Advertisement

Age-Related Changes in Muscle and Bone

  • Julie A. PascoEmail author
Chapter

Abstract

Together, skeletal muscles and bones provide postural stability, facilitate movement and play a role in regulating metabolism. The mechanostat hypothesis predicts how load-bearing bones adapt their shape and strength in response to mechanical loading from contracting muscles and, by contrast, deteriorate with disuse. In addition to anatomical connections, muscles and bones communicate via hormonal and biochemical messengers. Following peaks in muscle and bone mass and function in early adulthood, a complex interplay of various age-associated insults orchestrates a gradual and progressive deterioration in both tissues. For substantial numbers of people in later life, this leads to sarcopenia and osteoporosis, which profoundly threatens their physical ability and autonomy.

This Chapter highlights epidemiological evidence for shared factors that challenge aging muscle and bone, together with potential common mechanisms that underlie their concomitant decline, including disuse, low-grade inflammation, fat infiltration into muscle and bone, metabolic and neuropsychiatric imbalances, and nutritional inadequacies.

Keywords

Bone Muscle Sarcopenia Osteoporosis Aging Skeletal muscle Mechanostat Hormones Inflammation Fat Nutrition 

References

  1. Amin S, Zhang Y, Sawin CT, Evans SR, Hannan MT, Kiel DP et al (2000) Association of hypogonadism and estradiol levels with bone mineral density in elderly men from the Framingham study. Ann Intern Med 133:951–963PubMedCrossRefGoogle Scholar
  2. Amin S, Riggs BL, Atkinson EJ, Oberg AL, Melton LJ 3rd, Khosla S (2004) A potentially deleterious role of IGFBP-2 on bone density in aging men and women. J Bone Miner Res 19:1075–1083PubMedCrossRefGoogle Scholar
  3. Atkins JL, Whincup PH, Morris RW, Wannamethee SG (2014) Low muscle mass in older men: the role of lifestyle, diet and cardiovascular risk factors. J Nutr Health Aging 18:26–33PubMedCrossRefGoogle Scholar
  4. Baczynski R, Massry SG, Magott M, el-Belbessi S, Kohan R, Brautbar N (1985) Effect of parathyroid hormone on energy metabolism of skeletal muscle. Kidney Int 28:722–727PubMedCrossRefGoogle Scholar
  5. Baek K, Bloomfield SA (2009) Beta-adrenergic blockade and leptin replacement effectively mitigate disuse bone loss. J Bone Miner Res 24:792–799PubMedCrossRefGoogle Scholar
  6. Bani Hassan E, Demontiero O, Vogrin S, Ng A, Duque G (2018) Marrow adipose tissue in older men: association with visceral and subcutaneous fat, bone volume, metabolism, and inflammation. Calcif Tissue Int 103:164–174PubMedCrossRefGoogle Scholar
  7. Barouki R, Gluckman PD, Grandjean P, Hanson M, Heindel JJ (2012) Developmental origins of non-communicable disease: implications for research and public health. Environ Health 11:42PubMedPubMedCentralCrossRefGoogle Scholar
  8. Baum T, Yap SP, Karampinos DC, Nardo L, Kuo D, Burghardt AJ et al (2012) Does vertebral bone marrow fat content correlate with abdominal adipose tissue, lumbar spine bone mineral density, and blood biomarkers in women with type 2 diabetes mellitus? J Magn Reson Imaging 35:117–124PubMedCrossRefGoogle Scholar
  9. Bednarik J, Vondracek P, Dusek L, Moravcova E, Cundrle I (2005) Risk factors for critical illness polyneuromyopathy. J Neurol 252:343–351PubMedCrossRefGoogle Scholar
  10. Bellido T, Boland R (1991) Effects of 1,25-dihydroxy-vitamin D3 on phosphate accumulation by myoblasts. Horm Metab Res 23:113–116PubMedCrossRefGoogle Scholar
  11. Berk M, Williams LJ, Jacka FN, O’Neil A, Pasco JA, Moylan S et al (2013) So depression is an inflammatory disease, but where does the inflammation come from? BMC Med 11:200PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bikle DD (2012) Vitamin D and bone. Curr Osteoporos Rep 10:151–159PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bischoff HA, Borchers M, Gudat F, Duermueller U, Theiler R, Stahelin HB et al (2001) In situ detection of 1,25-dihydroxyvitamin D3 receptor in human skeletal muscle tissue. Histochem J 33:19–24CrossRefGoogle Scholar
  14. Bischoff-Ferrari HA, Kiel DP, Dawson-Hughes B, Orav JE, Li R, Spiegelman D et al (2009) Dietary calcium and serum 25-hydroxyvitamin D status in relation to BMD among U.S. adults. J Bone Miner Res 24:935–942PubMedCrossRefGoogle Scholar
  15. Boulange CL, Neves AL, Chilloux J, Nicholson JK, Dumas ME (2016) Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med 8:42PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bradburn S, McPhee JS, Bagley L, Sipila S, Stenroth L, Narici MV et al (2016) Association between osteocalcin and cognitive performance in healthy older adults. Age Ageing 45:844–849PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bredella MA, Torriani M, Ghomi RH, Thomas BJ, Brick DJ, Gerweck AV et al (2011) Vertebral bone marrow fat is positively associated with visceral fat and inversely associated with IGF-1 in obese women. Obesity (Silver Spring, Md) 19:49–53CrossRefGoogle Scholar
  18. Burton DG (2009) Cellular senescence, ageing and disease. Age (Dordr) 31:1–9CrossRefGoogle Scholar
  19. Cannizzo ES, Clement CC, Sahu R, Follo C, Santambrogio L (2011) Oxidative stress, inflamm-aging and immunosenescence. J Proteome 74:2313–2323CrossRefGoogle Scholar
  20. Catalano A, Martino G, Bellone F, Gaudio A, Lasco C, Langher V et al (2018) Anxiety levels predict fracture risk in postmenopausal women assessed for osteoporosis. Menopause 25:1110–1115PubMedCrossRefPubMedCentralGoogle Scholar
  21. Cauley JA, Danielson ME, Boudreau RM, Forrest KY, Zmuda JM, Pahor M et al (2007) Inflammatory markers and incident fracture risk in older men and women: the Health Aging and Body Composition Study. J Bone Miner Res 22:1088–1095PubMedCrossRefPubMedCentralGoogle Scholar
  22. Cerami C, Founds H, Nicholl I, Mitsuhashi T, Giordano D, Vanpatten S et al (1997) Tobacco smoke is a source of toxic reactive glycation products. Proc Natl Acad Sci U S A 94:13915–13920PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chang KH, Chang MY, Muo CH, Wu TN, Hwang BF, Chen CY et al (2015) Exposure to air pollution increases the risk of osteoporosis: a nationwide longitudinal study. Medicine 94:e733PubMedPubMedCentralCrossRefGoogle Scholar
  24. Chang KV, Hsu TH, Wu WT, Huang KC, Han DS (2016) Association between sarcopenia and cognitive impairment: a systematic review and meta-analysis. J Am Med Dir Assoc 17:1164 e7-e15Google Scholar
  25. Chang KV, Hsu TH, Wu WT, Huang KC, Han DS (2017) Is sarcopenia associated with depression? A systematic review and meta-analysis of observational studies. Age Ageing 46:738–746PubMedCrossRefPubMedCentralGoogle Scholar
  26. Chapman IM, MacIntosh CG, Morley JE, Horowitz M (2002) The anorexia of ageing. Biogerontology 3:67–71PubMedCrossRefPubMedCentralGoogle Scholar
  27. Chen Z, Wang Z, Lohman T, Heymsfield SB, Outwater E, Nicholas JS et al (2007) Dual-energy X-ray absorptiometry is a valid tool for assessing skeletal muscle mass in older women. J Nutr 137:2775–2780PubMedCrossRefPubMedCentralGoogle Scholar
  28. Chistiakov DA, Sobenin IA, Revin VV, Orekhov AN, Bobryshev YV (2014) Mitochondrial aging and age-related dysfunction of mitochondria. Biomed Res Int 2014:238463PubMedPubMedCentralGoogle Scholar
  29. Clasey JL, Weltman A, Patrie J, Weltman JY, Pezzoli S, Bouchard C et al (2001) Abdominal visceral fat and fasting insulin are important predictors of 24-hour GH release independent of age, gender, and other physiological factors. J Clin Endocrinol Metab 86:3845–3852PubMedCrossRefPubMedCentralGoogle Scholar
  30. Colaianni G, Cuscito C, Mongelli T, Pignataro P, Buccoliero C, Liu P et al (2015) The myokine irisin increases cortical bone mass. Proc Natl Acad Sci U S A 112:12157–12162PubMedPubMedCentralCrossRefGoogle Scholar
  31. Cooper C, Eriksson JG, Forsen T, Osmond C, Tuomilehto J, Barker DJ (2001) Maternal height, childhood growth and risk of hip fracture in later life: a longitudinal study. Osteoporos Int 12:623–629PubMedCrossRefPubMedCentralGoogle Scholar
  32. Cruz-Jentoft AJ, Landi F, Schneider SM, Zuniga C, Arai H, Boirie Y et al (2014) Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age Ageing 43:748–759PubMedPubMedCentralCrossRefGoogle Scholar
  33. Dalal M, Ferrucci L, Sun K, Beck J, Fried LP, Semba RD (2009) Elevated serum advanced glycation end products and poor grip strength in older community-dwelling women. J Gerontol A Biol Sci Med Sci 64:132–137PubMedCrossRefPubMedCentralGoogle Scholar
  34. Dankbar B, Fennen M, Brunert D, Hayer S, Frank S, Wehmeyer C et al (2015) Myostatin is a direct regulator of osteoclast differentiation and its inhibition reduces inflammatory joint destruction in mice. Nat Med 21:1085–1090PubMedCrossRefPubMedCentralGoogle Scholar
  35. Darling AL, Millward DJ, Torgerson DJ, Hewitt CE, Lanham-New SA (2009) Dietary protein and bone health: a systematic review and meta-analysis. Am J Clin Nutr 90:1674–1692PubMedCrossRefPubMedCentralGoogle Scholar
  36. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563PubMedCrossRefPubMedCentralGoogle Scholar
  37. Delmonico MJ, Harris TB, Visser M, Park SW, Conroy MB, Velasquez-Mieyer P et al (2009) Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am J Clin Nutr 90:1579–1585PubMedPubMedCentralCrossRefGoogle Scholar
  38. Dennison EM, Syddall HE, Sayer AA, Gilbody HJ, Cooper C (2005) Birth weight and weight at 1 year are independent determinants of bone mass in the seventh decade: the Hertfordshire cohort study. Pediatr Res 57:582–586PubMedCrossRefPubMedCentralGoogle Scholar
  39. Dhaliwal R, Cibula D, Ghosh C, Weinstock RS, Moses AM (2014) Bone quality assessment in type 2 diabetes mellitus. Osteoporos Int 25(7):1969–1973PubMedCrossRefPubMedCentralGoogle Scholar
  40. Dhanwal DK, Dennison EM, Harvey NC, Cooper C (2011) Epidemiology of hip fracture: worldwide geographic variation. Indian J Orthop 45:15–22PubMedPubMedCentralCrossRefGoogle Scholar
  41. Diaz Curiel M, de la Pena JL C, Honorato Perez J, Perez Cano R, Rapado A, Ruiz Martinez I (1997) Study of bone mineral density in lumbar spine and femoral neck in a Spanish population. Multicentre research project on osteoporosis. Osteoporos Int 7:59–64PubMedCrossRefGoogle Scholar
  42. Ding C, Parameswaran V, Udayan R, Burgess J, Jones G (2008) Circulating levels of inflammatory markers predict change in bone mineral density and resorption in older adults: a longitudinal study. J Clin Endocrinol Metab 93:1952–1958PubMedCrossRefGoogle Scholar
  43. Diz JB, Leopoldino AA, Moreira BS, Henschke N, Dias RC, Pereira LS et al (2017) Prevalence of sarcopenia in older Brazilians: a systematic review and meta-analysis. Geriatr Gerontol Int 17:5–16PubMedCrossRefGoogle Scholar
  44. Drey M, Krieger B, Sieber CC, Bauer JM, Hettwer S, Bertsch T et al (2014) Motoneuron loss is associated with sarcopenia. J Am Med Dir Assoc 15:435–439PubMedCrossRefGoogle Scholar
  45. Ebeling PR, Daly RM, Kerr DA, Kimlin MG (2013) Building healthy bones throughout life: an evidence-informed strategy to prevent osteoporosis in Australia. Med J Aust 199(Suppl 7):S1PubMedPubMedCentralGoogle Scholar
  46. Edwards MH, Gregson CL, Patel HP, Jameson KA, Harvey NC, Sayer AA et al (2013) Muscle size, strength, and physical performance and their associations with bone structure in the Hertfordshire Cohort Study. J Bone Miner Res 28:2295–2304PubMedPubMedCentralCrossRefGoogle Scholar
  47. Elefteriou F, Ahn JD, Takeda S, Starbuck M, Yang X, Liu X et al (2005) Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434:514–520CrossRefGoogle Scholar
  48. Faulkner JA, Larkin LM, Claflin DR, Brooks SV (2007) Age-related changes in the structure and function of skeletal muscles. Clin Exp Pharmacol Physiol 34:1091–1096PubMedCrossRefPubMedCentralGoogle Scholar
  49. Ferrando AA, Stuart CA, Sheffield-Moore M, Wolfe RR (1999) Inactivity amplifies the catabolic response of skeletal muscle to cortisol. J Clin Endocrinol Metab 84:3515–3521PubMedPubMedCentralGoogle Scholar
  50. Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottaviani E et al (2000) Inflamm-aging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci 908:244–254PubMedPubMedCentralCrossRefGoogle Scholar
  51. Frassetto LA, Todd KM, Morris RC Jr, Sebastian A (2000) Worldwide incidence of hip fracture in elderly women: relation to consumption of animal and vegetable foods. J Gerontol A Biol Sci Med Sci 55:M585–M592PubMedCrossRefGoogle Scholar
  52. Frost HM (1996) Perspectives: a proposed general model of the “mechanostat” (suggestions from a new skeletal-biologic paradigm). Anat Rec 244:139–147PubMedCrossRefGoogle Scholar
  53. Gelfand RA, Matthews DE, Bier DM, Sherwin RS (1984) Role of counterregulatory hormones in the catabolic response to stress. J Clin Invest 74:2238–2248PubMedPubMedCentralCrossRefGoogle Scholar
  54. Gianoudis J, Bailey CA, Sanders KM, Nowson CA, Hill K, Ebeling PR et al (2012) Osteo-cise: strong bones for life: protocol for a community-based randomised controlled trial of a multi-modal exercise and osteoporosis education program for older adults at risk of falls and fractures. BMC Musculoskelet Disord 13:78PubMedPubMedCentralCrossRefGoogle Scholar
  55. Girgis CM, Clifton-Bligh RJ, Hamrick MW, Holick MF, Gunton JE (2013) The roles of vitamin D in skeletal muscle: form, function, and metabolism. Endocr Rev 34:33–83PubMedCrossRefPubMedCentralGoogle Scholar
  56. Girgis CM, Clifton-Bligh RJ, Mokbel N, Cheng K, Gunton JE (2014) Vitamin D signaling regulates proliferation, differentiation, and myotube size in C2C12 skeletal muscle cells. Endocrinology 155:347–357PubMedCrossRefGoogle Scholar
  57. Glerup H, Mikkelsen K, Poulsen L, Hass E, Overbeck S, Andersen H et al (2000) Hypovitaminosis D myopathy without biochemical signs of osteomalacic bone involvement. Calcif Tissue Int 66:419–424PubMedCrossRefGoogle Scholar
  58. Gluckman PD, Hanson MA, Buklijas T (2010) A conceptual framework for the developmental origins of health and disease. J Dev Orig Health Dis 1:6–18PubMedCrossRefGoogle Scholar
  59. Goodpaster BH, Park SW, Harris TB, Kritchevsky SB, Nevitt M, Schwartz AV et al (2006) The loss of skeletal muscle strength, mass, and quality in older adults: the Health, Aging and Body Composition Study. J Gerontol A Biol Sci Med Sci 61:1059–1064CrossRefGoogle Scholar
  60. Gould H, Brennan SL, Kotowicz MA, Nicholson GC, Pasco JA (2014) Total and appendicular lean mass reference ranges for Australian men and women: the Geelong Osteoporosis Study. Calcif Tissue Int 94:363–372PubMedCrossRefGoogle Scholar
  61. Gunn CA, Weber JL, McGill AT, Kruger MC (2015) Increased intake of selected vegetables, herbs and fruit may reduce bone turnover in post-menopausal women. Nutrients 7:2499–2517PubMedPubMedCentralCrossRefGoogle Scholar
  62. Guo YF, Zhang LS, Liu YJ, Hu HG, Li J, Tian Q et al (2013) Suggestion of GLYAT gene underlying variation of bone size and body lean mass as revealed by a bivariate genome-wide association study. Hum Genet 132:189–199PubMedPubMedCentralCrossRefGoogle Scholar
  63. Hamilton EJ, Drinkwater JJ, Chubb SAP, Rakic V, Kamber N, Zhu K et al (2018) A ten-year prospective study of bone mineral density and bone turnover in males and females with type 1 diabetes. J Clin Endocrinol Metab 103:3531–3539PubMedCrossRefGoogle Scholar
  64. Hamrick MW (2017) Role of the cytokine-like hormone leptin in muscle-bone crosstalk with aging. J Bone Metab 24:1–8PubMedPubMedCentralCrossRefGoogle Scholar
  65. Hannan MT, Felson DT, Dawson-Hughes B, Tucker KL, Cupples LA, Wilson PW et al (2000) Risk factors for longitudinal bone loss in elderly men and women: the Framingham Osteoporosis Study. J Bone Miner Res 15:710–720PubMedCrossRefGoogle Scholar
  66. Hashemi R, Motlagh AD, Heshmat R, Esmaillzadeh A, Payab M, Yousefinia M et al (2015) Diet and its relationship to sarcopenia in community dwelling Iranian elderly: a cross sectional study. Nutrition 31:97–104PubMedCrossRefGoogle Scholar
  67. Hein GE (2006) Glycation endproducts in osteoporosis--is there a pathophysiologic importance? Clin Chim Acta 371:32–36PubMedCrossRefGoogle Scholar
  68. Henry MJ, Pasco JA, Seeman E, Nicholson GC, Sanders KM, Kotowicz MA et al (2001) Assessment of fracture risk: value of random population-based samples--the Geelong Osteoporosis Study. J Clin Densitom 4:283–289PubMedCrossRefGoogle Scholar
  69. Henry MJ, Pasco JA, Pocock NA, Nicholson GC, Kotowicz MA (2004) Reference ranges for bone densitometers adopted Australia-wide: Geelong Osteoporosis Study. Australas Radiol 48:473–475PubMedCrossRefGoogle Scholar
  70. Henry MJ, Pasco JA, Korn S, Gibson JE, Kotowicz MA, Nicholson GC (2010) Bone mineral density reference ranges for Australian men: Geelong Osteoporosis Study. Osteoporos Int 21:909–917PubMedCrossRefGoogle Scholar
  71. Henry MJ, Pasco JA, Nicholson GC, Kotowicz MA (2011) Prevalence of osteoporosis in Australian men and women: Geelong Osteoporosis Study. Med J Aust 195:321–322PubMedCrossRefGoogle Scholar
  72. Holloway WR, Collier FM, Aitken CJ, Myers DE, Hodge JM, Malakellis M et al (2002) Leptin inhibits osteoclast generation. J Bone Miner Res 17:200–209CrossRefGoogle Scholar
  73. Holloway KL, Williams LJ, Brennan-Olsen SL, Morse AG, Kotowicz MA, Nicholson GC et al (2016) Anxiety disorders and falls among older adults. J Affect Disord 205:20–27PubMedCrossRefGoogle Scholar
  74. Holloway KL, De Abreu LLF, Hans D, Kotowicz MA, Sajjad MA, Hyde NK et al (2018) Trabecular bone score in men and women with impaired fasting glucose and diabetes. Calcif Tissue Int 102:32–40PubMedCrossRefGoogle Scholar
  75. Hong-Jhe C, Chin-Yuan K, Ming-Shium T, Fu-Wei W, Ru-Yih C, Kuang-Chieh H et al (2016) The incidence and risk of osteoporosis in patients with anxiety disorder: a population-based retrospective cohort study. Medicine 95:e4912PubMedPubMedCentralCrossRefGoogle Scholar
  76. Huang J, Hsu YH, Mo C, Abreu E, Kiel DP, Bonewald LF et al (2014) METTL21C is a potential pleiotropic gene for osteoporosis and sarcopenia acting through the modulation of the NF-kappaB signaling pathway. J Bone Miner Res 29:1531–1540PubMedPubMedCentralCrossRefGoogle Scholar
  77. Hughes VA, Frontera WR, Wood M, Evans WJ, Dallal GE, Roubenoff R et al (2001) Longitudinal muscle strength changes in older adults: influence of muscle mass, physical activity, and health. J Gerontol A Biol Sci Med Sci 56:B209–B217PubMedCrossRefGoogle Scholar
  78. Hughes VA, Frontera WR, Roubenoff R, Evans WJ, Singh MA (2002) Longitudinal changes in body composition in older men and women: role of body weight change and physical activity. Am J Clin Nutr 76:473–481CrossRefGoogle Scholar
  79. Huo YR, Suriyaarachchi P, Gomez F, Curcio CL, Boersma D, Muir SW et al (2015) Phenotype of osteosarcopenia in older individuals with a history of falling. J Am Med Dir Assoc 16:290–295CrossRefGoogle Scholar
  80. Ilich JZ, Kelly OJ, Inglis JE, Panton LB, Duque G, Ormsbee MJ (2014) Interrelationship among muscle, fat, and bone: connecting the dots on cellular, hormonal, and whole body levels. Ageing Res Rev 15:51–60CrossRefGoogle Scholar
  81. Inaba M, Terada M, Koyama H, Yoshida O, Ishimura E, Kawagishi T et al (1995) Influence of high glucose on 1,25-dihydroxyvitamin D3-induced effect on human osteoblast-like MG-63 cells. J Bone Miner Res 10:1050–1056PubMedCrossRefGoogle Scholar
  82. Janssen I, Heymsfield SB, Wang ZM, Ross R (2000) Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr. J Appl Physiol 89:81–88PubMedCrossRefGoogle Scholar
  83. Johannesdottir F, Poole KE, Reeve J, Siggeirsdottir K, Aspelund T, Mogensen B et al (2011) Distribution of cortical bone in the femoral neck and hip fracture: a prospective case-control analysis of 143 incident hip fractures; the AGES-REYKJAVIK Study. Bone 48:1268–1276PubMedPubMedCentralCrossRefGoogle Scholar
  84. Jones KB, Mollano AV, Morcuende JA, Cooper RR, Saltzman CL (2004) Bone and brain: a review of neural, hormonal, and musculoskeletal connections. Iowa Orthop J 24:123–132PubMedPubMedCentralGoogle Scholar
  85. Kalyani RR, Metter EJ, Egan J, Golden SH, Ferrucci L (2015) Hyperglycemia predicts persistently lower muscle strength with aging. Diabetes Care 38:82–90PubMedCrossRefGoogle Scholar
  86. Karasik D, Cohen-Zinder M (2012) The genetic pleiotropy of musculoskeletal aging. Front Physiol 3:303PubMedPubMedCentralCrossRefGoogle Scholar
  87. Karasik D, Kiel DP (2008) Genetics of the musculoskeletal system: a pleiotropic approach. J Bone Miner Res 23:788–802PubMedPubMedCentralCrossRefGoogle Scholar
  88. Kawao N, Kaji H (2015) Interactions between muscle tissues and bone metabolism. J Cell Biochem 116:687–695CrossRefGoogle Scholar
  89. Kawao N, Morita H, Obata K, Tatsumi K, Kaji H (2018) Role of follistatin in muscle and bone alterations induced by gravity change in mice. J Cell Physiol 233:1191–1201PubMedCrossRefGoogle Scholar
  90. Kaya RD, Nakazawa M, Hoffman RL, Clark BC (2013) Interrelationship between muscle strength, motor units, and aging. Exp Gerontol 48:920–925PubMedPubMedCentralCrossRefGoogle Scholar
  91. Keller ET, Chang C, Ershler WB (1996) Inhibition of NFkappaB activity through maintenance of IkappaBalpha levels contributes to dihydrotestosterone-mediated repression of the interleukin-6 promoter. J Biol Chem 271:26267–26275PubMedCrossRefGoogle Scholar
  92. Khosla S, Melton LJ 3rd, Riggs BL (2002) Clinical review 144: estrogen and the male skeleton. J Clin Endocrinol Metab 87:1443–1450PubMedCrossRefGoogle Scholar
  93. Kim TN, Park MS, Yang SJ, Yoo HJ, Kang HJ, Song W et al (2010) Prevalence and determinant factors of sarcopenia in patients with type 2 diabetes: the Korean Sarcopenic Obesity Study (KSOS). Diabetes Care 33:1497–1499PubMedPubMedCentralCrossRefGoogle Scholar
  94. Kim NH, Kim HS, Eun CR, Seo JA, Cho HJ, Kim SG et al (2011) Depression is associated with sarcopenia, not central obesity, in elderly Korean men. J Am Geriatr Soc 59:2062–2068PubMedCrossRefGoogle Scholar
  95. Kim S, Won CW, Kim BS, Choi HR, Moon MY (2014) The association between the low muscle mass and osteoporosis in elderly Korean people. J Korean Med Sci 29:995–1000PubMedPubMedCentralCrossRefGoogle Scholar
  96. Kipen E, Helme RD, Wark JD, Flicker L (1995) Bone density, vitamin D nutrition, and parathyroid hormone levels in women with dementia. J Am Geriatr Soc 43:1088–1091PubMedCrossRefGoogle Scholar
  97. Kitaura H, Kimura K, Ishida M, Kohara H, Yoshimatsu M, Takano-Yamamoto T (2013) Immunological reaction in TNF-alpha-mediated osteoclast formation and bone resorption in vitro and in vivo. Clin Dev Immunol 2013:181849PubMedPubMedCentralCrossRefGoogle Scholar
  98. Klein-Nulend J, Bakker AD, Bacabac RG, Vatsa A, Weinbaum S (2013) Mechanosensation and transduction in osteocytes. Bone 54:182–190PubMedCrossRefGoogle Scholar
  99. Koh JM, Khang YH, Jung CH, Bae S, Kim DJ, Chung YE et al (2005) Higher circulating hsCRP levels are associated with lower bone mineral density in healthy pre- and postmenopausal women: evidence for a link between systemic inflammation and osteoporosis. Osteoporos Int 16:1263–1271PubMedCrossRefGoogle Scholar
  100. Koo WW, Walters J, Bush AJ, Chesney RW, Carlson SE (1996) Dual-energy X-ray absorptiometry studies of bone mineral status in newborn infants. J Bone Miner Res 11:997–102PubMedCrossRefPubMedCentralGoogle Scholar
  101. Koopman R, van Loon LJ (2009) Aging, exercise, and muscle protein metabolism. J Appl Physiol 106:2040–2048PubMedCrossRefPubMedCentralGoogle Scholar
  102. Kortebein P, Ferrando A, Lombeida J, Wolfe R, Evans WJ (2007) Effect of 10 days of bed rest on skeletal muscle in healthy older adults. JAMA 297:1772–1774PubMedCrossRefPubMedCentralGoogle Scholar
  103. Kramer A, Gollhofer A, Armbrecht G, Felsenberg D, Gruber M (2017) How to prevent the detrimental effects of two months of bed-rest on muscle, bone and cardiovascular system: an RCT. Sci Rep 7:13177PubMedPubMedCentralCrossRefGoogle Scholar
  104. Kudlacek S, Schneider B, Peterlik M, Leb G, Klaushofer K, Weber K et al (2003) Normative data of bone mineral density in an unselected adult Austrian population. Eur J Clin Investig 33:332–339CrossRefGoogle Scholar
  105. Kuh D, Hardy R, Butterworth S, Okell L, Wadsworth M, Cooper C et al (2006) Developmental origins of midlife grip strength: findings from a birth cohort study. J Gerontol A Biol Sci Med Sci 61:702–706PubMedCrossRefPubMedCentralGoogle Scholar
  106. Kume S, Kato S, Yamagishi S, Inagaki Y, Ueda S, Arima N et al (2005) Advanced glycation end-products attenuate human mesenchymal stem cells and prevent cognate differentiation into adipose tissue, cartilage, and bone. J Bone Miner Res 20:1647–1658PubMedCrossRefPubMedCentralGoogle Scholar
  107. Landi F, Liperoti R, Fusco D, Mastropaolo S, Quattrociocchi D, Proia A et al (2012) Prevalence and risk factors of sarcopenia among nursing home older residents. J Gerontol A Biol Sci Med Sci 67:48–55PubMedCrossRefPubMedCentralGoogle Scholar
  108. Lauretani F, Meschi T, Ticinesi A, Maggio M (2017) “brain-muscle loop” in the fragility of older persons: from pathophysiology to new organizing models. Aging Clin Exper Res 29:1305–1311CrossRefGoogle Scholar
  109. Law MR, Hackshaw AK (1997) A meta-analysis of cigarette smoking, bone mineral density and risk of hip fracture: recognition of a major effect. BMJ 315:841–846PubMedPubMedCentralCrossRefGoogle Scholar
  110. Lebrasseur NK, Achenbach SJ, Melton LJ 3rd, Amin S, Khosla S (2012) Skeletal muscle mass is associated with bone geometry and microstructure and serum insulin-like growth factor binding protein-2 levels in adult women and men. J Bone Miner Res 27:2159–2169PubMedPubMedCentralCrossRefGoogle Scholar
  111. Lee NK, Karsenty G (2008) Reciprocal regulation of bone and energy metabolism. Trends Endocrinol Metab 19:161–166PubMedCrossRefGoogle Scholar
  112. Levine ME, Crimmins EM (2012) Sarcopenic obesity and cognitive functioning: the mediating roles of insulin resistance and inflammation? Curr Gerontol Geriatr Res 2012:826398PubMedPubMedCentralCrossRefGoogle Scholar
  113. Liu D, Zhou H, Tao Y, Tan J, Chen L, Huang H et al (2016) Alzheimer’s disease is associated with increased risk of osteoporosis: the Chongqing Aging Study. Curr Alzheimer Res 13:1165–1172PubMedCrossRefGoogle Scholar
  114. Looker AC, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP et al (1998) Updated data on proximal femur bone mineral levels of US adults. Osteoporos Int 8:468–489PubMedCrossRefGoogle Scholar
  115. Lord C, Chaput JP, Aubertin-Leheudre M, Labonte M, Dionne IJ (2007) Dietary animal protein intake: association with muscle mass index in older women. J Nutr Health Aging 11:383–387PubMedGoogle Scholar
  116. Lunt H, Florkowski CM, Cundy T, Kendall D, Brown LJ, Elliot JR et al (1998) A population-based study of bone mineral density in women with longstanding type 1 (insulin dependent) diabetes. Diabetes Res Clin Pract 40:31–38PubMedCrossRefGoogle Scholar
  117. Ma H, Leskinen T, Alen M, Cheng S, Sipila S, Heinonen A et al (2009) Long-term leisure time physical activity and properties of bone: a twin study. J Bone Miner Res 24:1427–1433PubMedCrossRefGoogle Scholar
  118. Ma L, Oei L, Jiang L, Estrada K, Chen H, Wang Z et al (2012) Association between bone mineral density and type 2 diabetes mellitus: a meta-analysis of observational studies. Eur J Epidemiol 27:319–332PubMedPubMedCentralCrossRefGoogle Scholar
  119. Marcinkowska E (2001) A run for a membrane vitamin D receptor. Biol Signals Recept 10:341–349PubMedCrossRefGoogle Scholar
  120. Mera P, Laue K, Ferron M, Confavreux C, Wei J, Galan-Diez M et al (2017) Osteocalcin signaling in myofibers is necessary and sufficient for optimum adaptation to exercise. Cell Metab 25:218CrossRefGoogle Scholar
  121. Mitchell WK, Williams J, Atherton P, Larvin M, Lund J, Narici M (2012) Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front Physiol 3:260PubMedPubMedCentralCrossRefGoogle Scholar
  122. Mithal A, Bonjour JP, Boonen S, Burckhardt P, Degens H, El Hajj Fuleihan G et al (2013) Impact of nutrition on muscle mass, strength, and performance in older adults. Osteoporos Int 24:1555–1566PubMedCrossRefGoogle Scholar
  123. Miyata T, Kawai R, Taketomi S, Sprague SM (1996) Possible involvement of advanced glycation end-products in bone resorption. Nephrol Dial Transplant 11(Suppl 5):54–57PubMedCrossRefGoogle Scholar
  124. Moylan S, Berk M, Dean OM, Samuni Y, Williams LJ, O’Neil A et al (2014) Oxidative & nitrosative stress in depression: why so much stress? Neurosci Biobehav Rev 45:46–62PubMedCrossRefGoogle Scholar
  125. Napoli N, Strotmeyer ES, Ensrud KE, Sellmeyer DE, Bauer DC, Hoffman AR et al (2014) Fracture risk in diabetic elderly men: the MrOS study. Diabetologia 57:2057–2065PubMedPubMedCentralCrossRefGoogle Scholar
  126. Neumann E, Muller-Ladner U, Frommer KW (2014) Inflammation and bone metabolism. Z Rheumatol 73:342–348PubMedCrossRefGoogle Scholar
  127. National Health and Medical Research Council, Australian Government Department of Health and Ageing, New Zealand Ministry of Health (2006) Nutrient reference values for Australia and New Zealand including recommended dietary intakes. Canberra, National Health and Medical Research CouncilGoogle Scholar
  128. Nowson CA, Diamond TH, Pasco JA, Mason RS, Sambrook PN, Eisman JA (2004) Vitamin D in Australia. Issues and recommendations Aust Fam Physician 33:133–138PubMedGoogle Scholar
  129. Odetti P, Rossi S, Monacelli F, Poggi A, Cirnigliaro M, Federici M et al (2005) Advanced glycation end products and bone loss during aging. Ann N Y Acad Sci 1043:710–717PubMedCrossRefGoogle Scholar
  130. Oliveira A, Vaz C (2015) The role of sarcopenia in the risk of osteoporotic hip fracture. Clin Rheumatol 34:1673–1680PubMedCrossRefGoogle Scholar
  131. Orchard T, Yildiz V, Steck SE, Hebert JR, Ma Y, Cauley JA et al (2017) Dietary inflammatory index, bone mineral density, and risk of fracture in postmenopausal women: results from the Women’s Health Initiative. J Bone Miner Res 32:1136–1146PubMedPubMedCentralCrossRefGoogle Scholar
  132. Orford NR, Lane SE, Bailey M, Pasco JA, Cattigan C, Elderkin T et al (2016) Changes in bone mineral density in the year after critical illness. Am J Respir Crit Care Med 193:736–744PubMedCrossRefGoogle Scholar
  133. Park SW, Goodpaster BH, Strotmeyer ES, Kuller LH, Broudeau R, Kammerer C et al (2007) Accelerated loss of skeletal muscle strength in older adults with type 2 diabetes: the Health, Aging, and Body Composition Study. Diabetes Care 30:1507–1512PubMedCrossRefGoogle Scholar
  134. Pasco JA, Henry MJ, Nicholson GC, Sanders KM, Kotowicz MA (2001) Vitamin D status of women in the Geelong Osteoporosis Study: association with diet and casual exposure to sunlight. Med J Aust 175:401–405PubMedCrossRefGoogle Scholar
  135. Pasco JA, Kotowicz MA, Henry MJ, Nicholson GC, Spilsbury HJ, Box JD et al (2006) High-sensitivity C-reactive protein and fracture risk in elderly women. JAMA 296:1353–1355PubMedCrossRefGoogle Scholar
  136. Pasco JA, Henry MJ, Nicholson GC, Brennan SL, Kotowicz MA (2009) Behavioural and physical characteristics associated with vitamin D status in women. Bone 44:1085–1091PubMedCrossRefGoogle Scholar
  137. Pasco JA, Nicholson GC, Kotowicz MA (2012) Cohort profile: Geelong Osteoporosis Study. Int J Epidemiol 41:1565–1575PubMedCrossRefGoogle Scholar
  138. Pasco JA, Lane SE, Brennan-Olsen SL, Holloway KL, Timney EN, Bucki-Smith G et al (2015a) The epidemiology of incident fracture from cradle to senescence. Calcif Tissue Int 97:568–576PubMedCrossRefGoogle Scholar
  139. Pasco JA, Williams LJ, Jacka FN, Stupka N, Brennan-Olsen SL, Holloway KL et al (2015b) Sarcopenia and the common mental disorders: a potential regulatory role of skeletal muscle on brain function? Curr Osteoporos Rep 13:351–357PubMedCrossRefGoogle Scholar
  140. Pasco JA, Brennan-Olsen SL, Holloway KL, Hyde NK, Kotowicz MA (2016) Low lean tissue mass and physical performance as markers of sarcopenia in older men and women. J Gerontol Geriatr Res 5:306CrossRefGoogle Scholar
  141. Pasco JA, Holloway-Kew KL, Hyde NK, Tembo MC, Rufus PG, Sui SX et al (2018) Pretiree lifestyles in relation to musculoskeletal health: cross-sectional data from the Geelong Osteoporosis Study. JCSM Clin Rep 3:e00072Google Scholar
  142. Pedone C, Napoli N, Pozzilli P, Rossi FF, Lauretani F, Bandinelli S et al (2011) Dietary pattern and bone density changes in elderly women: a longitudinal study. J Am Coll Nutr 30:149–154PubMedPubMedCentralCrossRefGoogle Scholar
  143. Pereira AF, Silva AJ, Matos Costa A, Monteiro AM, Bastos EM, Cardoso MM (2013) Muscle tissue changes with aging. Acta Medica Port 26:51–55Google Scholar
  144. Phillips SM (2004) Protein requirements and supplementation in strength sports. Nutrition 20:689–695PubMedCrossRefGoogle Scholar
  145. Plank LD, Hill GL (2000) Similarity of changes in body composition in intensive care patients following severe sepsis or major blunt injury. Ann N Y Acad Sci 904:592–602PubMedCrossRefGoogle Scholar
  146. Prada D, Zhong J, Colicino E, Zanobetti A, Schwartz J, Dagincourt N et al (2017) Association of air particulate pollution with bone loss over time and bone fracture risk: analysis of data from two independent studies. Lancet Planet Health 1:e337–ee47PubMedPubMedCentralCrossRefGoogle Scholar
  147. Puthucheary ZA, Rawal J, McPhail M, Connolly B, Ratnayake G, Chan P et al (2013) Acute skeletal muscle wasting in critical illness. JAMA 310:1591–1600PubMedPubMedCentralCrossRefGoogle Scholar
  148. Rauma PH, Pasco JA, Berk M, Stuart AL, Koivumaa-Honkanen H, Honkanen RJ et al (2015) The association between use of antidepressants and bone quality using quantitative heel ultrasound. Aust N Z J Psychiatry 49:437–443PubMedCrossRefGoogle Scholar
  149. Reider L, Beck T, Alley D, Miller R, Shardell M, Schumacher J et al (2016) Evaluating the relationship between muscle and bone modeling response in older adults. Bone 90:152–158PubMedPubMedCentralCrossRefGoogle Scholar
  150. Renoud A, Ecochard R, Marchand F, Chapurlat R, Szulc P (2014) Predictive parameters of accelerated muscle loss in men-MINOS study. Am J Med 127:554–561PubMedCrossRefGoogle Scholar
  151. Riggs BL, Khosla S, Melton LJ 3rd. (2002) Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 23:279–302PubMedCrossRefGoogle Scholar
  152. Riggs BL, Melton LJ, Robb RA, Camp JJ, Atkinson EJ, McDaniel L et al (2008) A population-based assessment of rates of bone loss at multiple skeletal sites: evidence for substantial trabecular bone loss in young adult women and men. J Bone Miner Res 23:205–214PubMedCrossRefGoogle Scholar
  153. Robinson SM, Jameson KA, Batelaan SF, Martin HJ, Syddall HE, Dennison EM et al (2008) Diet and its relationship with grip strength in community-dwelling older men and women: the Hertfordshire cohort study. J Am Geriatr Soc 56:84–90PubMedCrossRefPubMedCentralGoogle Scholar
  154. Rudman D (1985) Growth hormone, body composition, and aging. J Am Geriatr Soc 33:800–807PubMedCrossRefPubMedCentralGoogle Scholar
  155. Rygiel KA, Grady JP, Turnbull DM (2014) Respiratory chain deficiency in aged spinal motor neurons. Neurobiol Aging 35:2230–2238PubMedPubMedCentralCrossRefGoogle Scholar
  156. Saez-Saez de Villarreal E, Requena B, Newton RU (2010) Does plyometric training improve strength performance? A meta-analysis. J Sci Med Sport 13:513–522PubMedPubMedCentralCrossRefGoogle Scholar
  157. Santana RB, Xu L, Chase HB, Amar S, Graves DT, Trackman PC (2003) A role for advanced glycation end products in diminished bone healing in type 1 diabetes. Diabetes 52:1502–1510PubMedCrossRefGoogle Scholar
  158. Sattler FR (2013) Growth hormone in the aging male. Best Pract Res Clin Endocrinol Metab 27:541–555PubMedPubMedCentralCrossRefGoogle Scholar
  159. Sayer AA, Syddall HE, Dennison EM, Gilbody HJ, Duggleby SL, Cooper C et al (2004a) Birth weight, weight at 1 y of age, and body composition in older men: findings from the Hertfordshire Cohort Study. Am J Clin Nutr 80:199–203Google Scholar
  160. Sayer AA, Syddall HE, Gilbody HJ, Dennison EM, Cooper C (2004b) Does sarcopenia originate in early life? Findings from the Hertfordshire Cohort Study. J Gerontol A Biol Sci Med Sci 59:M930–M934CrossRefGoogle Scholar
  161. Sayer AA, Dennison EM, Syddall HE, Jameson K, Martin HJ, Cooper C (2008) The developmental origins of sarcopenia: using peripheral quantitative computed tomography to assess muscle size in older people. J Gerontol A Biol Sci Med Sci 63:835–840PubMedPubMedCentralCrossRefGoogle Scholar
  162. Schaap LA, Pluijm SM, Deeg DJ, Visser M (2006) Inflammatory markers and loss of muscle mass (sarcopenia) and strength. Am J Med 119:526.e9-17PubMedCrossRefGoogle Scholar
  163. Scott D, Blizzard L, Fell J, Giles G, Jones G (2010) Associations between dietary nutrient intake and muscle mass and strength in community-dwelling older adults: the Tasmanian Older Adult Cohort Study. J Am Geriatr Soc 58:2129–2134PubMedCrossRefPubMedCentralGoogle Scholar
  164. Sealand R, Razavi C, Adler RA (2013) Diabetes mellitus and osteoporosis. Curr Diab Rep 13:411–418PubMedCrossRefGoogle Scholar
  165. Seidler RD, Bernard JA, Burutolu TB, Fling BW, Gordon MT, Gwin JT et al (2010) Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neurosci Biobehav Rev 34:721–733PubMedCrossRefGoogle Scholar
  166. Semba RD, Bandinelli S, Sun K, Guralnik JM, Ferrucci L (2010) Relationship of an advanced glycation end product, plasma carboxymethyl-lysine, with slow walking speed in older adults: the InCHIANTI study. Eur J Appl Physiol 108:191–195PubMedCrossRefGoogle Scholar
  167. Shams-White MM, Chung M, Du M, Fu Z, Insogna KL, Karlsen MC et al (2017) Dietary protein and bone health: a systematic review and meta-analysis from the National Osteoporosis Foundation. Am J Clin Nutr 105:1528–1543PubMedGoogle Scholar
  168. Shea B, Wells G, Cranney A, Zytaruk N, Robinson V, Griffith L et al (2002) Meta-analyses of therapies for postmenopausal osteoporosis. VII. Meta-analysis of calcium supplementation for the prevention of postmenopausal osteoporosis. Endocr Rev 23:552–559PubMedCrossRefGoogle Scholar
  169. Sheffield-Moore M, Urban RJ, Wolf SE, Jiang J, Catlin DH, Herndon DN et al (1999) Short-term oxandrolone administration stimulates net muscle protein synthesis in young men. J Clin Endocrinol Metab 84:2705–2711PubMedGoogle Scholar
  170. Simonides WS, van Hardeveld C (2008) Thyroid hormone as a determinant of metabolic and contractile phenotype of skeletal muscle. Thyroid 18:205–216PubMedCrossRefGoogle Scholar
  171. Sjogren K, Engdahl C, Henning P, Lerner UH, Tremaroli V, Lagerquist MK et al (2012) The gut microbiota regulates bone mass in mice. J Bone Miner Res 27:1357–1367PubMedPubMedCentralCrossRefGoogle Scholar
  172. Spangenburg EE, Geiger PC, Leinwand LA, Lowe DA (2012) Regulation of physiological and metabolic function of muscle by female sex steroids. Med Sci Sports Exerc 44:1653–1662PubMedPubMedCentralCrossRefGoogle Scholar
  173. Spatz JM, Fields EE, Yu EW, Divieti Pajevic P, Bouxsein ML, Sibonga JD et al (2012) Serum sclerostin increases in healthy adult men during bed rest. J Clin Endocrinol Metab 97(9):E1736–E1740PubMedPubMedCentralCrossRefGoogle Scholar
  174. Steves CJ, Bird S, Williams FM, Spector TD (2016) The microbiome and musculoskeletal conditions of aging: a review of evidence for impact and potential therapeutics. J Bone Miner Res 31:261–269PubMedCrossRefGoogle Scholar
  175. Suriyaarachchi P, Gomez F, Curcio CL, Boersma D, Murthy L, Grill V et al (2018) High parathyroid hormone levels are associated with osteosarcopenia in older individuals with a history of falling. Maturitas 113:21–25CrossRefGoogle Scholar
  176. Szulc P, Marchand F, Duboeuf F, Delmas PD (2000) Cross-sectional assessment of age-related bone loss in men: the MINOS study. Bone 26:123–129PubMedCrossRefGoogle Scholar
  177. Szulc P, Duboeuf F, Marchand F, Delmas PD (2004) Hormonal and lifestyle determinants of appendicular skeletal muscle mass in men: the MINOS study. Am J Clin Nutr 80:496–503PubMedCrossRefGoogle Scholar
  178. Szulc P, Beck TJ, Marchand F, Delmas PD (2005) Low skeletal muscle mass is associated with poor structural parameters of bone and impaired balance in elderly men – the MINOS study. J Bone Miner Res 20:721–729PubMedCrossRefGoogle Scholar
  179. Szulc P, Blaizot S, Boutroy S, Vilayphiou N, Boonen S, Chapurlat R (2013) Impaired bone microarchitecture at the distal radius in older men with low muscle mass and grip strength: the STRAMBO study. J Bone Miner Res 28:169–178PubMedCrossRefGoogle Scholar
  180. Tai V, Leung W, Grey A, Reid IR, Bolland MJ (2015) Calcium intake and bone mineral density: systematic review and meta-analysis. BMJ 351:h4183PubMedPubMedCentralCrossRefGoogle Scholar
  181. Tanaka K, Kanazawa I, Yamaguchi T, Yano S, Kaji H, Sugimoto T (2014) Active vitamin D possesses beneficial effects on the interaction between muscle and bone. Biochem Biophys Res Commun 450:482–487PubMedCrossRefGoogle Scholar
  182. Tanaka KI, Xue Y, Nguyen-Yamamoto L, Morris JA, Kanazawa I, Sugimoto T et al (2018) FAM210A is a novel determinant of bone and muscle structure and strength. Proc Natl Acad Sci U S A 115:E3759–E3E68PubMedPubMedCentralCrossRefGoogle Scholar
  183. Tang SY, Zeenath U, Vashishth D (2007) Effects of non-enzymatic glycation on cancellous bone fragility. Bone 40:1144–1151PubMedCrossRefGoogle Scholar
  184. Tenenhouse A, Joseph L, Kreiger N, Poliquin S, Murray TM, Blondeau L et al (2000) Estimation of the prevalence of low bone density in Canadian women and men using a population-specific DXA reference standard: the Canadian Multicentre Osteoporosis Study (CaMos). Osteoporos Int 11(10):897–904PubMedCrossRefGoogle Scholar
  185. Tessari P, Biolo G, Inchiostro S, Sacca L, Nosadini R, Boscarato MT et al (1990) Effects of insulin on whole body and forearm leucine and KIC metabolism in type 1 diabetes. Am J Phys 259:E96–E103Google Scholar
  186. Tinetti ME, Richman D, Powell L (1990) Falls efficacy as a measure of fear of falling. J Gerontol 45:P239–P243PubMedCrossRefGoogle Scholar
  187. Tuchendler D, Bolanowski M (2014) The influence of thyroid dysfunction on bone metabolism. Thyroid Res 7:12PubMedPubMedCentralCrossRefGoogle Scholar
  188. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031PubMedCrossRefGoogle Scholar
  189. Vanhorebeek I, Gunst J, Derde S, Derese I, Boussemaere M, D’Hoore A et al (2012) Mitochondrial fusion, fission, and biogenesis in prolonged critically ill patients. J Clin Endocrinol Metab 97:E59–E64PubMedCrossRefGoogle Scholar
  190. Vashishth D, Gibson GJ, Khoury JI, Schaffler MB, Kimura J, Fyhrie DP (2001) Influence of nonenzymatic glycation on biomechanical properties of cortical bone. Bone 28:195–201PubMedCrossRefGoogle Scholar
  191. Verma S, Rajaratnam JH, Denton J, Hoyland JA, Byers RJ (2002) Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis. J Clin Pathol 55:693–698PubMedPubMedCentralCrossRefGoogle Scholar
  192. Verschueren S, Gielen E, O’Neill TW, Pye SR, Adams JE, Ward KA et al (2013) Sarcopenia and its relationship with bone mineral density in middle-aged and elderly European men. Osteoporos Int 24:87–98PubMedCrossRefGoogle Scholar
  193. Vestergaard P (2007) Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes--a meta-analysis. Osteoporos Int 18:427–444PubMedCrossRefGoogle Scholar
  194. Visser M, Pahor M, Taaffe DR, Goodpaster BH, Simonsick EM, Newman AB et al (2002) Relationship of interleukin-6 and tumor necrosis factor-alpha with muscle mass and muscle strength in elderly men and women: the Health ABC Study. J Gerontol A Biol Sci Med Sci 57:M326–M332CrossRefGoogle Scholar
  195. Visser M, Deeg DJ, Lips P, Longitudinal Aging Study A (2003) Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia): the Longitudinal Aging Study Amsterdam. J Clin Endocrinol Metab 88:5766–5772CrossRefGoogle Scholar
  196. Vlassara H, Uribarri J (2014) Advanced glycation end products (AGE) and diabetes: cause, effect, or both? Curr Diab Rep 14:453PubMedPubMedCentralCrossRefGoogle Scholar
  197. Volpi E, Kobayashi H, Sheffield-Moore M, Mittendorfer B, Wolfe RR (2003) Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults. Am J Clin Nutr 78:250–258PubMedPubMedCentralCrossRefGoogle Scholar
  198. Wall BT, Dirks ML, van Loon LJ (2013) Skeletal muscle atrophy during short-term disuse: implications for age-related sarcopenia. Ageing Res Rev 12:898–906PubMedCrossRefGoogle Scholar
  199. Wallace DC (2013) A mitochondrial bioenergetic etiology of disease. J Clin Invest 123:1405–1412PubMedPubMedCentralCrossRefGoogle Scholar
  200. Wang J, Liu R, Hawkins M, Barzilai N, Rossetti L (1998) A nutrient-sensing pathway regulates leptin gene expression in muscle and fat. Nature 393:684–688CrossRefGoogle Scholar
  201. Wang Y, Zhu J, DeLuca HF (2014) Identification of the vitamin D receptor in osteoblasts and chondrocytes but not osteoclasts in mouse bone. J Bone Miner Res 29:685–692PubMedCrossRefGoogle Scholar
  202. Weatherall M (2000) A meta-analysis of 25 hydroxyvitamin D in older people with fracture of the proximal femur. N Z Med J 113:137–140PubMedGoogle Scholar
  203. World Health Organization (1994) Study group on assessment of fracture risk and its application to screening for postmenopausal osteoporosis: report of a WHO study group. World Health Organization, GenevaGoogle Scholar
  204. Wicherts IS, van Schoor NM, Boeke AJ, Visser M, Deeg DJ, Smit J et al (2007) Vitamin D status predicts physical performance and its decline in older persons. J Clin Endocrinol Metab 92:2058–2065PubMedCrossRefGoogle Scholar
  205. Williams LJ, Henry MJ, Berk M, Dodd S, Jacka FN, Kotowicz MA et al (2008) Selective serotonin reuptake inhibitor use and bone mineral density in women with a history of depression. Int Clin Psychopharmacol 23:84–87PubMedCrossRefGoogle Scholar
  206. Williams LJ, Bjerkeset O, Langhammer A, Berk M, Pasco JA, Henry MJ et al (2011) The association between depressive and anxiety symptoms and bone mineral density in the general population: the HUNT Study. J Affect Disord 131:164–171PubMedCrossRefGoogle Scholar
  207. Williams LJ, Pasco JA, Hodge JM, Berk M (2016a) Is there a nexus between mental and bone health? Aust N Z J Psychiatry 50:829–830PubMedCrossRefGoogle Scholar
  208. Williams LJ, Pasco JA, Jackson H, Kiropoulos L, Stuart AL, Jacka FN et al (2016b) Depression as a risk factor for fracture in women: a 10 year longitudinal study. J Affect Disord 192:34–40PubMedCrossRefGoogle Scholar
  209. Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF (2000) Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr 72:690–693PubMedCrossRefGoogle Scholar
  210. Wright NC, Looker AC, Saag KG, Curtis JR, Delzell ES, Randall S et al (2014) The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res 29:2520–2526PubMedPubMedCentralCrossRefGoogle Scholar
  211. Yadav VK, Oury F, Suda N, Liu ZW, Gao XB, Confavreux C et al (2009) A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell 138:976–989PubMedPubMedCentralCrossRefGoogle Scholar
  212. Yakar S, Werner H, Rosen CJ (2018) Insulin-like growth factors: actions on the skeleton. J Mol Endocrinol 61:T115–TT37PubMedPubMedCentralCrossRefGoogle Scholar
  213. Yoo JI, Ha YC, Lee YK, Koo KH (2016) High levels of heavy metals increase the prevalence of sarcopenia in the elderly population. J Bone Metab 23:101–109PubMedPubMedCentralCrossRefGoogle Scholar
  214. Zhou Z, Immel D, Xi CX, Bierhaus A, Feng X, Mei L et al (2006) Regulation of osteoclast function and bone mass by RAGE. J Exp Med 203:1067–1080PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Epi-Centre for Healthy Ageing, IMPACT Strategic Research Centre, School of MedicineDeakin UniversityGeelongAustralia

Personalised recommendations