Muscle and Bone Biology – Similarities and Differences

  • Joseph Elphingstone
  • Mark W. HamrickEmail author


Muscle and bone are similar in many ways, and factors that can stimulate anabolism or catabolism in one of these tissues may have the same effect(s) either directly or indirectly on the other tissue. Factors that may enhance the mass and strength of both tissues include pleiotropic genes such as Methyltransferase-Like Protein 21C (METTL21C) and Myocyte Enhancer Factor 2C (MEF2C), hormones such as growth hormone (GH) and Insulin like growth factor-1 (IGF-1), dietary amino acids, resident populations of mesenchymal stem cells (e.g., satellite cells and bone marrow derived stem cells [BMSCs]) and resistance exercise early in life. Shared mechanisms of tissue loss and dysfunction include fatty infiltration, cellular senescence, and molecules such as myostatin that can drive both muscle and bone loss. Important differences between these two tissues include the decoupling of muscle and bone patterning early in limb development, contrasting mechanotransduction pathways (e.g., wnt signaling in bone and p70S6K signaling in muscle), and contrasting bone geometry between males and females and between the upper and lower limb relative to lean mass. Overall the number of similarities between muscle and bone exceed the differences. Dietary protein and resistance exercise early in life can together promote the accumulation of lean mass and bone mineral, whereas novel therapies such as senolytic agents or NAD+ repletion may potentially prevent loss of muscle and bone with aging.


Anabolism Catabolism Biology Muscle Bone Myocytes Osteoblasts Osteoclasts Osteocytes Hormones Growth factors Anabolic pathways Wnts Protein Fat Adipocytes Fat infiltration Marrow adipose tissue Intramuscular fat, aging Sarcopenia Osteoporosis Mechanical loading Muscle hypertrophy Bone formation 



Protein kinase b


Baculoviral IAP Repeat Containing 3


Bone mineral content


Bone mineral density


Bone morphogenetic protein


Bone marrow-derived mesenchymal stem cell


C-C Motif Chemokine Ligand 5


C-C Motif Chemokine Receptor 2




C-X-C Motif Chemokine Receptor 4




Dendrocyte Expressed Seven Transmembrane Protein


Diacylglycerol Kinase Zeta


Extracellular matrix


Family with sequence similarity 210, member A


Fibro-adipogenic progenitor


Forkhead Box O


Growth hormone


glutathione peroxidase


Genome-wide association studies




Heat shock protein 90


Insulin like growth factor


nsulin like growth factor binding protein




intermuscular adipose tissue


LIM Homeobox Transcription Factor 1 Beta


LDL Receptor Related Protein


Muscle Atrophy F-Box Protein


Myocyte Enhancer Factor 2C


Methyltransferase-Like Protein 21C


Myosin heavy chain


Matrix metalloproteinase-12


Myogenic regulatory factor


Mesenchymal stem cell


Mechanistic Target Of Rapamycin Kinase


Muscle-Specific RING Finger Protein 1


Myogenic factor 5


Myogenic differentiation


Nicotinamide adenine dinucleotide.


Nuclear Factor Of Activated T Cells 2


Nuclear Factor Kappa B


NK3 Homeobox


NADPH Oxidase


Long isoform of leptin receptor



p70S6K/ S6K1

Ribosomal Protein S6 Kinase B1


Paired box 3/7


Platelet Derived Growth Factor Receptor α/β


Prostaglandin F2α


Phosphoinositide 3-kinase

PPAR gamma

Peroxisome Proliferator Activated Receptor Gamma


Receptor Activator Of Nuclear Factor Kappa B Ligand


Runt Related Transcription Factor 2


Reactive oxygen species


Senescence-Associated Secretory Phenotype


Stem cell antigen 1


Stromal Cell-Derived Factor 1


Single nucleotide polymorphism




Superoxide dismutase


SRY box 9


Sterol Regulatory Element Binding Transcription Factor 1


Stage-specific embryonic antigen 4




Tumor necrosis factor





Funding for this research was provided by the National Institute on Aging, US National Institutes of Health (AG 036675).


  1. Addison O, Drummond MJ, LaStayo PC, Dibble LE, Wende AR, McClain DA, Marcus RL (2014a) Intramuscular fat and inflammation differ in older adults: the impact of frailty and inactivity. J Nutr Health Aging 18:532–538PubMedPubMedCentralCrossRefGoogle Scholar
  2. Addison O, Marcus RL, Lastayo PC, Ryan AS (2014b) Intermuscular fat: a review of the consequences and causes. Int J Endocrinol 2014:309570PubMedPubMedCentralCrossRefGoogle Scholar
  3. Akune T, Ohba S, Kamekura S, Yamaguchi M, Chung UI, Kubota N, Terauchi Y, Harada Y, Azuma Y, Nakamura K, Kadowaki T, Kawaguchi H (2004) PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest 113:846–855PubMedPubMedCentralCrossRefGoogle Scholar
  4. Allen MD, McMillan S, Klein C, Rice C, Marsh G (2012) Differential Age-related Changes in Bone Geometry between the Humerus and the Femur in Healthy Men. Aging Dis 3:156–116PubMedPubMedCentralGoogle Scholar
  5. Almeida M, Han L, Martin-Millan M, Plotkin LI, Stewart SA, Roberson PK, Kousteni S, O’Brien CA, Bellido T, Parfitt AM, Weinstein RS, Jilka RL, Manolagas SC (2007) Skeletal involution by age-associated oxidative stress and its accelerationby loss of sex steroids. J Biol Chem 282:27285–27297PubMedPubMedCentralCrossRefGoogle Scholar
  6. Altindag O, Erel O, Soran N, Celik H, Selek S (2008) Total oxidative/anti-oxidative status and relation to bone mineral density in osteoporosis. Rheumatol Int 28:317–321PubMedCrossRefPubMedCentralGoogle Scholar
  7. Arnold MA, Kim Y, Czubryt MP, Phan D, McAnally J, Qi X, Shelton JM, Richardson JA, Bassel-Duby R, Olson EN (2007) MEF2C transcription factor controls chondrocyte hypertrophy and bone development. Dev Cell 12:377–389PubMedPubMedCentralCrossRefGoogle Scholar
  8. Asakura A, Komaki M, Rudnicki M (2001) Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation 68:245–253PubMedCrossRefPubMedCentralGoogle Scholar
  9. Atlantis E, Martin SA, Haren MT, Taylor AW, Wittert GA, Florey (2008) Lifestyle factors associated with age-related differences in body composition: the Florey Adelaide Male Aging Study. Am J Clin Nutr 88: 95–104Google Scholar
  10. Baar K, Esser K (1999) Phosphorylation of p70(S6k) correlates with increased skeletal muscle mass following resistance exercise. Am J Phys 276:C120–C127CrossRefGoogle Scholar
  11. Bai XC, Lu D, Liu AL, Zhang ZM, Li XM, Zou ZP, Zeng WS, Cheng BL, Luo SQ (2005) Reactive oxygen species stimulates receptor activator of NF-kappaB ligand expression in osteoblast. J Biol Chem 280:17497–17506PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bark TH, McNurlan MA, Lang CH, Garlick PJ (1998) Increased protein synthesis after acute IGF-I or insulin infusion is localized to muscle in mice. Am J Phys 275(1 Pt 1):E118–E123Google Scholar
  13. Bartell SM, Rayalam S, Ambati S, Gaddam DR, Hartzell DL, Hamrick M, She JX, Della-Fera MA, Baile CA (2011) Central (ICV) leptin injection increases bone formation, bone mineral density, muscle mass, serum IGF-1, and the expression of osteogenic genes in leptin-deficient ob/ob mice. J Bone Miner Res 26:1710–1720PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bettis T, Kim BJ, Hamrick MW (2018) Impact of muscle atrophy on bone metabolism and bone strength: implications for muscle-bone crosstalk with aging and disuse. Osteoporos Int. Scholar
  15. Bilkay U, Tokat C, Helvaci E, Ozek C, Zekioglu O, Onat T, Songur E (2008) Osteogenic capacities of tibial and cranial periosteum: a biochemical and histologic study. J Craniofac Surg 19:453–458PubMedCrossRefPubMedCentralGoogle Scholar
  16. Booker BM, Friedrich T, Mason MK, VanderMeer JE, Zhao J, Eckalbar WL, Logan M, Illing N, Pollard KS, Ahituv N (2016) Bat Accelerated Regions Identify a Bat Forelimb Specific Enhancer in the HoxD Locus. PLoS Genet 12:e1005738PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bozal CB, Sánchez LM, Ubios AM (2012) The lacuno-canalicular system (LCS) and osteocyte network of alveolar bone by confocal laser scanning microscopy (CLSM). Acta Odontol Latinoam 25:123–131PubMedPubMedCentralGoogle Scholar
  18. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868PubMedCrossRefPubMedCentralGoogle Scholar
  19. Cairns DM, Liu R, Sen M, Canner JP, Schindeler A, Little DG, Zeng L (2012) Interplay of Nkx3.2, Sox9 and Pax3 regulates chondrogenic differentiation of muscle progenitor cells. PLoS One 7:e39642PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chang H, Knothe Tate ML (2011) Structure-function relationships in the stem cell’s mechanical world B: emergent anisotropy of the cytoskeleton correlates to volume and shape changing stress exposure. Mol Cell Biomech 8:297–318PubMedPubMedCentralGoogle Scholar
  21. Chevalley T, Bonjour JP, Ferrari S, Rizzoli R (2008) High-protein intake enhances the positive impact of physical activity on BMC in prepubertal boys. J Bone Miner Res 23:131–142PubMedCrossRefPubMedCentralGoogle Scholar
  22. Chikani V, Ho KK (2013) Action of GH on skeletal muscle function: molecular and metabolic mechanisms. J Mol Endocrinol 19:R107–R123CrossRefGoogle Scholar
  23. Cho TJ, Gerstenfeld LC, Einhorn TA (2002) Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing. J Bone Miner Res 17:513–520PubMedCrossRefPubMedCentralGoogle Scholar
  24. Colasanto M et al (2016) Development of a subset of forelimb muscles and their attachment sites requires the ulnar-mammary syndrome gene Tbx3. Dis Models Mech 9:1257–1269CrossRefGoogle Scholar
  25. Cooper KL, Oh S, Sung Y, Dasari RR, Kirschner MW, Tabin CJ (2013) Multiple phases of chondrocyte enlargement underlie differences in skeletal proportions. Nature 495:375–378PubMedPubMedCentralCrossRefGoogle Scholar
  26. Cree MG, Paddon-Jones D, Newcomer BR, Ronsen O, Aarsland A, Wolfe RR, Ferrando A (2010) Twenty-eight-day bed rest with hypercortisolemia induces peripheral insulin resistance and increases intramuscular triglycerides. Metabolism 59(5):703–710PubMedCrossRefPubMedCentralGoogle Scholar
  27. Crespi E, Denver R (2006) Leptin (ob gene) of the South African clawed frog Xenopus laevis. Proc Natl Acad Sci U S A 103:10092–10097PubMedPubMedCentralCrossRefGoogle Scholar
  28. Crisan M, Yap S, Casteilla L et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313PubMedCrossRefPubMedCentralGoogle Scholar
  29. Cui Q, Wang GJ, Balian G (2000) Pluripotential marrow cells produce adipocytes when transplanted into steroid-treated mice. Connect Tissue Res 41:45–56PubMedCrossRefPubMedCentralGoogle Scholar
  30. Dai M, Wang Y, Fang L, Irwin DM, Zhu T, Zhang J, Zhang S, Wang Z (2014) Differential expression of Meis2, Mab21l2 and Tbx3 during limb development associated with diversification of limb morphology in mammals. PLoS One 9:e106100PubMedPubMedCentralCrossRefGoogle Scholar
  31. Daly R (2017) Exercise and nutritional approaches to prevent frail bones, falls and fractures: an update. Climacteric 20:119–124PubMedPubMedCentralCrossRefGoogle Scholar
  32. Daly R et al (2013) Gender specific age-related changes in bone density, muscle strength and functional performance in the elderly: a 10-year prospective population-based study. BMC Geriatr 13:71PubMedPubMedCentralCrossRefGoogle Scholar
  33. Dankbar B, Fennen M, Brunert D et al (2015) Myostatin is a direct regulator of osteoclast differentiation and its inhibition reduces inflammatory joint destruction in mice. Nat Med 21:1085–1090PubMedCrossRefPubMedCentralGoogle Scholar
  34. De Bari C, Dell’Accio F, Luyten FP (2001) Human periosteum-derived cells maintain phenotypic stability and chondrogenic potential throughout expansion regardless of donor age. Arthritis Rheum 44:85–95PubMedCrossRefPubMedCentralGoogle Scholar
  35. De Bari C, Dell’Accio F, Vanlauwe J, Eyckmans J, Khan IM, Archer CW, Jones EA, McGonagle D, Mitsiadis TA, Pitzalis C, Luyten FP (2006) Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell lineage analysis. Arthritis Rheum 54:1209–1221CrossRefGoogle Scholar
  36. Dellavalle A, Maroli G, Covarello D, Azzoni E, Innocenzi A, Perani L, Antonini S, Sambasivan R, Brunelli S, Tajbakhsh S, Cossu G (2011) Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nat Commun 2:499PubMedCrossRefPubMedCentralGoogle Scholar
  37. Delmonico MJ, Harris TB, Visser M, Park SW, Conroy MB, Velasquez-Mieyer P, Boudreau R, Manini TM, Nevitt M, Newman AB, Goodpaster BH (2009) Health, Aging, and Body. Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am J Clin Nutr 90:1579–1585PubMedPubMedCentralGoogle Scholar
  38. DeVol DL, Rotwein P, Sadow JL, Novakofski J, Bechtel PJ (1990) Activation of insulin-like growth factor gene expression during work-induced skeletal muscle growth. Am J Phys 259:E89–E95Google Scholar
  39. Diaz-Flores L, Gutierrez R, Lopez-Alonso A, Gonzalez R, Varela H (1992) Pericytes as a supplementary source of osteoblasts in periosteal osteogenesis. Clin Orthop Relat Res 27:280–286Google Scholar
  40. Ding KH, Cain M, Davis M et al (2018) Amino acids as signaling molecules modulating bone turnover. Bone pii:S8756-3282(18):30087–30085Google Scholar
  41. Dodd SL, Gagnon BJ, Senf SM, Hain BA, Judge AR (2010) ROS-mediated activation of NF-κB and Foxo during muscle disuse. Muscle Nerve 41:110–113PubMedPubMedCentralCrossRefGoogle Scholar
  42. Dong Y, Silva KA, Dong Y, Zhang L (2004) Glucocorticoids increase adipocytes in muscle by affecting IL-4 regulated FAP activity. FASEB J 28:4123–4132CrossRefGoogle Scholar
  43. Dreyer HC, Drummond MJ, Pennings B et al (2008) Leucine-enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle. Am J Phys Endocrinol Metab 294:E392–E400CrossRefGoogle Scholar
  44. Dukes A, Davis C, El Refaey M, Upadhyay S, Mork S, Arounleut P, Johnson MH, Hill WD, Isales CM, Hamrick MW (2015) The aromatic amino acid tryptophan stimulates skeletal muscle IGF1/p70s6k/mTor signaling in vivo and the expression of myogenic genes in vitro. Nutrition 31:1018–1024PubMedPubMedCentralCrossRefGoogle Scholar
  45. Dwek JR (2010) The periosteum: what is it, where is it, and what mimics it in its absence? Skelet Radiol 39:319–323CrossRefGoogle Scholar
  46. Fan W, Crawford R, Xiao Y (2008) Structural and cellular differences between metaphyseal and diaphyseal periosteum in different aged rats. Bone 42:81–89PubMedCrossRefPubMedCentralGoogle Scholar
  47. Farr JN, Fraser DG, Wang H et al (2016) Identification of Senescent Cells in the Bone Microenvironment. J Bone Miner Res 31:1920–1929PubMedPubMedCentralCrossRefGoogle Scholar
  48. Farr JN, Xu M, Weivoda MM et al (2017) Targeting cellular senescence prevents age-related bone loss in mice. Nat Med 23:1072–1079PubMedPubMedCentralCrossRefGoogle Scholar
  49. Fonseca RM, Roschel H, Tricoli V et al (2014) Changes in exercises are more effective than in loading schemes to improve muscle strength. J Strength Cond Res 28:3085–3092PubMedCrossRefPubMedCentralGoogle Scholar
  50. Frudd K, Burgoyne T, Burgoyne JR (2018) Oxidation of Atg3 and Atg7 mediates inhibition of autophagy. Nat Commun 9:95PubMedPubMedCentralCrossRefGoogle Scholar
  51. Fuhrmann-Stroissnigg H, Ling YY, Zhao J et al (2017) Identification of HSP90 inhibitors as a novel class of senolytics. Nat Commun 8:422PubMedPubMedCentralCrossRefGoogle Scholar
  52. Gibson MC, Schultz E (1982) The distribution of satellite cells and their relationship to specific fiber types in soleus and extensor digitorum longus muscles. Anat Rec 202:329–337PubMedCrossRefPubMedCentralGoogle Scholar
  53. Girgis CM, Clifton-Bligh RJ, Hamrick MW, Holick MF, Gunton JE (2013) The roles of vitamin D in skeletal muscle: form, function, and metabolism. Endocr Rev 34:33–83PubMedCrossRefPubMedCentralGoogle Scholar
  54. Glass DJ (2010) PI3 Kinase regulation of skeletal muscle hypertrophy and atrophy. Curr Top Microbiol Immunol 346:267–278PubMedPubMedCentralGoogle Scholar
  55. Glass GE, Chan JK, Freidin A, Feldmann M, Horwood NJ, Nanchahal J (2011) TNF-alpha promotes fracture repair by augmenting the recruitment and differentiation of muscle-derived stromal cells. Proc Natl Acad Sci U S A 108:1585–1590PubMedPubMedCentralCrossRefGoogle Scholar
  56. Goodman CA, McNally RM, Hoffmann FM, Hornberger T (2013) Smad3 induces atrogin-1, inhibits mTOR and protein synthesis, and promotes muscle atrophy in vivo. Mol Endocrinol 27:1946–1957PubMedPubMedCentralCrossRefGoogle Scholar
  57. Goodpaster BH, Chomentowski P, Ward BK et al (2008) Effects of physical activity on strength and skeletal muscle fat infiltration in older adults: a randomized controlled trial. J Appl Physiol 105:1498–1503PubMedPubMedCentralCrossRefGoogle Scholar
  58. Gordeladze JO, Drevon CA, Syversen U, Reseland JE (2002) Leptin stimulates human osteoblastic cell proliferation, de novo collagen synthesis, and mineralization: Impact on differentiation markers, apoptosis, and osteoclastic signaling. J Cell Biochem 85:825–836PubMedCrossRefPubMedCentralGoogle Scholar
  59. Govoni KE, Lee SK, Chung YS, Behringer RR, Wergedal JE, Baylink DJ, Mohan S (2007) Disruption of insulin-like growth factor-I expression in type IIalpha collagen-expressing cells reduces bone length and width in mice. Physiol Genomics 30:354–362PubMedPubMedCentralCrossRefGoogle Scholar
  60. Granero-Moltó F, Weis JA, Miga MI et al (2009) Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells 27:1887–1898PubMedPubMedCentralCrossRefGoogle Scholar
  61. Guerra-Menéndez L, Sádaba MC, Puche JE, Lavandera JL, de Castro LF, de Gortázar AR, Castilla-Cortázar I (2003) IGF-I increases markers of osteoblastic activity and reduces bone resorption via osteoprotegerin and RANK-ligand. J Transl Med 11:271CrossRefGoogle Scholar
  62. Gueugneau M, Coudy-Gandilhon C, Théron L et al (2015) Skeletal muscle lipid content and oxidative activity in relation to muscle fiber type in aging and metabolic syndrome. J Gerontol A Biol Sci Med Sci 70:566–576PubMedPubMedCentralCrossRefGoogle Scholar
  63. Ha H, Kwak HB, Lee SW, Jin HM, Kim HM, Kim HH, Lee ZH (2004) Reactive oxygen species mediate RANK signaling in osteoclasts. Exp Cell Res 301:119–127PubMedCrossRefPubMedCentralGoogle Scholar
  64. Hamrick MW (2012) The developmental origins of mosaic evolution in the primate limb skeleton. Evol Biol 39:447–455CrossRefGoogle Scholar
  65. Hamrick MW, Ferrari SL (2008) Leptin and the sympathetic connection of fat to bone. Osteoporos Int 19:905–912PubMedCrossRefPubMedCentralGoogle Scholar
  66. Hamrick MW, Della-Fera MA, Choi YH, Pennington C, Hartzell D, Baile CA (2005) Leptin treatment induces loss of bone marrow adipocytes and increases bone formation in leptin-deficient ob/ob mice. J Bone Miner Res 20:994–1001CrossRefGoogle Scholar
  67. Hamrick MW, Dukes A, Arounleut P et al (2015) The adipokine leptin mediates muscle- and liver-derived IGF-1 in aged mice. Exp Gerontol 70:92–96PubMedPubMedCentralCrossRefGoogle Scholar
  68. Hamrick MW, McGee-Lawrence ME, Frechette DM (2016) Fatty Infiltration of Skeletal Muscle: Mechanisms and Comparisons with Bone Marrow Adiposity. Front Endocrinol (Lausanne) 7:69CrossRefGoogle Scholar
  69. Haniffa MA, Collin MP, Buckley CD, Dazzi F (2009) Mesenchymal stem cells: the fibroblasts’ new clothes? Haematologica 94:258–263PubMedCrossRefPubMedCentralGoogle Scholar
  70. Hellmuth AE, Allbrook DB (1971) Muscle satellite cell numbers during the postnatal period. J Anat 110:503PubMedPubMedCentralGoogle Scholar
  71. Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM (2006) Cellular senescence in aging primates. Science 311:1257PubMedCrossRefPubMedCentralGoogle Scholar
  72. Hess R, Pino AM, Ríos S, Fernández M, Rodríguez JP (2005) High affinity leptin receptors are present in human mesenchymal stem cells (MSCs) derived from control and osteoporotic donors. J Cell Biochem 94:50–57PubMedCrossRefPubMedCentralGoogle Scholar
  73. Hipmair G, Böhler N, Maschek W, Soriguer F, Rojo-Martínez G, Schimetta W, Pichler R (2010) Serum leptin is correlated to high turnover in osteoporosis. Neuro Endocrinol Lett 31:155–160Google Scholar
  74. Holloway WR, Collier FM, Aitken CJ, Myers DE, Hodge JM, Malakellis M, Gough TJ, Collier GR, Nicholson GC (2002) Leptin inhibits osteoclast generation. J Bone Miner 17:200–209CrossRefGoogle Scholar
  75. Hornberger TA (2011) Mechanotransduction and the regulation of mTORC1 signaling in skeletal muscle. Int J Biochem Cell Biol 43:1267–1276PubMedPubMedCentralCrossRefGoogle Scholar
  76. Hornberger TA, Stuppard R, Conley KE, Fedele MJ, Fiorotto ML, Chin ER, Esser KA (2004) Mechanical stimuli regulate rapamycin-sensitive signalling by a phosphoinositide 3-kinase-, protein kinase B- and growth factor-independent mechanism. Biochem J 380(Pt 3):795–804PubMedPubMedCentralCrossRefGoogle Scholar
  77. Hornberger TA, Chu WK, Mak YW, Hsiung JW, Huang SA, Chien S (2006) The role of phospholipase D and phosphatidic acid in the mechanical activation of mTOR signaling in skeletal muscle. Proc Natl Acad Sci U S A 103:4741–4746PubMedPubMedCentralCrossRefGoogle Scholar
  78. Huang A (2017) Coordinated development of the limb musculoskeletal system: Tendon and muscle patterning and integration with the skeleton. Dev Biol 429:420–428PubMedPubMedCentralCrossRefGoogle Scholar
  79. Huang J, Hsu YH, Mo C, Abreu E, Kiel DP, Bonewald LF, Brotto M, Karasik D (2014) METTL21C is a potential pleiotropic gene for osteoporosis and sarcopenia acting through the modulation of the NF-κB signaling pathway. J Bone Miner Res 29:1531–1540PubMedPubMedCentralCrossRefGoogle Scholar
  80. Iresjö BM, Svensson J, Ohlsson C, Lundholm K (2013) Liver-derived endocrine IGF-I is not critical for activation of skeletal muscle protein synthesis following oral feeding. BMC Physiol 13:7PubMedPubMedCentralCrossRefGoogle Scholar
  81. Joe AW, Yi L, Natarajan A, Le Grand F, So L, Wang J, Rudnicki MA, Rossi FM (2010) Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol 12:153–163PubMedPubMedCentralCrossRefGoogle Scholar
  82. Jones JI, Clemmons DR (1995) Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 16:3–34PubMedPubMedCentralGoogle Scholar
  83. Judex S, Rubin C (2003) Mechanical influences on bone mass and morphology. In: Orwoll ES, Bliziotes M (eds) Osteoporosis. Contemporary endocrinology. Humana Press, TotowaGoogle Scholar
  84. Judex S, Zernicke RF (2000) High-impact exercise and growing bone: relation between high strain rates and enhanced bone formation. J Appl Physiol (1985) 88:2183–2191PubMedCrossRefPubMedCentralGoogle Scholar
  85. Karasik D, Cohen-Zinder M (2012) The genetic pleiotropy of musculoskeletal aging. Front Physiol 3:303PubMedPubMedCentralCrossRefGoogle Scholar
  86. Karsenty G (2006) Convergence between bone and energy homeostases: leptin regulation of bone mass. Cell Metab 4:341–348CrossRefGoogle Scholar
  87. Kassem M, Blum W, Ristelli J, Mosekilde L, Eriksen EF (1993) Growth hormone stimulates proliferation and differentiation of normal human osteoblast-like cells in vitro. Calcif Tissue Int 52:222–226PubMedCrossRefPubMedCentralGoogle Scholar
  88. Kassem M, Mosekilde L, Eriksen EF (1994) Growth hormone stimulates proliferation of normal human bone marrow stromal osteoblast precursor cells in vitro. Growth Regul 4:131–135PubMedPubMedCentralGoogle Scholar
  89. Khosla S, Farr JN, Kirkland JL (2018) Inhibiting cellular senescence: a new therapeutic paradigm for age-related osteoporosis. J Clin Endocrinol Metab. Scholar
  90. Kim BJ, Lee SH, Isales CM, Koh JM, Hamrick MW (2018) The positive association of total protein intake with femoral neck strength (KNHANES IV). Osteoporos Int. Scholar
  91. Knez WL, Jenkins DG, Coombes JS (2014) The effect of an increased training volume on oxidative stress. Int J Sports Med 35:8–13PubMedPubMedCentralGoogle Scholar
  92. Knothe Tate ML, Falls TD, McBride SH, Atit R, Knothe U (2008) Mechanical modulation of osteochondroprogenitor cell fate. Int J Biochem Cell Biol 40:2720–2738PubMedPubMedCentralCrossRefGoogle Scholar
  93. Kohrt WM, Ehsani AA, Birge SJ Jr (1997) Effects of exercise involving predominantly either joint-reaction or ground-reaction forces on bone mineral density in older women. J Bone Miner Res 12:1253–1261PubMedCrossRefPubMedCentralGoogle Scholar
  94. Kohrt WM, Barry DW, Schwartz RS (2009) Muscle forces or gravity: what predominates mechanical loading on bone? Med Sci Sports Exerc 41:2050–2055PubMedPubMedCentralCrossRefGoogle Scholar
  95. Komatsu DE, Mary MN, Schroeder RJ, Robling AG, Turner CH, Warden SJ (2010) Modulation of Wnt signaling influences fracture repair. J Orthop Res 28:928–936PubMedPubMedCentralGoogle Scholar
  96. Kulkarni RN, Voglewede PA, Liu D (2013) Mechanical vibration inhibits osteoclast formation by reducing DC-stamp receptor expression in osteoclast precursor cells. Bone 57:493–498PubMedPubMedCentralCrossRefGoogle Scholar
  97. LaBarge MA, Blau HM (2002) Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 111:589–601PubMedCrossRefPubMedCentralGoogle Scholar
  98. Lang T (2011) The bone-muscle relationship in men and women. J Osteopor 2011:702735Google Scholar
  99. Laviola L, Natalicchio A, Giorgino F (2007) The IGF-I signaling pathway. Curr Pharm Dis 13:663–669CrossRefGoogle Scholar
  100. Lawler JM, Song W, Demaree SR (2003) Hindlimb unloading increases oxidative stress and disrupts antioxidant capacity in skeletal muscle. Free Radic Biol Med 35:9–16PubMedCrossRefPubMedCentralGoogle Scholar
  101. Lean JM, Jagger CJ, Kirstein B, Fuller K, Chambers TJ (2005) Hydrogen peroxide is essential for estrogen-deficiency bone loss and osteoclast formation. Endocrinology 146:728–735PubMedCrossRefPubMedCentralGoogle Scholar
  102. Lee NK, Choi YG, Baik JY, Han SY, Jeong DW, Bae YS, Kim N, Lee SY (2005) A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood 106:852–859PubMedCrossRefPubMedCentralGoogle Scholar
  103. Lepper C, Partridge TA, Fan CM (2011) An absolute requirement for Pax7-positive satellite cells in acute injury-induced skeletal muscle regeneration. Development 138:3639–3646PubMedPubMedCentralCrossRefGoogle Scholar
  104. Li X, Cui Q, Kao C, Wang GJ, Balian G (2003) Lovastatin inhibits adipogenic and stimulates osteogenic differentiation by suppressing PPARgamma2 and increasing Cbfa1/Runx2 expression in bone marrow mesenchymal cell cultures. Bone 33:652–659PubMedCrossRefPubMedCentralGoogle Scholar
  105. Li H, Malhotra S, Kumar A (2008) Nuclear factor-kappa B signaling in skeletal muscle atrophy. J Mol Med (Berl) 86:1113–1126CrossRefGoogle Scholar
  106. Li C, Xing Q, Yu B, Xie H, Wang W, Shi C, Crane JL, Cao X, Wan M (2013) Disruption of LRP6 in osteoblasts blunts the bone anabolic activity of PTH. J Bone Miner Res 28:2094–2108PubMedPubMedCentralCrossRefGoogle Scholar
  107. Linares GR, Xing W, Govoni KE, Chen ST, Mohan S (2009) Glutaredoxin 5 regulates osteoblast apoptosis by protecting against oxidative stress. Bone 44:795–804PubMedPubMedCentralCrossRefGoogle Scholar
  108. Liu AL, Zhang ZM, Zhu BF, Liao ZH, Liu Z (2004) Metallothionein protects bone marrow stromal cells against hydrogen peroxide-induced inhibition of osteoblastic differentiation. Cell Biol Int 28:905–911PubMedCrossRefPubMedCentralGoogle Scholar
  109. Lorenz K, Sicker M, Schmelzer E, Rupf T, Salvetter J, Schulz-Siegmund M, Bader A (2008) Multilineage differentiation potential of human dermal skin-derived fibroblasts. Exp Dermatol 17:925–932PubMedCrossRefPubMedCentralGoogle Scholar
  110. Mantzoros CS, Magkos F, Brinkoetter M, Sienkiewicz E, Dardeno TA, Kim SY, Hamnvik OP, Koniaris A (2011) Leptin in human physiology and pathophysiology. Am J Physiol Endocrinol Metab 301:E567–E584PubMedPubMedCentralCrossRefGoogle Scholar
  111. Marcus RL, Addison O, Kidde JP, Dibble LE, Lastayo PC (2010) Skeletal muscle fat infiltration: impact of age, inactivity, and exercise. J Nutr Health Aging 14:362–366PubMedPubMedCentralCrossRefGoogle Scholar
  112. Marędziak M, Śmieszek A, Chrząstek K, Basinska K, Marycz K (2015) Physical activity increases the total number of bone-marrow-derived mesenchymal stem cells, enhances their osteogenic potential, and inhibits their adipogenic properties. Stem Cells Int 2015:379093PubMedPubMedCentralCrossRefGoogle Scholar
  113. Markworth JF, Cameron-Smith D (2011) Prostaglandin F2α; stimulates PI3K/ERK/mTOR signaling and skeletal myotube hypertrophy. Am J Physiol Cell Physiol 300:C671–C682PubMedCrossRefPubMedCentralGoogle Scholar
  114. Mastaloudis A, Leonard SW, Traber MG (2001) Oxidative stress in athletes during extreme endurance exercise. Free Radic Biol Med 31:911–922PubMedCrossRefPubMedCentralGoogle Scholar
  115. Medina-Gomez C, Kemp J, Dimou N et al (2017) Bivariate genome-wide association meta-analysis of pediatric musculoskeletal traits reveals pleiotropic effects at the SREBF1/TOM1L2 locus. Nat Commun 8:121PubMedPubMedCentralCrossRefGoogle Scholar
  116. Meema S, Reid DB, Meema HE (1973) Age trends of bone mineral mass, muscle width, and subcutaneous fat in normals and osteoporotics. Calcif Tissue Res 12:101–112PubMedCrossRefPubMedCentralGoogle Scholar
  117. Meunier P, Aaron J, Edouard C, Vignon G (1971) Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A quantitative study of 84 iliac bone biopsies. Clin Orthop Relat Res 80:147–154PubMedCrossRefPubMedCentralGoogle Scholar
  118. Morita K, Miyamoto T, Fujita N et al (2007) Reactiveoxygen species induce chondrocyte hypertrophy in endochondral ossification. J Exp Med 204:1613–1623PubMedPubMedCentralCrossRefGoogle Scholar
  119. Muthusami S, Ramachandran I, Muthusamy B, Vasudevan G, Prabhu V, Subramaniam V, Jagadeesan A, Narasimhan S (2005) Ovariectomy induces oxidative stress and impairs bone antioxidant system in adult rats. Clin Chim Acta 360:81–86PubMedCrossRefPubMedCentralGoogle Scholar
  120. Nakamura H, Aoki K, Masuda W, Alles N et al (2013) Disruption of NF-κB1 prevents bone loss caused by mechanical unloading. J Bone Miner Res 28:1457–1467PubMedCrossRefPubMedCentralGoogle Scholar
  121. Nassari S, Duprez D, Fournier-Thibault C (2017) Non-myogenic contribution to muscle development and homeostasis: The role of connective tissues. Front Cell Dev Biol 5:22PubMedPubMedCentralCrossRefGoogle Scholar
  122. Nieves J, Formica C, Ruffing J, Zion M, Garrett P, Lindsay R, Cosman F (2005) Males have larger skeletal size and bone mass than females, despite comparable body size. J Bone Miner Res 20:529–535PubMedCrossRefPubMedCentralGoogle Scholar
  123. Novotny SA, Warren GL, Hamrick MW (2015) Aging and the muscle-bone relationship. Physiology (Bethesda) 30:8–16Google Scholar
  124. Ochareon P, Herring SW (2007) Growing the mandible: role of the periosteum and its Cells. Anat Rec (Hoboken) 290:1366–1376CrossRefGoogle Scholar
  125. Ogasawara R, Fujita S, Hornberger TA, Kitaoka Y, Makanae Y, Nakazato K, Naokata I (2016) The role of mTOR signalling in the regulation of skeletal muscle mass in a rodent model of resistance exercise. Sci Rep 6:31142PubMedPubMedCentralCrossRefGoogle Scholar
  126. Okamoto T, Torii S, Machida S (2011) Differential gene expression of muscle-specific ubiquitin ligase MAFbx/Atrogin-1 and MuRF1 in response to immobilization-induced atrophy of slow-twitch and fast-twitch muscles. J Physiol Sci 61:537–546PubMedCrossRefPubMedCentralGoogle Scholar
  127. Olney RC (2003) Regulation of bone mass by growth hormone. Med Pediatr Oncol 41:228–234PubMedCrossRefPubMedCentralGoogle Scholar
  128. Ormsbee MJ, Prado CM, Ilich JZ (2014) Osteosarcopenic obesity: the role of bone, muscle, and fat on health. J Cachexia Sarcopenia Muscle 5:183–192PubMedPubMedCentralCrossRefGoogle Scholar
  129. Ozgocmen S, Kaya H, Fadillioglu E, Aydogan R, Yilmaz Z (2007) Role of antioxidant systems, lipid peroxidation, and nitric oxide in postmenopausal osteoporosis. Mol Cell Biochem 295:45–52PubMedCrossRefPubMedCentralGoogle Scholar
  130. Prior SJ, Joseph LJ, Brandauer J, Katzel LI, Hagberg JM, Ryan AS (2007) Reduction in midthigh low-density muscle with aerobic exercise training and weight loss impacts glucose tolerance in older men. J Clin Endocrinol Metab 92:880–886PubMedCrossRefPubMedCentralGoogle Scholar
  131. Qiu J, Fang Q, Xu T, Wu C, Xu L, Wang L, Yang X, Yu S, Zhang Q, Ding F, Sun H (2018) Mechanistic role of reactive oxygen species and therapeutic potential of antioxidants in denervation- or fasting-induced skeletal muscle atrophy. Front Physiol 9:215PubMedPubMedCentralCrossRefGoogle Scholar
  132. Ratajczak MZ, Majka M, Kucia M, Drukala J, Pietrzkowski Z, Peiper S, Janowska-Wieczorek A (2003) Expression of functional CXCR4 by muscle satellite cells and secretion of SDF-1 by muscle-derived fibroblasts is associated with the presence of both muscle progenitors in bone marrow and hematopoietic stem/progenitor cells in muscles. Stem Cells 21:363–371PubMedCrossRefPubMedCentralGoogle Scholar
  133. Rauch F, Bailey DA, Baxter-Jones A, Mirwald R, Faulkner R (2004) The ‘muscle-bone unit’ during the pubertal growth spurt. Bone 34:771–775PubMedCrossRefPubMedCentralGoogle Scholar
  134. Reno PL, McCollum MA, Cohn MJ, Meindl RS, Hamrick M, Lovejoy CO (2008) Patterns of correlation and covariation of anthropoid distal forelimb segments correspond to Hoxd expression territories. J Exp Zool B Mol Dev Evol 310:240–258PubMedCrossRefPubMedCentralGoogle Scholar
  135. Rivadeneira F, Styrkársdottir U, Estrada K, Genetic Factors for Osteoporosis (GEFOS) Consortium et al (2009) Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat Genet 41:1199–1206PubMedPubMedCentralCrossRefGoogle Scholar
  136. Robling AG, Niziolek PJ, Baldridge LA et al (2008) Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem 283:5866–5875PubMedCrossRefPubMedCentralGoogle Scholar
  137. Rubin CT, Lanyon LE (1984) Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am 66:397–402PubMedCrossRefPubMedCentralGoogle Scholar
  138. Rubin CT, Lanyon LE (1985) Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int 37:411–417PubMedCrossRefPubMedCentralGoogle Scholar
  139. Russell KC, Phinney DG, Lacey MR, Barrilleaux BL, Meyertholen KE, O’Connor KC (2010) In vitro high-capacity assay to quantify the clonal heterogeneity in trilineage potential of mesenchymal stem cells reveals a complex hierarchy of lineage commitment. Stem Cells 28:788–798PubMedCrossRefPubMedCentralGoogle Scholar
  140. Sáinz N, Rodríguez A, Catalán V, Becerril S, Ramírez B, Gómez-Ambrosi J, Frühbeck G (2009) Leptin administration favors muscle mass accretion by decreasing FoxO3a and increasing PGC-1alpha in ob/ob mice. PLoS One 4:e6808PubMedPubMedCentralCrossRefGoogle Scholar
  141. Sambasivan R, Yao R, Kissenpfennig A, Van Wittenberghe L, Paldi A, Gayraud-Morel B, Guenou H, Malissen B, Tajbakhsh S, Galy A (2011) Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development 138:3647–3656CrossRefGoogle Scholar
  142. Sanders K, Stuart A, Williamson E et al (2010) Annual high-dose oral vitamin D and falls and fractures in older women. JAMA 303:1815–1822PubMedCrossRefPubMedCentralGoogle Scholar
  143. Sawakami K, Robling AG, Ai M et al (2006) The Wnt co-receptor LRP5 is essential for skeletal mechanotransduction but not for the anabolic bone response to parathyroid hormone treatment. J Biol Chem 281:23698–23711PubMedCrossRefPubMedCentralGoogle Scholar
  144. Saxon LK, Jackson BF, Sugiyama T, Lanyon LE, Price JS (2011) Analysis of multiple bone responses to graded strains above functional levels, and to disuse, in mice in vivo show that the human Lrp5 G171 V High Bone Mass mutation increases the osteogenic response to loading but that lack of Lrp5 activity reduces it. Bone 49:184–193PubMedPubMedCentralCrossRefGoogle Scholar
  145. Schett G, Kiechl S, Bonora E et al (2004) Serum leptin level and the risk of nontraumatic fracture. Am J Med 117:952–956PubMedCrossRefPubMedCentralGoogle Scholar
  146. Shirasawa H, Matsumura N, Shimoda M, Oki S, Yoda M, Tohmonda T, Kanai Y, Matsumoto M, Nakamura M, Horiuchi K (2017). Inhibition of PDGFR signaling prevents muscular fatty infiltration after rotator cuff tear in mice. Sci. Rep. 7, 41552.
  147. Simon TM, Van Sickle DC, Kunishima DH, Jackson DW (2003) Cambium cell stimulation from surgical release of the periosteum. J Orthop Res 21:470–480PubMedCrossRefPubMedCentralGoogle Scholar
  148. Sotiropoulos A, Ohanna M, Kedzia C, Menon RK, Kopchick JJ, Kelly PA, Pende M (2006) Growth hormone promotes skeletal muscle cell fusion independent of insulin-like growth factor 1 up-regulation. Proc Natl Acad Sci U S A 103:7315–7320PubMedPubMedCentralCrossRefGoogle Scholar
  149. Spangenburg EE, Le Roith D, Ward CW, Bodine SC (2008) A functional insulin-like growth factor receptor is not necessary for load-induced skeletal muscle hypertrophy. J Physiol 586:283–291PubMedCrossRefPubMedCentralGoogle Scholar
  150. Squier CA, Ghoneim S, Kremenak CR (1990) Ultrastructure of the periosteum from membrane bone. J Anat 171:233–239PubMedPubMedCentralGoogle Scholar
  151. Stephens AS, Stephens SR, Hobbs C, Hutmacher DW, Bacic-Welsh D, Woodruff MA, Morrison NA (2011) Myocyte enhancer factor 2c, an osteoblast transcription factor identified by dimethyl sulfoxide (DMSO)-enhanced mineralization. J Biol Chem 286:30071–30086PubMedPubMedCentralCrossRefGoogle Scholar
  152. Stich S, Loch A, Leinhase I, Neumann K, Kaps C, Sittinger M, Ringe J (2008) Human periosteum-derived progenitor cells express distinct chemokine receptors and migrate upon stimulation with CCL2, CCL25, CXCL8, CXCL12, and CXCL13. Eur J Cell Biol 87:365–376PubMedCrossRefPubMedCentralGoogle Scholar
  153. Stich S, Loch A, Park SJ, Häupl T, Ringe J, Sittinger M (2017) Characterization of single cell derived cultures of periosteal progenitor cells to ensure the cell quality for clinical application. PLoS One 12:e0178560PubMedPubMedCentralCrossRefGoogle Scholar
  154. Sullivan-Gunn MJ, Lewandowski PA (2013) Elevated hydrogen peroxide and decreased catalase and glutathione peroxidase protection are associated with aging sarcopenia. BMC Geriatr 13:104PubMedPubMedCentralCrossRefGoogle Scholar
  155. Syed FA, Oursler MJ, Hefferanm TE, Peterson JM, Riggs BL, Khosla S (2008) Effects of estrogen therapy on bone marrow adipocytes in postmenopausal osteoporotic women. Osteoporos Int 19:1323–1330PubMedPubMedCentralCrossRefGoogle Scholar
  156. Tanaka K, Xue Y, Nguyen-Yamamoto L et al (2018) FAM210A is a novel determinant of bone and muscle structure and strength. Proc Natl Acad Sci U S A 115:E3759–E3768PubMedPubMedCentralCrossRefGoogle Scholar
  157. Tawonsawatruk T, West CC, Murray IR, Soo C, Péault B, Simpson AH (2016) Adipose derived pericytes rescue fractures from a failure of healing--non-union. Sci Rep 6:22779PubMedPubMedCentralCrossRefGoogle Scholar
  158. Thomas T, Gori F, Khosla S, Jensen MD, Burguera B, Riggs BL (1999) Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology 140(4):1630–1638CrossRefGoogle Scholar
  159. Turner RT, Kalra SP, Wong CP, Philbrick KA, Lindenmaier LB, Boghossian S, Iwaniec UT (2013) Peripheral leptin regulates bone formation. J Bone Miner Res 28:22–34PubMedPubMedCentralCrossRefGoogle Scholar
  160. Tuttle LJ, Sinacore DR, Mueller MJ (2012) Intermuscular adipose tissue is muscle specific and associated with poor functional performance. J Aging Res 2012:172957Google Scholar
  161. Uezumi A, Uezumi A, Fukada S, Yamamoto N, Takeda S, Tsuchida K (2010) Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat Cell Biol 12:143–152PubMedPubMedCentralCrossRefGoogle Scholar
  162. Van Remmen H, Williams MD, Guo Z, Estlack L, Yang H, Carlson EJ, Epstein CJ, Huang TT, Wang DZ, Valdez MR, McAnally J, Richardson J, Olson EN (2001) The Mef2c gene is a direct transcriptional target of myogenic bHLH and MEF2 proteins during skeletal muscle development. Development 128:4623–4633Google Scholar
  163. Wang Q, Seeman E (2008) Skeletal growth and peak bone strength. Best Pract Res Clin Endocrinol Metab 22:687–700PubMedCrossRefPubMedCentralGoogle Scholar
  164. Warden SJ, Mantila Roosa SM, Kersh ME, Hurd AL, Fleisig GS, Pandy MG, Fuchs RK (2014) Physical activity when young provides lifelong benefits to cortical bone size and strength in men. Proc Natl Acad Sci U S A 111:5337–5342PubMedPubMedCentralCrossRefGoogle Scholar
  165. Watanobe H, Habu S (2002) Leptin regulates growth hormone-releasing factor, somatostatin, and alpha-melanocyte-stimulating hormone but not neuropeptide Y release in rat hypothalamus in vivo: relation with growth hormone secretion. J Neurosci 22:6265–6271PubMedPubMedCentralCrossRefGoogle Scholar
  166. Williams GA, Callon KE, Watson M, Costa JL, Ding Y, Dickinson M, Wang Y, Naot D, Reid IR, Cornish J (2011) Skeletal phenotype of the leptin receptor-deficient db/db mouse. J Bone Miner Res 26:1698–1709PubMedCrossRefPubMedCentralGoogle Scholar
  167. Wilson RA, Liu J, Xu L et al (2016) Negative regulation of initial steps in skeletal myogenesis by mTOR and other kinases. Sci Rep 6:20376PubMedPubMedCentralCrossRefGoogle Scholar
  168. Wu SM, Shih LH, Lee JY, Shen YJ, Lee HH (2015) Estrogen enhances activity of Wnt signaling during osteogenesis by inducing Fhl1 expression. J Cell Biochem 116:1419–1430PubMedCrossRefPubMedCentralGoogle Scholar
  169. Xian L, Wu X, Pang L, Lou M, Rosen CJ, Qiu T et al (2012) Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nat Med 18:1095–1101PubMedPubMedCentralCrossRefGoogle Scholar
  170. Xu Q, Wu Z (2000) The insulin-like growth factor-phosphatidylinositol 3-kinase-Akt signaling pathway regulates myogenin expression in normal myogenic cells but not in rhabdomyosarcoma-derived RD cells. J Biol Chem 275:36750–36757PubMedCrossRefPubMedCentralGoogle Scholar
  171. Yakar S, Isaksson O (2016) Regulation of skeletal growth and mineral acquisition by the GH/IGF-1 axis: Lessons from mouse models. Growth Hormon IGF Res 28:26–42CrossRefGoogle Scholar
  172. Yakar S, Rosen CJ, Beamer WG et al (2002) Circulating levels of IGF-1 directly regulate bone growth and density. J Clin Invest 110:771–781PubMedPubMedCentralCrossRefGoogle Scholar
  173. Yamauchi M, Sugimoto T, Yamaguchi T, Nakaoka D, Kanzawa M, Yano S, Ozuru R, Sugishita T, Chihara K (2001) Plasma leptin concentrations are associated with bone mineral density and the presence of vertebral fractures in postmenopausal women. Clin Endocrinol 55:341–347CrossRefGoogle Scholar
  174. Yin H, Price F, Rudnicki MA (2013) Satellite cells and the muscle stem cell niche. Physiol Rev 93:23–67PubMedPubMedCentralCrossRefGoogle Scholar
  175. Yu YY, Lieu S, Lu C, Miclau T, Marcucio RS, Colnot C (2010) Immunolocalization of BMPs, BMP antagonists, receptors, and effectors during fracture repair. Bone 46:841–851PubMedCrossRefPubMedCentralGoogle Scholar
  176. Zhang H, Ryu D, Wu Y et al (2016) NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 352:1436–1443PubMedCrossRefPubMedCentralGoogle Scholar
  177. Zoidis E, Ghirlanda-Keller C, Schmid C (2011) Stimulation of glucose transport in osteoblastic cells by parathyroid hormone and insulin-like growth factor I. Mol Cell Biochem 348:33–42PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Cellular Biology & Anatomy, Medical College of GeorgiaAugusta UniversityAugustaUSA

Personalised recommendations