Advertisement

Role of Connexins and Pannexins in Bone and Muscle Mass and Function

  • Lilian I. PlotkinEmail author
  • Hannah M. Davis
Chapter

Abstract

The fundamental role of connexins and pannexins in the development, maintenance and regeneration of both bone and muscle has been demonstrated over the last decade. It has long been known that connexins, either through gap junction channels, as hemichannels, or as channel independent signaling molecules, mediate the effect of stimuli that target bone. However, the role of pannexins in bone and whether pannexins also mediate the effects of these stimuli in bone requires more research. In skeletal muscle, the role of pannexins has become clearer and the importance of pannexins for muscle cell differentiation has been demonstrated in several studies. On the other hand, while connexins appear to only be expressed during differentiation, they also seem to have a role during disease onset and progression in muscle. In this chapter, we cover the current knowledge of the roles of connexins and pannexins in bone and muscle health and disease.

Keywords

Connexin Pannexin Bone Osteoblast Osteocyte Osteoclast Skeletal muscle Myoblast Myocyte Satellite cell 

References

  1. Abe Y, Kawakami A, Nakashima T, Ejima E, Fujiyama K, Kiriyama T, Ide A, Sera N, Usa T, Tominaga T, Ashizawa K, Yokoyama N, Eguchi K (2000) Etidronate inhibits human osteoblast apoptosis by inhibition of pro-apoptotic factor(s) produced by activated T cells. J Lab Clin Med 136(5):344–354PubMedCrossRefPubMedCentralGoogle Scholar
  2. Almeida M, Han L, Martin-Millan M, Plotkin LI, Stewart SA, Roberson PK, Kousteni S, O‘Brien CA, Bellido T, Parfitt AM, Weinstein RS, Jilka RL, Manolagas SC (2007) Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids. J Biol Chem 282(37):27285–27297PubMedPubMedCentralCrossRefGoogle Scholar
  3. Araya R, Eckardt D, Riquelme MA, Willecke K, Saez JC (2003) Presence and importance of connexin43 during myogenesis. Cell Commun Adhes 10(4–6):451–456. doi:2BLDP1GTYY7A8466 [pii]PubMedCrossRefPubMedCentralGoogle Scholar
  4. Araya R, Riquelme MA, Brandan E, Saez JC (2004) The formation of skeletal muscle myotubes requires functional membrane receptors activated by extracellular ATP. Brain Res Brain Res Rev 47 (1–3):174–188. doi:S0165017304000761 [pii]; https://doi.org/10.1016/j.brainresrev.2004.06.003 [doi]
  5. Araya R, Eckardt D, Maxeiner S, Kruger O, Theis M, Willecke K, Saez JC (2005) Expression of connexins during differentiation and regeneration of skeletal muscle: functional relevance of connexin43. J Cell Sci 118 (Pt 1):27–37. doi:jcs.01553 [pii]; https://doi.org/10.1242/jcs.01553 [doi]
  6. Batra N, Burra S, Siller-Jackson AJ, Gu S, Xia X, Weber GF, Desimone D, Bonewald LF, Lafer EM, Sprague E, Schwartz MA, Jiang JX (2012) Mechanical stress-activated integrin alpha5beta1 induces opening of connexin 43 hemichannels. Proc Natl Acad Sci U S A 109(9):3359–3364PubMedPubMedCentralCrossRefGoogle Scholar
  7. Batra N, Riquelme MA, Burra S, Rekha K, Gu S, Jiang JX (2014) Direct regulation of Osteocytic Connexin 43 Hemichannels through AKT kinase activated by mechanical stimulation. J Biol Chem 289(15):10582–10591PubMedPubMedCentralCrossRefGoogle Scholar
  8. Beyer EC, Berthoud VM (2018) Gap junction gene and protein families: Connexins, innexins, and pannexins. Biochim Biophys Acta 1860(1):5–8.  https://doi.org/10.1016/j.bbamem.2017.05.016CrossRefGoogle Scholar
  9. Bivi N, Bereszczak JZ, Romanello M, Zeef LA, Delneri D, Quadrifoglio F, Moro L, Brancia FL, Tell G (2009) Transcriptome and proteome analysis of osteocytes treated with nitrogen-containing bisphosphonates. J Proteome Res 8(3):1131–1142PubMedCrossRefGoogle Scholar
  10. Bivi N, Farlow N, Brun L, Benson JD, Condon KW, Robling AG, Bellido T, Plotkin LI (2011a) Unexpected enhanced response to mechanical loading of mice lacking Cx43 exclusively in osteocytes. J Bone Miner Res 25(Suppl1):S11Google Scholar
  11. Bivi N, Lezcano V, Romanello M, Bellido T, Plotkin LI (2011b) Connexin43 interacts with barrestin: a pre-requisite for osteoblast survival induced by parathyroid hormone. J Cell Biochem 112(10):2920–2930PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bivi N, Condon KW, Allen MR, Farlow N, Passeri G, Brun L, Rhee Y, Bellido T, Plotkin LI (2012a) Cell autonomous requirement of connexin 43 for osteocyte survival: consequences for endocortical resorption and periosteal bone formation. J Bone Min Res 27(2):374–389CrossRefGoogle Scholar
  13. Bivi N, Nelson MT, Faillace ME, Li J, Miller LM, Plotkin LI (2012b) Deletion of Cx43 from osteocytes results in defective bone material properties but does not decrease extrinsic strength in cortical bone. Calcif Tissue Int 91(3):215–224PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bivi N, Pacheco-Costa R, Brun LR, Murphy TR, Farlow NR, Robling AG, Bellido T, Plotkin LI (2013) Absence of Cx43 selectively from osteocytes enhances responsiveness to mechanical force in mice. J Orthop Res 31(7):1075–1081PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bond SR, Lau A, Penuela S, Sampaio AV, Underhill TM, Laird DW, Naus CC (2011) Pannexin 3 is a novel target for Runx2, expressed by osteoblasts and mature growth plate chondrocytes. J Bone Miner Res 26(12):2911–2922PubMedCrossRefGoogle Scholar
  16. Bonewald LF (2011) The amazing osteocyte. J Bone Miner Res 26(2):229–238PubMedCrossRefGoogle Scholar
  17. Brown RJ, Van Beek E, Watts DJ, Lowik CW, Papapoulos SE (1998) Differential effects of aminosubstituted analogs of hydroxy bisphosphonates on the growth of Dictyostelium discoideum. J Bone Min Res 13(2):253–258CrossRefGoogle Scholar
  18. Buck M, Poli V, Hunter T, Chojkier M (2001) C/EBPbeta phosphorylation by RSK creates a functional XEXD caspase inhibitory box critical for cell survival. Mol Cell 8(4):807–816PubMedCrossRefGoogle Scholar
  19. Buvinic S, Almarza G, Bustamante M, Casas M, Lopez J, Riquelme M, Saez JC, Huidobro-Toro JP, Jaimovich E (2009) ATP released by electrical stimuli elicits calcium transients and gene expression in skeletal muscle. J Biol Chem 284(50):34490–34505PubMedPubMedCentralCrossRefGoogle Scholar
  20. Caskenette D, Penuela S, Lee V, Barr K, Beier F, Laird DW, Willmore KE (2016) Global deletion of Panx3 produces multiple phenotypic effects in mouse humeri and femora. J Anat. doi: https://doi.org/10.1111/joa.12437 [doi]
  21. Cea LA, Cisterna BA, Puebla C, Frank M, Figueroa XF, Cardozo C, Willecke K, Latorre R, Saez JC (2013) De novo expression of connexin hemichannels in denervated fast skeletal muscles leads to atrophy. Proc Natl Acad Sci U S A 110 (40):16229–16234. doi:1312331110 [pii]; https://doi.org/10.1073/pnas.1312331110 [doi]
  22. Cea LA, Balboa E, Puebla C, Vargas AA, Cisterna BA, Escamilla R, Regueira T, Saez JC (2016a) Dexamethasone-induced muscular atrophy is mediated by functional expression of connexin-based hemichannels. Biochim Biophys Acta 1862 (10):1891-1899. doi:S0925-4439(16)30163-6 [pii]; https://doi.org/10.1016/j.bbadis.2016.07.003 [doi]
  23. Cea LA, Bevilacqua JA, Arriagada C, Cardenas AM, Bigot A, Mouly V, Saez JC, Caviedes P (2016b) The absence of dysferlin induces the expression of functional connexin-based hemichannels in human myotubes. BMC cell biol 17(Suppl 1):15. doi: https://doi.org/10.1186/s12860-016-0096-6 [doi]; https://doi.org/10.1186/s12860-016-0096-6 [pii]
  24. Cea LA, Puebla C, Cisterna BA, Escamilla R, Vargas AA, Frank M, Martinez-Montero P, Prior C, Molano J, Esteban-Rodriguez I, Pascual I, Gallano P, Lorenzo G, Pian H, Barrio LC, Willecke K, Saez JC (2016c) Fast skeletal myofibers of mdx mouse, model of Duchenne muscular dystrophy, express connexin hemichannels that lead to apoptosis. Cell Mol Life Sci 73 (13):2583–2599. doi: https://doi.org/10.1007/s00018-016-2132-2 [doi]; https://doi.org/10.1007/s00018-016-2132-2 [pii]
  25. Cheng B, Zhao S, Luo J, Sprague E, Bonewald LF, Jiang JX (2001) Expression of functional gap junctions and regulation by fluid flow in osteocyte-like MLO-Y4 cells. J Bone Miner Res 16(2):249–259PubMedCrossRefPubMedCentralGoogle Scholar
  26. Cherian PP, Siller-Jackson AJ, Gu S, Wang X, Bonewald LF, Sprague E, Jiang JX (2005) Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin. Mol Biol Cell 16:3100–3106PubMedPubMedCentralCrossRefGoogle Scholar
  27. Cheung WY, Fritton JC, Morgan SA, Seref-Ferlengez Z, Basta-Pljakic J, Thi MM, Suadicani SO, Spray DC, Majeska RJ, Schaffler MB (2016) Pannexin-1 and P2X7-receptor are required for apoptotic osteocytes in fatigued bone to trigger RANKL production in neighboring bystander osteocytes. J Bone Miner Res 31 (4):890–899. doi: https://doi.org/10.1002/jbmr.2740 [doi]PubMedCrossRefPubMedCentralGoogle Scholar
  28. Chung D, Castro CH, Watkins M, Stains JP, Chung MY, Szejnfeld VL, Willecke K, Theis M, Civitelli R (2006) Low peak bone mass and attenuated anabolic response to parathyroid hormone in mice with an osteoblast-specific deletion of connexin43. J Cell Sci 119(Pt 20):4187–4198PubMedCrossRefPubMedCentralGoogle Scholar
  29. Cisterna BA, Vargas AA, Puebla C, Saez JC (2016) Connexin hemichannels explain the ionic imbalance and lead to atrophy in denervated skeletal muscles. Biochim Biophys Acta 1862 (11):2168-2176. doi:S0925-4439(16):30217–30214 [pii]; https://doi.org/10.1016/j.bbadis.2016.08.020 [doi]
  30. Civitelli R, Beyer EC, Warlow PM, Robertson AJ, Geist ST, Steinberg TH (1993) Connexin43 mediates direct intercellular communication in human osteoblastic cell networks. J Clin Invest 91:1888–1896PubMedPubMedCentralCrossRefGoogle Scholar
  31. Davis HM, Pacheco-Costa R, Atkinson EG, Brun LR, Gortazar AR, Harris J, Hiasa M, Bolarinwa SA, Yoneda T, Ivan M, Bruzzaniti A, Bellido T, Plotkin LI (2017) Disruption of the Cx43/miR21 pathway leads to osteocyte apoptosis and increased osteoclastogenesis with aging. Aging Cell 16(3):551–563PubMedPubMedCentralCrossRefGoogle Scholar
  32. Davis HM, Aref MW, Aguilar-Perez A, Pacheco-Costa R, Allen K, Valdez S, Herrera C, Atkinson EG, Mohammad A, Lopez D, Harris MA, Harris SE, Alen M, Bellido T, Plotkin LI (2018) Cx43 overexpression in osteocytes prevents osteocyte apoptosis and preserves cortical bone quality in aging mice. JBMR Plus.  https://doi.org/10.1002/jbm4.10035PubMedPubMedCentralCrossRefGoogle Scholar
  33. Follet H, Li J, Phipps RJ, Hui S, Condon K, Burr DB (2007) Risedronate and alendronate suppress osteocyte apoptosis following cyclic fatigue loading. Bone 40(4):1172–1177PubMedCrossRefGoogle Scholar
  34. Frediani B, Spreafico A, Capperucci C, Chellini F, Gambera D, Ferrata P, Baldi F, Falsetti P, Santucci A, Bocchi L, Marcolongo R (2004) Long-term effects of neridronate on human osteoblastic cell cultures. Bone 35(4):859–869PubMedCrossRefPubMedCentralGoogle Scholar
  35. Furlan F, Lecanda F, Screen J, Civitelli R (2001) Proliferation, differentiation and apoptosis in connexin43-null osteoblasts. Cell Commun Adhes 8(4–6):367–371PubMedCrossRefPubMedCentralGoogle Scholar
  36. Gangoiti MV, Cortizo AM, Arnol V, Felice JI, McCarthy AD (2008) Opposing effects of bisphosphonates and advanced glycation end-products on osteoblastic cells. Eur J Pharmacol 600(1–3):140–147PubMedCrossRefGoogle Scholar
  37. Genetos DC, Kephart CJ, Zhang Y, Yellowley CE, Donahue HJ (2007) Oscillating fluid flow activation of gap junction hemichannels induces ATP release from MLO-Y4 osteocytes. J Cell Physiol 212(1):207–214PubMedPubMedCentralCrossRefGoogle Scholar
  38. Genetos DC, Zhou Z, Li Z, Donahue HJ (2012) Age-related changes in gap junctional intercellular communication in osteoblastic cells. J Orthop Res 30(12):1979–1984PubMedPubMedCentralCrossRefGoogle Scholar
  39. Goodenough DA, Paul DL (2003) Beyond the gap: functions of unpaired connexon channels. Nat Rev Mol Cell Biol 4(4):285–294PubMedCrossRefPubMedCentralGoogle Scholar
  40. Grimston SK, Brodt MD, Silva MJ, Civitelli R (2008) Attenuated response to in vivo mechanical loading in mice with conditional osteoblast ablation of the Connexin43 gene (Gja1). J Bone Miner Res 23(6):879–886. doi: https://doi.org/10.1359/jbmr.080222 [doi]
  41. Grimston SK, Goldberg DB, Watkins M, Brodt MD, Silva MJ, Civitelli R (2011) Connexin43 deficiency reduces the sensitivity of cortical bone to the effects of muscle paralysis. J Bone Miner Res 26(9):2151–2160PubMedPubMedCentralCrossRefGoogle Scholar
  42. Grimston SK, Watkins MP, Brodt MD, Silva MJ, Civitelli R (2012) Enhanced periosteal and endocortical responses to axial tibial compression loading in conditional connexin43 deficient mice. PLoS One 7(9):e44222PubMedPubMedCentralCrossRefGoogle Scholar
  43. Idris AI, Rojas J, Greig IR, van’t Hof RJ, Ralston SH (2008) Aminobisphosphonates cause osteoblast apoptosis and inhibit bone nodule formation in vitro. Calcif Tissue Int 82(3):191–201. doi: https://doi.org/10.1007/s00223-008-9104-y [doi]
  44. Ilvesaro J, Väänänen K, Tuukkanen J (2000) Bone-resorbing osteoclasts contain gap-junctional connexin-43. J Bone Min Res 15(5):919–926CrossRefGoogle Scholar
  45. Ilvesaro J, Tavi P, Tuukkanen J (2001) Connexin-mimetic peptide gap 27 decreases osteoclastic activity. BMC Musculoskelet Disord 2(1):10PubMedPubMedCentralCrossRefGoogle Scholar
  46. Ishikawa M, Williams GL, Ikeuchi T, Sakai K, Fukumoto S, Yamada Y (2016) Pannexin 3 and connexin 43 modulate skeletal development via distinct functions and expression patterns. J Cell Sci. doi:jcs.176883 [pii]; https://doi.org/10.1242/jcs.176883 [doi]
  47. Jones SJ, Gray C, Sakamaki H, Arora M, Boyde A, Gourdie R, Green C (1993) The incidence and size of gap junctions between the bone cells in rat calvaria. Anat Embryol (Berl ) 187(4):343–352CrossRefGoogle Scholar
  48. Jorgensen NR, Henriksen Z, Brot C, Eriksen EF, Sorensen OH, Civitelli R, Steinberg TH (2000) Human osteoblastic cells propagate intercellular calcium signals by two different mechanisms. J Bone Miner Res 15(6):1024–1032PubMedCrossRefGoogle Scholar
  49. Jorquera G, Altamirano F, Contreras-Ferrat A, Almarza G, Buvinic S, Jacquemond V, Jaimovich E, Casas M (2013) Cav1.1 controls frequency-dependent events regulating adult skeletal muscle plasticity. J Cell Sci 126(Pt 5):1189–1198. doi:jcs.116855 [pii]; https://doi.org/10.1242/jcs.116855 [doi]
  50. Kar R, Riquelme MA, Werner S, Jiang JX (2013) Connexin 43 channels protect osteocytes against oxidative stress-induced cell death. J bone miner res 28 (7):1611-1621. Doi: https://doi.org/10.1002/jbmr.1917 [doi]PubMedCrossRefPubMedCentralGoogle Scholar
  51. Kogianni G, Mann V, Ebetino F, Nuttall M, Nijweide P, Simpson H, Noble B (2004) Fas/CD95 is associated with glucocorticoid-induced osteocyte apoptosis. Life Sci 75(24):2879–2895PubMedCrossRefPubMedCentralGoogle Scholar
  52. Koval M, Geist ST, Westphale EM, Kemendy AE, Civitelli R, Beyer EC, Steinberg TH (1995) Transfected connexin45 alters gap junction permeability in cells expressing endogenous connexin43. J Cell Biol 130(4):987–995PubMedCrossRefPubMedCentralGoogle Scholar
  53. Laing JG, Manley-Markowski RN, Koval M, Civitelli R, Steinberg TH (2001) Connexin45 interacts with zonula occludens-1 and connexin43 in osteoblastic cells. J Biol Chem 276(25):23051–23055.  https://doi.org/10.1074/jbc.M100303200CrossRefPubMedPubMedCentralGoogle Scholar
  54. Laird DW (2006) Life cycle of connexins in health and disease. Biochem J 394(Pt 3):527–543.  https://doi.org/10.1042/BJ20051922CrossRefPubMedPubMedCentralGoogle Scholar
  55. Langlois S, Cowan KN (2017) Regulation of skeletal muscle myoblast differentiation and proliferation by Pannexins. Adv Exp Med Biol 925:57–73.  https://doi.org/10.1007/5584_2016_53CrossRefPubMedPubMedCentralGoogle Scholar
  56. Langlois S, Xiang X, Young K, Cowan BJ, Penuela S, Cowan KN (2014) Pannexin 1 and Pannexin 3 channels regulate skeletal muscle myoblast proliferation and differentiation. J Biol Chem 289(44):30717–30731PubMedPubMedCentralCrossRefGoogle Scholar
  57. Le Vasseur M, Lelowski J, Bechberger JF, Sin WC, Naus CC (2014) Pannexin 2 protein expression is not restricted to the CNS. Front Cell Neurosci 8:392PubMedPubMedCentralCrossRefGoogle Scholar
  58. Lecanda F, Towler DA, Ziambaras K, Cheng SL, Koval M, Steinberg TH, Civitelli R (1998) Gap junctional communication modulates gene expression in osteoblastic cells. Mol Biol Cell 9(8):2249–2258PubMedPubMedCentralCrossRefGoogle Scholar
  59. Lecanda F, Warlow PM, Sheikh S, Furlan F, Steinberg TH, Civitelli R (2000) Connexin43 deficiency causes delayed ossification, craniofacial abnormalities, and osteoblast dysfunction. J Cell Biol 151(4):931–944PubMedPubMedCentralCrossRefGoogle Scholar
  60. Lezcano V, Bellido T, Plotkin LI, Boland R, Morelli S (2012) Role of connexin 43 in the mechanism of action of alendronate: dissociation of anti-apoptotic and proliferative signaling pathways. Arch Biochem Biophys 518(2):95–102PubMedPubMedCentralCrossRefGoogle Scholar
  61. Li J, Liu D, Ke HZ, Duncan RL, Turner CH (2005) The P2X7 nucleotide receptor mediates skeletal mechanotransduction. J Biol Chem 280(52):42952–42959PubMedCrossRefPubMedCentralGoogle Scholar
  62. Lima F, Niger C, Hebert C, Stains JP (2009) Connexin43 potentiates osteoblast responsiveness to fibroblast growth factor 2 via a protein kinase C-Delta/Runx2-dependent mechanism. Mol Biol Cell 20:2697–2708PubMedPubMedCentralCrossRefGoogle Scholar
  63. Lloyd SA, Lewis GS, Zhang Y, Paul EM, Donahue HJ (2012) Connexin 43 deficiency attenuates loss of trabecular bone and prevents suppression of cortical bone formation during unloading. J Bone Miner Res 27(11):2359–2372PubMedPubMedCentralCrossRefGoogle Scholar
  64. Loiselle AE, Paul EM, Lewis GS, Donahue HJ (2013) Osteoblast and osteocyte-specific loss of Connexin43 results in delayed bone formation and healing during murine fracture healing. J Orthop Res 31(1):147–154PubMedCrossRefPubMedCentralGoogle Scholar
  65. Merrifield PA, Laird DW (2016) Connexins in skeletal muscle development and disease. Semin Cell Dev Biol 50:67–73.  https://doi.org/10.1016/j.semcdb.2015.12.001CrossRefPubMedPubMedCentralGoogle Scholar
  66. Moorer MC, Stains JP (2017) Connexin43 and the intercellular signaling network regulating skeletal remodeling. Curr Osteoporos Rep. doi: https://doi.org/10.1007/s11914-017-0345-4 [doi]; https://doi.org/10.1007/s11914-017-0345-4 [pii]
  67. Moorer MC, Hebert C, Tomlinson RE, Iyer SR, Chason M, Stains JP (2017) Defective signaling, osteoblastogenesis, and bone remodeling in a mouse model of connexin43 C-terminal truncation. J Cell Sci 130(3):531–540. doi:jcs.197285 [pii]; https://doi.org/10.1242/jcs.197285 [doi]
  68. Morelli S, Bilbao PS, Katz S, Lezcano V, Roldan E, Boland R, Santillan G (2011) Protein phosphatases: possible bisphosphonate binding sites mediating stimulation of osteoblast proliferation. Arch Biochem Biophys 507(2):248–253PubMedCrossRefPubMedCentralGoogle Scholar
  69. Niger C, Buo AM, Hebert C, Duggan BT, Williams MS, Stains JP (2012) ERK acts in parallel to PKC delta to mediate the Connexin43-dependent potentiation of Runx2 activity by FGF2 in MC3T3 osteoblasts. Am J Physiol Cell Physiol 302(7):C1035–C1044PubMedPubMedCentralCrossRefGoogle Scholar
  70. Pacheco-Costa R, Hassan I, Reginato RD, Davis HM, Bruzzaniti A, Allen MR, Plotkin LI (2014) High bone mass in mice lacking Cx37 due to defective osteoclast differentiation. J Biol Chem 289(12):8508–8520PubMedPubMedCentralCrossRefGoogle Scholar
  71. Pacheco-Costa R, Davis HM, Sorenson C, Hon MC, Hassan I, Reginato RD, Allen MR, Bellido T, Plotkin LI (2015) Defective cancellous bone structure and abnormal response to PTH in cortical bone of mice lacking Cx43 cytoplasmic C-terminus domain. Bone 81:632–643PubMedPubMedCentralCrossRefGoogle Scholar
  72. Pacheco-Costa R, Kadakia JR, Atkinson EG, Wallace JM, Plotkin LI, Reginato RD (2017) Connexin37 deficiency alters organic bone matrix, cortical bone geometry, and increases Wnt/beta-catenin signaling. Bone 97:105–113. doi:S8756-3282(17)30010-8 [pii]; https://doi.org/10.1016/j.bone.2017.01.010 [doi]
  73. Pan B, To LB, Farrugia AN, Findlay DM, Green J, Gronthos S, Evdokiou A, Lynch K, Atkins GJ, Zannettino AC (2004) The nitrogen-containing bisphosphonate, zoledronic acid, increases mineralisation of human bone-derived cells in vitro. Bone 34(1):112–123PubMedCrossRefPubMedCentralGoogle Scholar
  74. Panchin Y, Kelmanson I, Matz M, Lukyanov K, Usman N, Lukyanov S (2000) A ubiquitous family of putative gap junction molecules. Curr Biol 10(13):R473–R474PubMedCrossRefPubMedCentralGoogle Scholar
  75. Pillon NJ, Li YE, Fink LN, Brozinick JT, Nikolayev A, Kuo MS, Bilan PJ, Klip A (2014) Nucleotides released from palmitate-challenged muscle cells through pannexin-3 attract monocytes. Diabetes 63(11):3815–3826.  https://doi.org/10.2337/db14-0150CrossRefPubMedGoogle Scholar
  76. Plotkin LI (2014) Connexin 43 hemichannels and intracellular signaling in bone cells. Front Physiol 5:131PubMedPubMedCentralCrossRefGoogle Scholar
  77. Plotkin LI, Bellido T (2013) Beyond gap junctions: Connexin43 and bone cell signaling. Bone 52(1):157–166PubMedCrossRefPubMedCentralGoogle Scholar
  78. Plotkin LI, Bellido T (2016) Osteocytic signalling pathways as therapeutic targets for bone fragility. Nat Rev Endocrinol 12 (10):593–605. doi:nrendo.2016.71 [pii]; https://doi.org/10.1038/nrendo.2016.71 [doi]
  79. Plotkin LI, Stains JP (2015) Connexins and pannexins in the skeleton: gap junctions, hemichannels and more. Cell Mol Life Sci 72(15):2853–2867PubMedPubMedCentralCrossRefGoogle Scholar
  80. Plotkin LI, Weinstein RS, Parfitt AM, Roberson PK, Manolagas SC, Bellido T (1999) Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. J Clin Invest 104(10):1363–1374PubMedPubMedCentralCrossRefGoogle Scholar
  81. Plotkin LI, Manolagas SC, Bellido T (2002) Transduction of cell survival signals by connexin-43 hemichannels. J Biol Chem 277(10):8648–8657PubMedCrossRefGoogle Scholar
  82. Plotkin LI, Aguirre JI, Kousteni S, Manolagas SC, Bellido T (2005) Bisphosphonates and estrogens inhibit osteocyte apoptosis via distinct molecular mechanisms downstream of ERK activation. J Biol Chem 280(8):7317–7325PubMedCrossRefGoogle Scholar
  83. Plotkin LI, Manolagas SC, Bellido T (2006a) Dissociation of the pro-apoptotic effects of bisphosphonates on osteoclasts from their anti-apoptotic effects on osteoblasts/osteocytes with novel analogs. Bone 39(3):443–452PubMedCrossRefGoogle Scholar
  84. Plotkin LI, Vyas K, Gortazar AR, Manolagas SC, Bellido T (2006b) Barrestin complexes with connexin (cx) 43 and anchors ERKs outside the nucleus: a requirement for the Cx43/ERK-mediated anti-apoptotic effect of bisphosphonates in osteocytes. J Bone Miner Res 21 (Suppl 1):S65Google Scholar
  85. Plotkin LI, Lezcano V, Thostenson J, Weinstein RS, Manolagas SC, Bellido T (2008) Connexin 43 is required for the anti-apoptotic effect of bisphosphonates on osteocytes and osteoblasts in vivo. J Bone Miner Res 23(11):1712–1721PubMedPubMedCentralCrossRefGoogle Scholar
  86. Plotkin LI, Bivi N, Bellido T (2011) A bisphosphonate that does not affect osteoclasts prevents osteoblast and osteocyte apoptosis and the loss of bone strength induced by glucocorticoids in mice. Bone 49:122–127PubMedCrossRefGoogle Scholar
  87. Plotkin LI, Speacht TL, Donahue HJ (2015) Cx43 and Mechanotransduction in bone. Curr Osteoporos Rep 13(2):67–72PubMedPubMedCentralCrossRefGoogle Scholar
  88. Plotkin LI, Laird DW, Amedee J (2016) Role of connexins and pannexins during ontogeny, regeneration, and pathologies of bone. BMC Cell Biol 17(Suppl 1):29–38Google Scholar
  89. Plotkin LI, Davis HM, Cisterna BA, Saez JC (2017) Connexins and Pannexins in bone and skeletal muscle. Curr Osteoporos Rep 15(4):326–334.  https://doi.org/10.1007/s11914-017-0374-zCrossRefPubMedPubMedCentralGoogle Scholar
  90. Pozzi S, Vallet S, Mukherjee S, Cirstea D, Vaghela N, Santo L, Rosen E, Ikeda H, Okawa Y, Kiziltepe T, Schoonmaker J, Xie W, Hideshima T, Weller E, Bouxsein ML, Munshi NC, Anderson KC, Raje N (2009) High-dose zoledronic acid impacts bone remodeling with effects on osteoblastic lineage and bone mechanical properties. Clin Cancer Res 15(18):5829–5839PubMedCrossRefPubMedCentralGoogle Scholar
  91. Reaume AG, de Sousa PA, Kulkarni S, Langille BL, Zhu D, Davies TC, Juneja SC, Kidder GM, Rossant J (1995) Cardiac malformation in neonatal mice lacking connexin43. Science 267(5205):1831–1834PubMedCrossRefPubMedCentralGoogle Scholar
  92. Reinholz GG, Getz B, Pederson L, Sanders ES, Subramaniam M, Ingle JN, Spelsberg TC (2000) Bisphosphonates directly regulate cell proliferation, differentiation, and gene expression in human osteoblasts. Cancer Res 60(21):6001–6007PubMedPubMedCentralGoogle Scholar
  93. Riquelme MA, Cea LA, Vega JL, Boric MP, Monyer H, Bennett MV, Frank M, Willecke K, Saez JC (2013) The ATP required for potentiation of skeletal muscle contraction is released via pannexin hemichannels. Neuropharmacology 75:594–603. doi:S0028-3908(13)00118-4 [pii]; https://doi.org/10.1016/j.neuropharm.2013.03.022 [doi]
  94. Riquelme MA, Cea LA, Vega JL, Puebla C, Vargas AA, Shoji KF, Subiabre M, Saez JC (2015) Pannexin channels mediate the acquisition of myogenic commitment in C2C12 reserve cells promoted by P2 receptor activation. Front cell dev biol 3:25. Doi: https://doi.org/10.3389/fcell.2015.00025 [doi]
  95. Robinson JA, Chatterjee-Kishore M, Yaworsky PJ, Cullen DM, Zhao W, Li C, Kharode Y, Sauter L, Babij P, Brown EL, Hill AA, Akhter MP, Johnson ML, Recker RR, Komm BS, Bex FJ (2006) WNT/beta-catenin signaling is a normal physiological response to mechanical loading in bone. J Biol Chem 281(41):31720–31728PubMedCrossRefPubMedCentralGoogle Scholar
  96. Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MJ, Alam I, Mantila SM, Gluhak-Heinrich J, Bellido T, Harris SE, Turner CH (2008) Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem 283(9):5866–5875PubMedCrossRefPubMedCentralGoogle Scholar
  97. Russell RG, Watts NB, Ebetino FH, Rogers MJ (2008) Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos Int 19(6):733–759. doi: https://doi.org/10.1007/s00198-007-0540-8 [doi]
  98. Schalper KA, Palacios-Prado N, Retamal MA, Shoji KF, Martinez AD, Saez JC (2008) Connexin hemichannel composition determines the FGF-1-induced membrane permeability and free [Ca2+]i responses. Mol biol cell 19 (8):3501-3513. Doi:E07-12-1240 [pii]; https://doi.org/10.1091/mbc.E07-12-1240 [doi]
  99. Schalper KA, Sanchez HA, Lee SC, Altenberg GA, Nathanson MH, Saez JC (2010) Connexin 43 hemichannels mediate the Ca2+ influx induced by extracellular alkalinization. Am J Physiol Cell Physiol 299(6):C1504–C1515. doi:ajpcell.00015.2010 [pii]; https://doi.org/10.1152/ajpcell.00015.2010 [doi]
  100. Schilling AF, Filke S, Lange T, Gebauer M, Brink S, Baranowsky A, Zustin J, Amling M (2008) Gap junctional communication in human osteoclasts in vitro and in vivo. J Cell Mol Med 12(6A):2497–2504PubMedPubMedCentralCrossRefGoogle Scholar
  101. Seref-Ferlengez Z, Urban-Maldonado M, Sun HB, Schaffler MB, Suadicani SO, Thi MM (2018) Role of pannexin 1 channels in load-induced skeletal response. Ann N Y Acad Sci 1442:79–90.  https://doi.org/10.1111/nyas.13914CrossRefPubMedPubMedCentralGoogle Scholar
  102. Shen H, Grimston S, Civitelli R, Thomopoulos S (2014) Deletion of connexin43 in osteoblasts/osteocytes leads to impaired muscle formation in mice. J Bone Miner Res 30(4):596–605CrossRefGoogle Scholar
  103. Siller-Jackson AJ, Burra S, Gu S, Xia X, Bonewald LF, Sprague E, Jiang JX (2008) Adaptation of connexin 43-hemichannel prostaglandin release to mechanical loading. J Biol Chem 283(39):26374–26382PubMedPubMedCentralCrossRefGoogle Scholar
  104. Sosinsky GE, Boassa D, Dermietzel R, Duffy HS, Laird DW, MacVicar B, Naus CC, Penuela S, Scemes E, Spray DC, Thompson RJ, Zhao HB, Dahl G (2011) Pannexin channels are not gap junction hemichannels. Channels (Austin) 5(3):193–197CrossRefGoogle Scholar
  105. Stains JP, Civitelli R (2015) Connexins in the skeleton. Semin Cell Dev Biol. doi:S1084-9521(15)30031-8 [pii]; https://doi.org/10.1016/j.semcdb.2015.12.017 [doi]
  106. Stains JP, Lecanda F, Screen J, Towler DA, Civitelli R (2003) Gap junctional communication modulates gene transcription by altering the recruitment of Sp1 and Sp3 to connexin – response elements in osteoblast promoters. J Biol Chem 278(27):24377–24387PubMedCrossRefPubMedCentralGoogle Scholar
  107. Steinberg TH, Civitelli R, Geist ST, Robertson AJ, Hick E, Veenstra RD, Wang HZ, Warlow PM, Westphale EM, Laing JG (1994) Connexin43 and connexin45 form gap junctions with different molecular permeabilities in osteoblastic cells. EMBO J 13(4):744–750PubMedPubMedCentralCrossRefGoogle Scholar
  108. Thi MM, Urban-Maldonado M, Spray DC, Suadicani SO (2010) Characterization of human telomerase reverse transcriptase (hTERT) immortalized osteoblast cell lines generated from wildtype and connexin43-null mouse calvaria. Am J Physiol Cell Physiol 299(5):C994–C1006PubMedPubMedCentralCrossRefGoogle Scholar
  109. Thi MM, Islam S, Suadicani SO, Spray DC (2012) Connexin43 and pannexin1 channels in osteoblasts: who is the “hemichannel”? J Membr Biol 245(7):401–409PubMedPubMedCentralCrossRefGoogle Scholar
  110. Tu X, Rhee Y, Condon KW, Bivi N, Allen MR, Dwyer D, Stolina M, Turner CH, Robling AG, Plotkin LI, Bellido T (2012) Sost downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading. Bone 50(1):209–217PubMedCrossRefPubMedCentralGoogle Scholar
  111. von Maltzahn J, Euwens C, Willecke K, Sohl G (2004) The novel mouse connexin39 gene is expressed in developing striated muscle fibers. J Cell Sci 117 (Pt 22):5381–5392. doi:jcs.01413 [pii]; https://doi.org/10.1242/jcs.01413 [doi]
  112. Watkins M, Grimston SK, Norris JY, Guillotin B, Shaw A, Beniash E, Civitelli R (2011) Osteoblast Connexin43 modulates skeletal architecture by regulating both arms of bone remodeling. Mol Biol Cell 22(8):1240–1251PubMedPubMedCentralCrossRefGoogle Scholar
  113. Watkins MP, Norris JY, Grimston SK, Zhang X, Phipps RJ, Ebetino FH, Civitelli R (2012) Bisphosphonates improve trabecular bone mass and normalize cortical thickness in ovariectomized, osteoblast connexin43 deficient mice. Bone 51(4):787–794PubMedPubMedCentralCrossRefGoogle Scholar
  114. Weinger JM, Holtrop ME (1974) An ultrastructural study of bone cells: the occurrence of microtubules, microfilaments and tight junctions. Calcif Tissue Res 14(1):15–29PubMedCrossRefPubMedCentralGoogle Scholar
  115. Xiao Z, Camalier CE, Nagashima K, Chan KC, Lucas DA, de la Cruz MJ, Gignac M, Lockett S, Issaq HJ, Veenstra TD, Conrads TP, Beck GR Jr (2007) Analysis of the extracellular matrix vesicle proteome in mineralizing osteoblasts. J Cell Physiol 210(2):325–335PubMedCrossRefGoogle Scholar
  116. Yamada Y, Ando F, Shimokata H (2007) Association of candidate gene polymorphisms with bone mineral density in community-dwelling Japanese women and men. Int J Mol Med 19(5):791–801PubMedGoogle Scholar
  117. Yellowley CE, Li Z, Zhou Z, Jacobs CR, Donahue HJ (2000) Functional gap junctions between osteocytic and osteoblastic cells. J Bone Miner Res 15(2):209–217PubMedCrossRefPubMedCentralGoogle Scholar
  118. Zhang Y, Paul EM, Sathyendra V, Davidson A, Bronson S, Srinivasan S, Gross TS, Donahue HJ (2011) Enhanced osteoclastic resorption and responsiveness to mechanical load in gap junction deficient bone. PLoS One 6(8):e23516PubMedPubMedCentralCrossRefGoogle Scholar
  119. Ziambaras K, Lecanda F, Steinberg TH, Civitelli R (1998) Cyclic stretch enhances gap junctional communication between osteoblastic cells. J Bone Min Res 13(2):218–228CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Anatomy, Cell Biology & PhysiologyIndiana University School of MedicineIndianapolisUSA
  2. 2.Roudebush Veterans Administration Medical CenterIndianapolisUSA
  3. 3.Indiana Center for Musculoskeletal HealthIndianaUSA

Personalised recommendations