Advertisement

A Glimpse at Pointwise Asymptotic Stability for Continuous-Time and Discrete-Time Dynamics

  • Rafal GoebelEmail author
Chapter

Abstract

Given a dynamical system, pointwise asymptotic stability, also called semistability, of a set requires that every point in the set be a Lyapunov stable equilibrium, and that every solution converge to one of the equilibria in the set. This note provides examples of pointwise asymptotic stability related to optimization and states select results from the literature, focusing on necessary and sufficient Lyapunov and Lyapunov-like conditions for and robustness of this stability property. Background on the classical asymptotic stability is included.

Keywords

Pointwise asymptotic stability Differential inclusion Difference inclusion Monotone operator Set-valued Lyapunov function 

AMS 2010 Subject Classification

93D05 49J53 90C25 34D20 47H05 

Notes

Acknowledgements

This work was partially supported by the Simons Foundation Grant 315326.

References

  1. 1.
    Aizicovici, S., Reich, S., Zaslavski, A.: Minimizing convex functions by continuous descent methods. Electron. J. Differential Equations (19) (2010)Google Scholar
  2. 2.
    Aminzare, Z., Sontag, E.: Contraction methods for nonlinear systems: a brief introduction and some open problems. In: Proc. 53rd IEEE Conference on Decision and Control (2014)Google Scholar
  3. 3.
    Angeli, D.: A Lyapunov approach to the incremental stability properties. IEEE Trans. Automat. Control 47(3), 410–421 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Artstein, Z.: Stabilization with relaxed controls. Nonlinear Anal. 7(11), 1163–1173 (1983)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Attouch, H., Cabot, A., Czarnecki, M.O.: Asymptotic behavior of nonautonomous monotone and subgradient evolution equations. Trans. Amer. Math. Soc. 370(2), 755–790 (2018)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Attouch, H., Garrigos, G., Goudou, X.: A dynamic gradient approach to Pareto optimization with nonsmooth convex objective functions. J. Math. Anal. Appl. 422(1), 741–771 (2015)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Aubin, J.P., Cellina, A.: Differential Inclusions. Springer-Verlag (1984)Google Scholar
  8. 8.
    Bacciotti, A., Rosier, L.: Liapunov Functions and Stability in Control Theory, Lecture Notes in Control and Information Sciences, vol. 267. Springer Verlag (2001)Google Scholar
  9. 9.
    Baillon, J., Cominetti, R.: A convergence result for nonautonomous subgradient evolution equations and its application to the steepest descent exponential penalty trajectory in linear programming. J. Funct. Anal. 187(2), 263–273 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Barbašin, E., Krasovskiı̆, N.: On stability of motion in the large. Doklady Akad. Nauk SSSR (N.S.) 86, 453–456 (1952)Google Scholar
  11. 11.
    Bauschke, H., Borwein, J., Lewis, A.: The method of cyclic projections for closed convex sets in Hilbert space. In: Recent developments in optimization theory and nonlinear analysis (Jerusalem, 1995), Contemp. Math., vol. 204, pp. 1–38. Amer. Math. Soc., Providence, RI (1997)Google Scholar
  12. 12.
    Bhat, S., Bernstein, D.: Nontangency-based Lyapunov tests for convergence and stability in systems having a continuum of equilibria. SIAM J. Control Optim. 42(5), 1745–1775 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Bhat, S., Bernstein, D.: Arc-length-based Lyapunov tests for convergence and stability with applications to systems having a continuum of equilibria. Math. Control Signals Systems 22(2), 155–184 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Brézis, H.: Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations. In: Contributions to nonlinear functional analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971), pp. 101–156. Academic Press, New York (1971)Google Scholar
  15. 15.
    Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York (1973)Google Scholar
  16. 16.
    Brogliato, B., Daniilidis, A., Lemaréchal, C., Acary, V.: On the equivalence between complementarity systems, projected systems and differential inclusions. Systems Control Lett. 55(1), 45–51 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Bruck, R.: Asymptotic convergence of nonlinear contraction semigroups in Hilbert space. J. Funct. Anal. 18, 15–26 (1975)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Burachik, R., Iusem, A.: Set-valued mappings and enlargements of monotone operators, Springer Optimization and Its Applications, vol. 8. Springer, New York (2008)Google Scholar
  19. 19.
    Campbell, S., Rose, N.: Singular perturbation of autonomous linear systems. SIAM J. Math. Anal. 10(3), 542–551 (1979)CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    Chbani, Z., Riahi, H.: Existence and asymptotic behaviour for solutions of dynamical equilibrium systems. Evol. Equ. Control Theory 3(1), 1–14 (2014)CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Chellaboina, V., Bhat, S., Haddad, W., Bernstein, D.: Modeling and analysis of mass-action kinetics: nonnegativity, realizability, reducibility, and semistability. IEEE Control Syst. Mag. 29(4), 60–78 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Choudhary, R.: Generic convergence of a convex Lyapounov function along trajectories of nonexpansive semigroups in Hilbert space. J. Nonlinear Convex Anal. 7(2), 245–268 (2006)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Clarke, F., Ledyaev, Y., Stern, R.: Asymptotic stability and smooth Lyapunov functions. J. Diff. Eq. 149(1), 69–114 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  24. 24.
    Combettes, P.: Quasi-Fejérian analysis of some optimization algorithms. In: Inherently parallel algorithms in feasibility and optimization and their applications (Haifa, 2000), Stud. Comput. Math., vol. 8, pp. 115–152. North-Holland, Amsterdam (2001)Google Scholar
  25. 25.
    Combettes., P.: Fejér monotonicity in convex optimization. In: Encyclopedia of Optimization, second edn., pp. 1016–1024. Springer, New York (2009)Google Scholar
  26. 26.
    Filippov, A.: Differential Equations with Discontinuous Righthand Sides. Kluwer (1988)Google Scholar
  27. 27.
    Goebel, R.: Set-valued Lyapunov functions for difference inclusions. Automatica 47(1), 127–132 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  28. 28.
    Goebel, R.: Robustness of stability through necessary and sufficient Lyapunov-like conditions for systems with a continuum of equilibria. Systems Control Lett. 65, 81–88 (2014)CrossRefMathSciNetzbMATHGoogle Scholar
  29. 29.
    Goebel, R.: Stability and robustness for saddle-point dynamics through monotone mappings. Systems Control Lett. 108, 16–22 (2017)CrossRefMathSciNetzbMATHGoogle Scholar
  30. 30.
    Goebel, R., Sanfelice, R.: Applications of convex analysis to consensus algorithms, pointwise asymptotic stability, and its robustness. In: Proc. 57th IEEE Conference on Decision and Control (2018). AcceptedGoogle Scholar
  31. 31.
    Goebel, R., Sanfelice, R.: Pointwise Asymptotic Stability in a Hybrid System and Well-Posed Behavior Beyond Zeno. SIAM J. Control Optim. 56(2), 1358–1385 (2018)CrossRefMathSciNetzbMATHGoogle Scholar
  32. 32.
    Goebel, R., Sanfelice, R.: A unifying convex analysis and switching system approach to consensus with undirected communication graphs (2018). Submitted, https://arxiv.org/abs/1808.00989
  33. 33.
    Goebel, R., Sanfelice, R., Teel, A.: Hybrid Dynamical Systems: Modeling, Stability, and Robustness. Princeton University Press (2012)Google Scholar
  34. 34.
    Haddad, W., Chellaboina, V.: Stability and dissipativity theory for nonnegative dynamical systems: a unified analysis framework for biological and physiological systems. Nonlinear Anal. Real World Appl. 6(1), 35–65 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  35. 35.
    Hájek, O.: Discontinuous differential equations, I. J. Diff. Eq. 32, 149–170 (1979)CrossRefMathSciNetzbMATHGoogle Scholar
  36. 36.
    Henry, C.: An existence theorem for a class of differential equations with multivalued right-hand side. J. Math. Anal. Appl. 41, 179–186 (1973)CrossRefMathSciNetzbMATHGoogle Scholar
  37. 37.
    Hermes, H.: Discontinuous vector fields and feedback control. In: Differential Equations and Dynamical Systems, pp. 155–165. Academic Press (1967)Google Scholar
  38. 38.
    Hui, Q., Haddad, W., Bhat, S.: Finite-time semistability and consensus for nonlinear dynamical networks. IEEE Trans. Automat. Control 53(8), 1887–1900 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  39. 39.
    Hui, Q., Haddad, W., Bhat, S.: Semistability, finite-time stability, differential inclusions, and discontinuous dynamical systems having a continuum of equilibria. IEEE Trans. Automat. Control 54(10), 2465–2470 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  40. 40.
    Kellett, C.: Classical converse theorems in Lyapunov’s second method. Discrete Contin. Dyn. Syst. Ser. B 20(8), 2333–2360 (2015)CrossRefMathSciNetzbMATHGoogle Scholar
  41. 41.
    Kellett, C., Teel, A.: Smooth Lyapunov functions and robustness of stability for difference inclusions. Systems & Control Letters 52, 395–405 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  42. 42.
    Kellett, C., Teel, A.: On the robustness of \(\mathcal {K}\mathcal {L}\)-stability for difference inclusions: Smooth discrete-time Lyapunov functions. SIAM J. Control Optim. 44(3), 777–800 (2005)Google Scholar
  43. 43.
    Krasovskii, N., Subbotin, A.: Game-theoretical control problems. Springer-Verlag, New York (1988)CrossRefGoogle Scholar
  44. 44.
    LaSalle, J.P.: An invariance principle in the theory of stability. In: Differential equations and dynamical systems. New York: Academic Press (1967)Google Scholar
  45. 45.
    Liberzon, D.: Switching in Systems and Control. Systems and Control: Foundations and Applications. Birkhauser (2003)Google Scholar
  46. 46.
    Lyapunov, A.M.: The general problem of the stability of motion. Internat. J. Control 55(3), 521–790 (1992). Translated by A. T. Fuller from Édouard Davaux’s French translation (1907) of the 1892 Russian original.Google Scholar
  47. 47.
    Maschler, M., Peleg, B.: Stable sets and stable points of set-valued dynamic systems with applications to game theory. SIAM J. Control Optimization 14(6), 985–995 (1976)CrossRefMathSciNetzbMATHGoogle Scholar
  48. 48.
    Miglierina, E.: Slow solutions of a differential inclusion and vector optimization. Set-Valued Anal. 12(3), 345–356 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  49. 49.
    Moreau, L.: Stability of multiagent systems with time-dependent communication links. IEEE Trans. Automat. Control 50(2), 169–182 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  50. 50.
    Nedić, A., Ozdaglar, A., Parrilo, P.: Constrained consensus and optimization in multi-agent networks. IEEE Trans. Automat. Control 55(4), 922–938 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  51. 51.
    Oh, J., Drincic, B., Bernstein, D.: Nonlinear feedback models of hysteresis. IEEE Control Syst. Mag. 29(1), 100–119 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  52. 52.
    Oh, K.K., Park, M.C., Ahn, H.S.: A survey of multi-agent formation control. Automatica J. IFAC 53, 424–440 (2015)CrossRefMathSciNetzbMATHGoogle Scholar
  53. 53.
    Olfati-Saber, R., Fax, J., Murray, R.: Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE 95(1), 215–233 (2007)CrossRefzbMATHGoogle Scholar
  54. 54.
    Peypouquet, J., Sorin, S.: Evolution equations for maximal monotone operators: asymptotic analysis in continuous and discrete time. J. Convex Anal. 17(3–4), 1113–1163 (2010)MathSciNetzbMATHGoogle Scholar
  55. 55.
    Rockafellar, R.: Convex Analysis. Princeton University Press (1970)Google Scholar
  56. 56.
    Rockafellar, R., Wets, R.J.B.: Variational Analysis. Springer (1998)Google Scholar
  57. 57.
    Sabach, S.: Products of finitely many resolvents of maximal monotone mappings in reflexive Banach spaces. SIAM J. Optim. 21(4), 1289–1308 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  58. 58.
    Sanfelice, R., Goebel, R., Teel, A.: Generalized solutions to hybrid dynamical systems. ESAIM Control Optim. Calc. Var. 14, 699–724 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  59. 59.
    Shi, G., Proutiere, A., Johansson, K.: Network synchronization with convexity. SIAM J. Control Optim. 53(6), 3562–3583 (2015)CrossRefMathSciNetzbMATHGoogle Scholar
  60. 60.
    Smirnov, G.: Introduction to the theory of differential inclusions, Graduate Studies in Mathematics, vol. 41. American Mathematical Society, Providence, RI (2002)Google Scholar
  61. 61.
    Teel, A., Praly, L.: A smooth Lyapunov function from a class-\({\mathcal {K}\mathcal {L}}\) estimate involving two positive semidefinite functions. ESAIM Control Optim. Calc. Var. 5, 313–367 (2000)Google Scholar
  62. 62.
    Venets, V.: A continuous algorithm for finding the saddle points of convex-concave functions. Avtomat. i Telemekh. (1), 42–47 (1984)MathSciNetzbMATHGoogle Scholar
  63. 63.
    Venets, V.: Continuous algorithms for solution of convex optimization problems and finding saddle points of convex-concave functions with the use of projection operations. Optimization 16(4), 519–533 (1985).CrossRefMathSciNetzbMATHGoogle Scholar
  64. 64.
    Zangwill, W.: Nonlinear programming: a unified approach. Prentice-Hall, Inc., Englewood Cliffs, N.J. (1969)zbMATHGoogle Scholar
  65. 65.
    Zaslavski, A.: Convergence of a proximal point method in the presence of computational errors in Hilbert spaces. SIAM J. Optim. 20(5), 2413–2421 (2010).CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsLoyola University ChicagoChicagoUSA

Personalised recommendations