Advertisement

Cross-Talk Between Muscle and Bone

  • Chenglin MoEmail author
  • Zhiying Wang
  • Leticia Brotto
  • Donnalee Pollack
  • Jian Huang
  • Marco BrottoEmail author
Chapter

Abstract

Aging is associated with a progressive decline in muscle mass and function. Dysregulation of a set of cellular processes, such as low-grade inflammation, increased oxidative stress, reduced capacity of muscle regeneration, disrupted intracellular Ca2+ homeostasis, and altered lipid metabolism contribute to age-related muscle atrophy and muscle weakness, and are responsible for significant disability in older persons. To date, in attempting to determine the molecular components that lead to mass/strength decrements in the aged skeletal muscle, numerous studies using chromatography have screened or profiled biological signaling molecules such as proteins, hormones, bioactive lipids, antioxidants as well as other surrogate biochemical markers of muscle mass, which link to age-related skeletal muscle abnormalities. Accumulating evidence indicates that lipid mediators regulate skeletal muscle mass and function, and potentially influence muscle wasting, metabolism, and functional status in response to various pathological conditions. In this chapter, we attempt to provide an overview of the classification of lipid signaling mediators. We emphasize the biosynthesis, metabolism, and signaling pathways of AA-derived eicosanoids, which are involved in basic cellular process and thereby pathophysiological actions, particularly its association with bone-muscle crosstalk and skeletal muscle aging.

Keywords

Bone-muscle crosstalk Aging Skeletal muscle Lipid mediator Cyclooxygenase pathway Lipoxygenase pathway Arachidonic acid-derived eicosanoids 

Notes

Acknowledgments

This study was directly supported by NIH-NIA 2-P01 AG039355, 1-R01 AG056504, the George W. and Hazel M. Jay Endowment (to MB), and the UT System Science and Technology Acquisition and Retention Program (STARS) (to MB).

Conflict of Interest

No conflict of interest.

References

  1. Accomazzo MR, Rovati GE, Vigano T, Hernandez A, Bonazzi A, Bolla M et al (2001) Leukotriene D4-induced activation of smooth-muscle cells from human bronchi is partly Ca2+-independent. Am J Respir Crit Care Med 163(1):266–272PubMedCrossRefGoogle Scholar
  2. Aghazadeh-Habashi A, Asghar W, Jamali F (2015) Simultaneous determination of selected eicosanoids by reversed-phase HPLC method using fluorescence detection and application to rat and human plasma, and rat heart and kidney samples. J Pharm Biomed Anal 110:12–19PubMedCrossRefGoogle Scholar
  3. Ajubi NE, Klein-Nulend J, Alblas MJ, Burger EH, Nijweide PJ (1999) Signal transduction pathways involved in fluid flow-induced PGE2 production by cultured osteocytes. Am J Phys 276(1 Pt 1):E171–E178Google Scholar
  4. Allen RE, Rankin LL (1990) Regulation of satellite cells during skeletal muscle growth and development. Proc Soc Exp Biol Med 194(2):81–86PubMedCrossRefGoogle Scholar
  5. Altmann R, Hausmann M, Spottl T, Gruber M, Bull AW, Menzel K et al (2007) 13-Oxo-ODE is an endogenous ligand for PPARgamma in human colonic epithelial cells. Biochem Pharmacol 74(4):612–622PubMedCrossRefGoogle Scholar
  6. Anker SD, Morley JE, von Haehling S (2016) Welcome to the ICD-10 code for sarcopenia. J Cachexia Sarcopenia Muscle 7(5):512–514PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bakewell L, Burdge GC, Calder PC (2006) Polyunsaturated fatty acid concentrations in young men and women consuming their habitual diets. Br J Nutr 96(1):93–99PubMedCrossRefGoogle Scholar
  8. Bano G, Trevisan C, Carraro S, Solmi M, Luchini C, Stubbs B et al (2017) Inflammation and sarcopenia: a systematic review and meta-analysis. Maturitas 96:10–15PubMedCrossRefGoogle Scholar
  9. Baumgartner RN (2000) Body composition in healthy aging. Ann N Y Acad Sci 904:437–448CrossRefGoogle Scholar
  10. Baumgartner RN, Wayne SJ, Waters DL, Janssen I, Gallagher D, Morley JE (2004) Sarcopenic obesity predicts instrumental activities of daily living disability in the elderly. Obes Res 12(12):1995–2004PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bazan NG (2009) Neuroprotectin D1-mediated anti-inflammatory and survival signaling in stroke, retinal degenerations, and Alzheimer’s disease. J Lipid Res 50(Suppl):S400–S405PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bian Q, Wang W, Wang N, Peng Y, Ma W, Dai R (2016) Quantification of arachidonic acid and its metabolites in rat tissues by UHPLC-MS/MS: application for the identification of potential biomarkers of benign prostatic hyperplasia. PLoS One 11(11):e0166777PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bondesen BA, Mills ST, Kegley KM, Pavlath GK (2004) The COX-2 pathway is essential during early stages of skeletal muscle regeneration. Am J Physiol Cell Physiol 287(2):C475–C483PubMedCrossRefGoogle Scholar
  14. Bondesen BA, Jones KA, Glasgow WC, Pavlath GK (2007) Inhibition of myoblast migration by prostacyclin is associated with enhanced cell fusion. FASEB J 21(12):3338–3345PubMedCrossRefGoogle Scholar
  15. Bonewald LF, Johnson ML (2008) Osteocytes, mechanosensing and Wnt signaling. Bone 42(4):606–615PubMedPubMedCentralCrossRefGoogle Scholar
  16. Brodie MJ, Hensby CN, Parke A, Gordon D (1980) Is prostacyclin in the major pro-inflammatory prostanoid in joint fluid? Life Sci 27(7):603–608PubMedCrossRefGoogle Scholar
  17. Brotto M (2012) Lessons from the FNIH-NIA-FDA sarcopenia consensus summit. IBMS BoneKey 9Google Scholar
  18. Brotto M, Abreu EL (2012) Sarcopenia: pharmacology of today and tomorrow. J Pharmacol Exp Ther 343(3):540–546PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chambers TJ, Fuller K, Athanasou NA (1984) The effect of prostaglandins I2, E1, E2 and dibutyryl cyclic AMP on the cytoplasmic spreading of rat osteoclasts. Br J Exp Pathol 65(5):557–566PubMedPubMedCentralGoogle Scholar
  20. Chan JK, Harry L, Williams G, Nanchahal J (2012) Soft-tissue reconstruction of open fractures of the lower limb: muscle versus fasciocutaneous flaps. Plast Reconstr Surg 130(2):284e-95eCrossRefGoogle Scholar
  21. Colaianni G, Cuscito C, Mongelli T, Pignataro P, Buccoliero C, Liu P et al (2015) The myokine irisin increases cortical bone mass. Proc Natl Acad Sci U S A 112(39):12157–12162PubMedPubMedCentralCrossRefGoogle Scholar
  22. Curcio F, Ferro G, Basile C, Liguori I, Parrella P, Pirozzi F et al (2016) Biomarkers in sarcopenia: A multifactorial approach. Exp Gerontol 85:1–8PubMedCrossRefGoogle Scholar
  23. Deschenes MR (2004) Effects of aging on muscle fibre type and size. Sports Med 34(12):809–824PubMedCrossRefGoogle Scholar
  24. Ding XZ, Tong WG, Adrian TE (2001) Cyclooxygenases and lipoxygenases as potential targets for treatment of pancreatic cancer. Pancreatology 1(4):291–299PubMedCrossRefGoogle Scholar
  25. Ding XZ, Hennig R, Adrian TE (2003) Lipoxygenase and cyclooxygenase metabolism: new insights in treatment and chemoprevention of pancreatic cancer. Mol Cancer 2:10PubMedPubMedCentralCrossRefGoogle Scholar
  26. Dong R, Xie L, Zhao K, Zhang Q, Zhou M, He P (2016) Cigarette smoke-induced lung inflammation in COPD mediated via LTB4/BLT1/SOCS1 pathway. Int J Chron Obstruct Pulmon Dis 11:31–41PubMedCrossRefGoogle Scholar
  27. Dumitriu D, Prie S, Bernier SG, Guillemette G, Sirois P (1997) Mechanism of action of leukotriene D4 on Guinea pig tracheal smooth muscle cells: roles of Ca++ influx and intracellular Ca++ release. J Pharmacol Exp Ther 280(3):1357–1365PubMedGoogle Scholar
  28. Edwards MH, Dennison EM, Aihie Sayer A, Fielding R, Cooper C (2015) Osteoporosis and sarcopenia in older age. Bone 80:126–130PubMedPubMedCentralCrossRefGoogle Scholar
  29. Evans WJ (2010) Skeletal muscle loss: cachexia, sarcopenia, and inactivity. Am J Clin Nutr 91(4):1123S–1127SPubMedCrossRefGoogle Scholar
  30. Farooqui AA, Horrocks LA (2006) Phospholipase A2-generated lipid mediators in the brain: the good, the bad, and the ugly. Neuroscientist 12(3):245–260PubMedCrossRefGoogle Scholar
  31. Ferre P (2004) The biology of peroxisome proliferator-activated receptors: relationship with lipid metabolism and insulin sensitivity. Diabetes 53(Suppl 1):S43–S50PubMedCrossRefGoogle Scholar
  32. Funk CD (1996) The molecular biology of mammalian lipoxygenases and the quest for eicosanoid functions using lipoxygenase-deficient mice. Biochim Biophys Acta 1304(1):65–84PubMedCrossRefGoogle Scholar
  33. Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294(5548):1871–1875PubMedCrossRefGoogle Scholar
  34. Funk CD, Chen XS, Johnson EN, Zhao L (2002) Lipoxygenase genes and their targeted disruption. Prostaglandins Other Lipid Mediat 68–69:303–312PubMedCrossRefGoogle Scholar
  35. Galea GL, Sunters A, Meakin LB, Zaman G, Sugiyama T, Lanyon LE et al (2011) Sost down-regulation by mechanical strain in human osteoblastic cells involves PGE2 signaling via EP4. FEBS Lett 585(15):2450–2454PubMedPubMedCentralCrossRefGoogle Scholar
  36. Gallant MA, Samadfam R, Hackett JA, Antoniou J, Parent JL, de Brum-Fernandes AJ (2005) Production of prostaglandin D(2) by human osteoblasts and modulation of osteoprotegerin, RANKL, and cellular migration by DP and CRTH2 receptors. J Bone Miner Res 20(4):672–681PubMedCrossRefGoogle Scholar
  37. Garcia C, Boyce BF, Gilles J, Dallas M, Qiao M, Mundy GR et al (1996a) Leukotriene B4 stimulates osteoclastic bone resorption both in vitro and in vivo. J Bone Miner Res 11(11):1619–1627PubMedCrossRefGoogle Scholar
  38. Garcia C, Qiao M, Chen D, Kirchen M, Gallwitz W, Mundy GR et al (1996b) Effects of synthetic peptido-leukotrienes on bone resorption in vitro. J Bone Miner Res 11(4):521–529PubMedCrossRefGoogle Scholar
  39. Giltay EJ, Gooren LJ, Toorians AW, Katan MB, Zock PL (2004) Docosahexaenoic acid concentrations are higher in women than in men because of estrogenic effects. Am J Clin Nutr 80(5):1167–1174PubMedCrossRefGoogle Scholar
  40. Glantschnig H, Varga F, Rumpler M, Klaushofer K (1996) Prostacyclin (PGI2): a potential mediator of c-fos expression induced by hydrostatic pressure in osteoblastic cells. Eur J Clin Investig 26(7):544–548CrossRefGoogle Scholar
  41. Gonzalez-Cobos JC, Zhang X, Zhang W, Ruhle B, Motiani RK, Schindl R et al (2013) Store-independent Orai1/3 channels activated by intracrine leukotriene C4: role in neointimal hyperplasia. Circ Res 112(7):1013–1025PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hagino H, Kuraoka M, Kameyama Y, Okano T, Teshima R (2005) Effect of a selective agonist for prostaglandin E receptor subtype EP4 (ONO-4819) on the cortical bone response to mechanical loading. Bone 36(3):444–453PubMedCrossRefGoogle Scholar
  43. Hakeda Y, Hotta T, Kurihara N, Ikeda E, Maeda N, Yagyu Y et al (1987) Prostaglandin E1 and F2 alpha stimulate differentiation and proliferation, respectively, of clonal osteoblastic MC3T3-E1 cells by different second messengers in vitro. Endocrinology 121(6):1966–1974PubMedCrossRefGoogle Scholar
  44. Hartke JR, Lundy MW (2001) Bone anabolic therapy with selective prostaglandin analogs. J Musculoskelet Neuronal Interact 2(1):25–31PubMedGoogle Scholar
  45. Hellmann J, Tang Y, Spite M (2012) Proresolving lipid mediators and diabetic wound healing. Curr Opin Endocrinol Diabetes Obes 19(2):104–108PubMedPubMedCentralCrossRefGoogle Scholar
  46. Ho ATV, Palla AR, Blake MR, Yucel ND, Wang YX, Magnusson KEG et al (2017) Prostaglandin E2 is essential for efficacious skeletal muscle stem-cell function, augmenting regeneration and strength. Proc Natl Acad Sci U S A 114(26):6675–6684PubMedPubMedCentralGoogle Scholar
  47. Hofbauer LC, Brueck CC, Singh SK, Dobnig H (2007) Osteoporosis in patients with diabetes mellitus. J Bone Miner Res 22(9):1317–1328PubMedCrossRefGoogle Scholar
  48. Homer-Vanniasinkam S, Gough MJ (1994) Role of lipid mediators in the pathogenesis of skeletal muscle infarction and oedema during reperfusion after ischaemia. Br J Surg 81(10):1500–1503PubMedCrossRefGoogle Scholar
  49. Honda T, Segi-Nishida E, Miyachi Y, Narumiya S (2006) Prostacyclin-IP signaling and prostaglandin E2-EP2/EP4 signaling both mediate joint inflammation in mouse collagen-induced arthritis. J Exp Med 203(2):325–335PubMedPubMedCentralCrossRefGoogle Scholar
  50. Horsley V, Pavlath GK (2003) Prostaglandin F2(alpha) stimulates growth of skeletal muscle cells via an NFATC2-dependent pathway. J Cell Biol 161(1):111–118PubMedPubMedCentralCrossRefGoogle Scholar
  51. Houtkooper RH, Argmann C, Houten SM, Canto C, Jeninga EH, Andreux PA et al (2011) The metabolic footprint of aging in mice. Sci Rep 1:134PubMedPubMedCentralCrossRefGoogle Scholar
  52. Inoue T, Hashimoto M, Katakura M, Tanabe Y, Al Mamun A, Matsuzaki K et al (2014) Effects of chronic administration of arachidonic acid on lipid profiles and morphology in the skeletal muscles of aged rats. Prostaglandins Leukot Essent Fatty Acids 91(4):119–127PubMedCrossRefGoogle Scholar
  53. Isaacson J, Brotto M (2014) Physiology of Mechanotransduction: how do muscle and bone “talk” to one another? Clin Rev Bone Miner Metab 12(2):77–85PubMedCrossRefGoogle Scholar
  54. Iversen L, Kragballe K (2000) Arachidonic acid metabolism in skin health and disease. Prostaglandins Other Lipid Mediat 63(1–2):25–42PubMedCrossRefGoogle Scholar
  55. Jansen KM, Pavlath GK (2008) Prostaglandin F2alpha promotes muscle cell survival and growth through upregulation of the inhibitor of apoptosis protein BRUCE. Cell Death Differ 15(10):1619–1628PubMedPubMedCentralCrossRefGoogle Scholar
  56. Jung TW, Hwang HJ, Hong HC, Yoo HJ, Baik SH, Choi KM (2015) BAIBA attenuates insulin resistance and inflammation induced by palmitate or a high fat diet via an AMPK-PPARdelta-dependent pathway in mice. Diabetologia 58(9):2096–2105PubMedCrossRefGoogle Scholar
  57. Kitase Y, Vallejo JA, Gutheil W, Vemula H, Jahn K, Yi J et al (2018) Beta-aminoisobutyric acid, l-BAIBA, is a muscle-derived osteocyte survival factor. Cell Rep 22(6):1531–1544PubMedPubMedCentralCrossRefGoogle Scholar
  58. Klein-Nulend J, Burger EH, Semeins CM, Raisz LG, Pilbeam CC (1997) Pulsating fluid flow stimulates prostaglandin release and inducible prostaglandin G/H synthase mRNA expression in primary mouse bone cells. J Bone Miner Res 12(1):45–51PubMedCrossRefGoogle Scholar
  59. Kliewer SA, Sundseth SS, Jones SA, Brown PJ, Wisely GB, Koble CS et al (1997) Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors alpha and gamma. Proc Natl Acad Sci U S A 94(9):4318–4323PubMedPubMedCentralCrossRefGoogle Scholar
  60. Kolomoets O (2017) Voskoboynik capital O C, Antypenko O, Berest G, Nosulenko I, Palchikov V, et al. design, synthesis and anti-inflammatory activity of derivatives 10-R-3-Aryl-6,7-dihydro-2H-[1,2,4] triazino[2,3-c]quinazolin-2-ones of Spiro-fused cyclic frameworks. Acta Chim Slov 64(4):902–910PubMedCrossRefGoogle Scholar
  61. Korbecki J, Baranowska-Bosiacka I, Gutowska I, Chlubek D (2014) Cyclooxygenase pathways. Acta Biochim Pol 61(4):639–649PubMedCrossRefGoogle Scholar
  62. Laurent MR, Dubois V, Claessens F, Verschueren SM, Vanderschueren D, Gielen E et al (2016) Muscle-bone interactions: from experimental models to the clinic? A critical update. Mol Cell Endocrinol 432:14–36PubMedPubMedCentralCrossRefGoogle Scholar
  63. Li M, Healy DR, Li Y, Simmons HA, Crawford DT, Ke HZ et al (2005) Osteopenia and impaired fracture healing in aged EP4 receptor knockout mice. Bone 37(1):46–54PubMedCrossRefGoogle Scholar
  64. Li P, Oh DY, Bandyopadhyay G, Lagakos WS, Talukdar S, Osborn O et al (2015) LTB4 promotes insulin resistance in obese mice by acting on macrophages, hepatocytes and myocytes. Nat Med 21(3):239–247PubMedPubMedCentralCrossRefGoogle Scholar
  65. Liu M, Saeki K, Matsunobu T, Okuno T, Koga T, Sugimoto Y et al (2014) 12-Hydroxyheptadecatrienoic acid promotes epidermal wound healing by accelerating keratinocyte migration via the BLT2 receptor. J Exp Med 211(6):1063–1078PubMedPubMedCentralCrossRefGoogle Scholar
  66. Loell I, Alemo Munters L, Pandya J, Zong M, Alexanderson H, Fasth AE et al (2013) Activated LTB4 pathway in muscle tissue of patients with polymyositis or dermatomyositis. Ann Rheum Dis 72(2):293–299PubMedCrossRefGoogle Scholar
  67. Ma YF, Li XJ, Jee WS, McOsker J, Liang XG, Setterberg R et al (1995) Effects of prostaglandin E2 and F2 alpha on the skeleton of osteopenic ovariectomized rats. Bone 17(6):549–554PubMedCrossRefGoogle Scholar
  68. Mackey AL, Kjaer M, Dandanell S, Mikkelsen KH, Holm L, Dossing S et al (2007) The influence of anti-inflammatory medication on exercise-induced myogenic precursor cell responses in humans. J Appl Physiol (1985) 103(2):425–431CrossRefGoogle Scholar
  69. Malafarina V, Uriz-Otano F, Iniesta R, Gil-Guerrero L (2012) Sarcopenia in the elderly: diagnosis, physiopathology and treatment. Maturitas 71(2):109–114PubMedCrossRefGoogle Scholar
  70. Manring H, Abreu E, Brotto L, Weisleder N, Brotto M (2014) Novel excitation-contraction coupling related genes reveal aspects of muscle weakness beyond atrophy-new hopes for treatment of musculoskeletal diseases. Front Physiol 5:37PubMedPubMedCentralCrossRefGoogle Scholar
  71. Marcouiller P, Pelletier JP, Guevremont M, Martel-Pelletier J, Ranger P, Laufer S et al (2005) Leukotriene and prostaglandin synthesis pathways in osteoarthritic synovial membranes: regulating factors for interleukin 1beta synthesis. J Rheumatol 32(4):704–712PubMedGoogle Scholar
  72. Markworth JF, Cameron-Smith D (2011) Prostaglandin F2α; stimulates PI3K/ERK/mTOR signaling and skeletal myotube hypertrophy. Am J Physiol Cell Physiol 300(3):C671–C682PubMedCrossRefPubMedCentralGoogle Scholar
  73. Markworth JF, Maddipati KR, Cameron-Smith D (2016) Emerging roles of pro-resolving lipid mediators in immunological and adaptive responses to exercise-induced muscle injury. Exerc Immunol Rev 22:110–134PubMedGoogle Scholar
  74. Marty E, Liu Y, Samuel A, Or O, Lane J (2017) A review of sarcopenia: enhancing awareness of an increasingly prevalent disease. Bone 105:276–286PubMedCrossRefGoogle Scholar
  75. Maurin AC, Chavassieux PM, Meunier PJ (2005) Expression of PPARgamma and beta/delta in human primary osteoblastic cells: influence of polyunsaturated fatty acids. Calcif Tissue Int 76(5):385–392PubMedCrossRefGoogle Scholar
  76. Mesaros C, Lee SH, Blair IA (2009) Targeted quantitative analysis of eicosanoid lipids in biological samples using liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 877(26):2736–2745PubMedPubMedCentralCrossRefGoogle Scholar
  77. Mishra DK, Friden J, Schmitz MC, Lieber RL (1995) Anti-inflammatory medication after muscle injury. A treatment resulting in short-term improvement but subsequent loss of muscle function. J Bone Joint Surg Am 77(10):1510–1519PubMedCrossRefGoogle Scholar
  78. Mo C, Romero-Suarez S, Bonewald L, Johnson M, Brotto M (2012) Prostaglandin E2: from clinical applications to its potential role in bone- muscle crosstalk and myogenic differentiation. Recent Pat Biotechnol 6(3):223–229PubMedPubMedCentralCrossRefGoogle Scholar
  79. Mo C, Zhao R, Vallejo J, Igwe O, Bonewald L, Wetmore L et al (2015) Prostaglandin E2 promotes proliferation of skeletal muscle myoblasts via EP4 receptor activation. Cell Cycle 14(10):1507–1516PubMedPubMedCentralCrossRefGoogle Scholar
  80. Mo C, Wang Z, Bonewald L, Brotto M (2017) Bone and muscle. In: Smith SY, Varela A, Samadfam R (eds) Bone toxicology. Springer, New York, pp 281–316CrossRefGoogle Scholar
  81. Murakami M (2011) Lipid mediators in life science. Exp Anim 60(1):7–20PubMedCrossRefGoogle Scholar
  82. Naganawa T, Xiao L, Abogunde E, Sobue T, Kalajzic I, Sabbieti M et al (2006) In vivo and in vitro comparison of the effects of FGF-2 null and haplo-insufficiency on bone formation in mice. Biochem Biophys Res Commun 339(2):490–498PubMedCrossRefGoogle Scholar
  83. Otis JS, Burkholder TJ, Pavlath GK (2005) Stretch-induced myoblast proliferation is dependent on the COX2 pathway. Exp Cell Res 310(2):417–425PubMedCrossRefGoogle Scholar
  84. Pan Z, Brotto M, Ma J (2014) Store-operated Ca2+ entry in muscle physiology and diseases. BMB Rep 47(2):69–79PubMedPubMedCentralCrossRefGoogle Scholar
  85. Parkinson JF (2006) Lipoxin and synthetic lipoxin analogs: an overview of anti-inflammatory functions and new concepts in immunomodulation. Inflamm Allergy Drug Targets 5(2):91–106PubMedCrossRefGoogle Scholar
  86. Pedersen BK, Febbraio MA (2012) Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 8(8):457–465CrossRefGoogle Scholar
  87. Peterson CM, Johannsen DL, Ravussin E (2012) Skeletal muscle mitochondria and aging: a review. J Aging Res 2012:194821PubMedPubMedCentralCrossRefGoogle Scholar
  88. Qiao X, Nie Y, Ma Y, Chen Y, Cheng R, Yin W et al (2016) Irisin promotes osteoblast proliferation and differentiation via activating the MAP kinase signaling pathways. Sci Rep 6:18732PubMedCrossRefGoogle Scholar
  89. Raisz LG, Woodiel FN (2003) Effects of selective prostaglandin EP2 and EP4 receptor agonists on bone resorption and formation in fetal rat organ cultures. Prostaglandins Other Lipid Mediat 71(3–4):287–292PubMedCrossRefGoogle Scholar
  90. Roberts LD, Bostrom P, O’Sullivan JF, Schinzel RT, Lewis GD, Dejam A et al (2014) Beta-Aminoisobutyric acid induces browning of white fat and hepatic beta-oxidation and is inversely correlated with cardiometabolic risk factors. Cell Metab 19(1):96–108PubMedPubMedCentralCrossRefGoogle Scholar
  91. Rockwell HE, Gao F, Chen EY, McDaniel J, Sarangarajan R, Narain NR et al (2016) Dynamic assessment of functional Lipidomic analysis in human urine. Lipids 51(7):875–886PubMedCrossRefGoogle Scholar
  92. Sauerschnig M, Stolberg-Stolberg J, Schmidt C, Wienerroither V, Plecko M, Schlichting K et al (2018) Effect of COX-2 inhibition on tendon-to-bone healing and PGE2 concentration after anterior cruciate ligament reconstruction. Eur J Med Res 23(1):1PubMedPubMedCentralCrossRefGoogle Scholar
  93. Schaap LA, Pluijm SM, Deeg DJ, Harris TB, Kritchevsky SB, Newman AB et al (2009) Higher inflammatory marker levels in older persons: associations with 5-year change in muscle mass and muscle strength. J Gerontol A Biol Sci Med Sci 64(11):1183–1189PubMedCrossRefGoogle Scholar
  94. Shao WH, Del Prete A, Bock CB, Haribabu B (2006) Targeted disruption of leukotriene B4 receptors BLT1 and BLT2: a critical role for BLT1 in collagen-induced arthritis in mice. J Immunol 176(10):6254–6261PubMedCrossRefGoogle Scholar
  95. Shen W, Prisk V, Li Y, Foster W, Huard J (2006) Inhibited skeletal muscle healing in cyclooxygenase-2 gene-deficient mice: the role of PGE2 and PGF2alpha. J Appl Physiol (1985) 101(4):1215–1221CrossRefGoogle Scholar
  96. Shimizu T, Ohto T, Kita Y (2006) Cytosolic phospholipase A2: biochemical properties and physiological roles. IUBMB Life 58(5–6):328–333PubMedCrossRefGoogle Scholar
  97. Shureiqi I, Lippman SM (2001) Lipoxygenase modulation to reverse carcinogenesis. Cancer Res 61(17):6307–6312PubMedGoogle Scholar
  98. Siddhivarn C, Banes A, Champagne C, Riche EL, Weerapradist W, Offenbacher S (2006) Prostaglandin D2 pathway and peroxisome proliferator-activated receptor gamma-1 expression are induced by mechanical loading in an osteoblastic cell line. J Periodontal Res 41(2):92–100PubMedCrossRefGoogle Scholar
  99. Singh RK, Tandon R, Dastidar SG, Ray A (2013) A review on leukotrienes and their receptors with reference to asthma. J Asthma 50(9):922–931PubMedCrossRefGoogle Scholar
  100. Spite M, Hellmann J, Tang Y, Mathis SP, Kosuri M, Bhatnagar A et al (2011) Deficiency of the leukotriene B4 receptor, BLT-1, protects against systemic insulin resistance in diet-induced obesity. J Immunol 187(4):1942–1949PubMedPubMedCentralCrossRefGoogle Scholar
  101. Srikanthan P, Hevener AL, Karlamangla AS (2010) Sarcopenia exacerbates obesity-associated insulin resistance and dysglycemia: findings from the National Health and nutrition examination survey III. PLoS One 5(5):e10805PubMedPubMedCentralCrossRefGoogle Scholar
  102. Stanford KI, Lynes MD, Takahashi H, Baer LA, Arts PJ, May FJ et al (2018) 12,13-diHOME: an exercise-induced Lipokine that increases skeletal muscle fatty acid uptake. Cell Metab 27(6):1357PubMedPubMedCentralCrossRefGoogle Scholar
  103. Steele VE, Holmes CA, Hawk ET, Kopelovich L, Lubet RA, Crowell JA et al (1999) Lipoxygenase inhibitors as potential cancer chemopreventives. Cancer Epidemiol Biomark Prev 8(5):467–483Google Scholar
  104. Sun R, Ba X, Cui L, Xue Y, Zeng X (2009) Leukotriene B4 regulates proliferation and differentiation of cultured rat myoblasts via the BLT1 pathway. Mol Cells 27(4):403–408PubMedCrossRefGoogle Scholar
  105. Takagi T, Yamamoto T, Asano S, Tamaki H (1993) Effect of prostaglandin D2 on the femoral bone mineral density in ovariectomized rats. Calcif Tissue Int 52(6):442–446PubMedCrossRefGoogle Scholar
  106. Theron L, Gueugneau M, Coudy C, Viala D, Bijlsma A, Butler-Browne G et al (2014) Label-free quantitative protein profiling of vastus lateralis muscle during human aging. Mol Cell Proteomics 13(1):283–294PubMedCrossRefGoogle Scholar
  107. Thornton AM, Zhao X, Weisleder N, Brotto LS, Bougoin S, Nosek TM et al (2011) Store-operated Ca(2+) entry (SOCE) contributes to normal skeletal muscle contractility in young but not in aged skeletal muscle. Aging (Albany NY) 3(6):621–634CrossRefGoogle Scholar
  108. Tjondrokoesoemo A, Li N, Lin PH, Pan Z, Ferrante CJ, Shirokova N et al (2013) Type 1 inositol (1,4,5)-trisphosphate receptor activates ryanodine receptor 1 to mediate calcium spark signaling in adult mammalian skeletal muscle. J Biol Chem 288(4):2103–2109PubMedCrossRefGoogle Scholar
  109. Tosato M, Marzetti E, Cesari M, Savera G, Miller RR, Bernabei R et al (2017) Measurement of muscle mass in sarcopenia: from imaging to biochemical markers. Aging Clin Exp Res 29(1):19–27PubMedCrossRefGoogle Scholar
  110. Trappe TA, Fluckey JD, White F, Lambert CP, Evans WJ (2001) Skeletal muscle PGF(2)(alpha) and PGE(2) in response to eccentric resistance exercise: influence of ibuprofen acetaminophen. J Clin Endocrinol Metab 86(10):5067–5070PubMedGoogle Scholar
  111. Velica P, Khanim FL, Bunce CM (2010) Prostaglandin D2 inhibits C2C12 myogenesis. Mol Cell Endocrinol 319(1–2):71–78PubMedCrossRefGoogle Scholar
  112. Visser M, Pahor M, Taaffe DR, Goodpaster BH, Simonsick EM, Newman AB et al (2002) Relationship of interleukin-6 and tumor necrosis factor-alpha with muscle mass and muscle strength in elderly men and women: the health ABC study. J Gerontol A Biol Sci Med Sci 57(5):M326–M332CrossRefGoogle Scholar
  113. Volpi E, Nazemi R, Fujita S (2004) Muscle tissue changes with aging. Curr Opin Clin Nutr Metab Care 7(4):405–410PubMedPubMedCentralCrossRefGoogle Scholar
  114. Wacker MJ, Touchberry CD, Silswal N, Brotto L, Elmore CJ, Bonewald LF et al (2016) Skeletal muscle, but not cardiovascular function, is altered in a mouse model of autosomal recessive hypophosphatemic rickets. Front Physiol 7:173PubMedPubMedCentralCrossRefGoogle Scholar
  115. Wang Y, Armando AM, Quehenberger O, Yan C, Dennis EA (2014) Comprehensive ultra-performance liquid chromatographic separation and mass spectrometric analysis of eicosanoid metabolites in human samples. J Chromatogr A 1359:60–69PubMedPubMedCentralCrossRefGoogle Scholar
  116. Wang Z, Bian L, Mo C, Kukula M, Schug KA, Brotto M (2017) Targeted quantification of lipid mediators in skeletal muscles using restricted access media-based trap-and-elute liquid chromatography-mass spectrometry. Anal Chim Acta 984:151–161PubMedPubMedCentralCrossRefGoogle Scholar
  117. Weinreb M, Shamir D, Machwate M, Rodan GA, Harada S, Keila S (2006) Prostaglandin E2 (PGE2) increases the number of rat bone marrow osteogenic stromal cells (BMSC) via binding the EP4 receptor, activating sphingosine kinase and inhibiting caspase activity. Prostaglandins Leukot Essent Fatty Acids 75(2):81–90PubMedCrossRefGoogle Scholar
  118. Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE et al (2003) Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J 22(23):6267–6276PubMedPubMedCentralCrossRefGoogle Scholar
  119. Wong A, Sagar DR, Ortori CA, Kendall DA, Chapman V, Barrett DA (2014) Simultaneous tissue profiling of eicosanoid and endocannabinoid lipid families in a rat model of osteoarthritis. J Lipid Res 55(9):1902–1913PubMedPubMedCentralCrossRefGoogle Scholar
  120. Yoda E, Hachisu K, Taketomi Y, Yoshida K, Nakamura M, Ikeda K et al (2010) Mitochondrial dysfunction and reduced prostaglandin synthesis in skeletal muscle of group VIB Ca2+−independent phospholipase A2gamma-deficient mice. J Lipid Res 51(10):3003–3015PubMedPubMedCentralCrossRefGoogle Scholar
  121. Yoshida K, Oida H, Kobayashi T, Maruyama T, Tanaka M, Katayama T et al (2002) Stimulation of bone formation and prevention of bone loss by prostaglandin E EP4 receptor activation. Proc Natl Acad Sci U S A 99(7):4580–4585PubMedPubMedCentralCrossRefGoogle Scholar
  122. Zhang Y, Li R, Meng Y, Li S, Donelan W, Zhao Y et al (2014) Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling. Diabetes 63(2):514–525PubMedCrossRefGoogle Scholar
  123. Ziaaldini MM, Hosseini SR, Fathi M (2017) Mitochondrial adaptations in aged skeletal muscle: effect of exercise training. Physiol Res 66(1):1–14PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Bone-Muscle Research Center, College of Nursing & Health InnovationThe University of Texas-ArlingtonArlingtonUSA

Personalised recommendations