Advertisement

Variable Metric ADMM for Solving Variational Inequalities with Monotone Operators over Affine Sets

  • Radu Ioan BoţEmail author
  • Ernö Robert Csetnek
  • Dennis Meier
Chapter

Abstract

We propose an iterative scheme for solving variational inequalities with monotone operators over affine sets in an infinite dimensional Hilbert space setting. We show that several primal-dual algorithms in the literature as well as the classical ADMM algorithm for convex optimization problems, together with some of its variants, are encompassed by the proposed numerical scheme. Furthermore, we carry out a convergence analysis of the generated iterates and provide convergence rates by using suitable dynamical step sizes together with variable metric techniques.

Keywords

ADMM algorithm Primal-dual algorithm Monotone operators Convex optimization 

AMS 2010 Subject Classification

47H05 65K05 90C25 

Notes

Acknowledgements

The first author has been partially supported by FWF (Austrian Science Fund), project I 2419-N32. The second author has been supported by FWF (Austrian Science Fund), project P 29809-N32. The third author has been partially supported by FWF (Austrian Science Fund), project I 2419-N32, and by the Doctoral Programme Vienna Graduate School on Computational Optimization (VGSCO), project W1260-N35.

References

  1. 1.
    Banert, S., Boţ, R.I., Csetnek, E.R.: Fixing and extending some recent results on the ADMM algorithm (2017). Available via arXiv. https://arxiv.org/abs/1612.05057
  2. 2.
    Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics, Springer, New York (2011)CrossRefGoogle Scholar
  3. 3.
    Boţ, R.I.: Conjugate Duality in Convex Optimization. Lecture Notes in Economics and Mathematical Systems 637, Springer-Verlag Berlin Heidelberg (2010)Google Scholar
  4. 4.
    Boţ, R.I., Csetnek, E.R.: ADMM for monotone operators: convergence analysis and rates. Adv. Comput. Math. 45(1), 327–359 (2019). Available via arXiv. https://arxiv.org/abs/1705.01913
  5. 5.
    Boţ, R.I., Csetnek, E.R., Heinrich, A.: A primal-dual splitting algorithm for finding zeros of sums of maximal monotone operators. SIAM J. Optim. 23, 2011–2036 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning 3, 1–12 (2010)CrossRefGoogle Scholar
  7. 7.
    Chambolle, P.L., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vision 40, 120–145 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Combettes, P.L., Vũ, B.C.: Variable metric quasi-Feyér monotonicity. Nonlinear Anal. 78, 17–31 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Condat, L.: A primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms. J. Optim. Theory Appl. 158, 460–479 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Fazel, M., Pong, T.K., Sun, D., Tseng, P.: Hankel matrix rank minimization with applications in system identification and realization. SIAM J. Matrix Anal. 34, 946–977 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Fortin, M., Glowinski, R.: On decomposition-coordination methods using an augmented Lagrangian. In: Fortin, M. and Glowinski, R. (eds.), Augmented Lagrangian Methods: Applications to the Solution of Boundary-Value Problems, North-Holland, Amsterdam (1983)zbMATHGoogle Scholar
  12. 12.
    Gabay, D.: Applications of the method of multipliers to variational inequalities. In: Fortin, M. and Glowinski, R. (eds.), Augmented Lagrangian Methods: Applications to the Solution of Boundary-Value Problems, North-Holland, Amsterdam (1983)Google Scholar
  13. 13.
    Riesz, F., Nagy, B.Sz.: Leo̧ns d’Analyse Fonctionelle. Fifth ed., Gauthier-Villars, Paris (1968)Google Scholar
  14. 14.
    Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pacific J. Math. 33, 209–216 (1970)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Shefi, R., Teboulle, M.: Rate of convergence analysis of decomposition methods based on the proximal method of multipliers for convex minimization. SIAM J. Optim. 24, 269–297 (2014)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Vũ, B.C.: A splitting algorithm for dual monotone inclusions involving cocoercive operators. Adv. Comput. Math. 38, 667–681 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Radu Ioan Boţ
    • 1
    Email author
  • Ernö Robert Csetnek
    • 1
  • Dennis Meier
    • 1
  1. 1.Faculty of MathematicsUniversity of ViennaViennaAustria

Personalised recommendations