s) method). In: Proceedings of the workshop on confidence limits, CERN, Geneva, Switzerland, 17-18 Jan 2000, pp. 81–101. http://weblib.cern.ch/abstract?CERN-OPEN-2000-205

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Experimental PhysicsCERNMeyrinSwitzerland

Personalised recommendations