Advertisement

Changes in Parameters of Aqueous Humor Dynamics Throughout Life

  • Carol B. TorisEmail author
  • George Tye
  • Padmanabhan Pattabiraman
Chapter
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Abstract

Steady-state intraocular pressure (IOP) results from the interplay of the inflow, outflow, facility, and pressure of aqueous humor dynamics. A change in any one of these parameters may greatly affect IOP, while a simultaneous change in a second parameter might negate the effect of the first leaving IOP undisturbed. Some IOP changes could be rapid as when moving from a seated to a supine position. Other IOP changes are gradual such as seen seasonally. There is general agreement on the nighttime reduction in aqueous humor production but not on changes that occur during aging. Aging is confounded by many factors affecting IOP including systemic and ocular health, ethnic background, and recreational activities. Evidence suggests that aqueous humor dynamics in children may change rapidly until sexual maturity is reached, but the scarcity of research on children has left a void in our understanding of the developing eye. Efficacy of IOP-lowering treatments can be altered by fluctuations in aqueous humor dynamics, especially at night. The molecular and cellular aspects underlying the changes in aqueous humor dynamics is a rapidly growing field. Effective mathematical modeling of ocular fluid dynamics will benefit from a clearer understanding of the changes in aqueous humor dynamics throughout life.

Notes

Conflict of Interest

CBT received recent research support from companies developing IOP-lowering drugs including Santen, Novartis, and Nicox.

Financial Disclosure

Supported by Research to Prevent Blindness.

References

  1. 1.
    Ashton, N., A. Brini, and R. Smith, Anatomical studies of the trabecular meshwork of the normal human eye. Br J Ophthalmol, 1956. 40(5): p. 257-82.CrossRefGoogle Scholar
  2. 2.
    Carreon, T., et al., Aqueous outflow - A continuum from trabecular meshwork to episcleral veins. Prog Retin Eye Res, 2017. 57: p. 108-133.Google Scholar
  3. 3.
    Xin, C., et al., Aqueous outflow regulation: Optical coherence tomography implicates pressure-dependent tissue motion. Exp Eye Res, 2017. 158: p. 171-186.Google Scholar
  4. 4.
    Bill, A. and C.I. Phillips, Uveoscleral drainage of aqueous humour in human eyes. Exp Eye Res, 1971. 12(3): p. 275-81.CrossRefGoogle Scholar
  5. 5.
    Toris, C.B., et al., Aqueous humor dynamics in the aging human eye. Am J Ophthalmol, 1999. 127(4): p. 407-12.Google Scholar
  6. 6.
    Teng, C., et al., Effect of a tight necktie on intraocular pressure. Br J Ophthalmol, 2003. 87(8): p. 946-8.Google Scholar
  7. 7.
    Schuman, J.S., et al., Increased intraocular pressure and visual field defects in high resistance wind instrument players. Ophthalmology, 2000. 107(1): p. 127-33.Google Scholar
  8. 8.
    Mete, A., et al., Dynamic changes in optic disc morphology, choroidal thickness, anterior chamber parameters, and intraocular pressure during Valsalva maneuver. Arq Bras Oftalmol, 2016. 79(4): p. 209-13.Google Scholar
  9. 9.
    Pekel, G., et al., Impact of Valsalva maneuver on corneal morphology and anterior chamber parameters. Cornea, 2014. 33(3): p. 271-3.CrossRefGoogle Scholar
  10. 10.
    Falcao, M., et al., Spectral-domain optical coherence tomography of the choroid during valsalva maneuver. Am J Ophthalmol, 2012. 154(4): p. 687-692 e1.Google Scholar
  11. 11.
    Zhang, Z., et al., Valsalva manoeuver, intra-ocular pressure, cerebrospinal fluid pressure, optic disc topography: Beijing intracranial and intra-ocular pressure study. Acta Ophthalmol, 2014. 92(6): p. e475-80.Google Scholar
  12. 12.
    Fan, S., et al., Daytime and Nighttime Effects of Brimonidine on IOP and Aqueous Humor Dynamics in Participants With Ocular Hypertension. Journal of Glaucoma, 2014. 23(5): p. 276-281.Google Scholar
  13. 13.
    Blondeau, P., J.P. Tetrault, and C. Papamarkakis, Diurnal variation of episcleral venous pressure in healthy patients: a pilot study. J Glaucoma, 2001. 10(1): p. 18-24.Google Scholar
  14. 14.
    Deokule, S.P., et al., Relationship of the 24-hour pattern of intraocular pressure with optic disc appearance in primary open-angle glaucoma. Ophthalmology, 2009. 116(5): p. 833-9.Google Scholar
  15. 15.
    Noel, C., et al., Twenty-four-hour time course of intraocular pressure in healthy and glaucomatous Africans: Relation to sleep patterns. Ophthalmology, 2001. 108(1): p. 139-144.Google Scholar
  16. 16.
    Gardiner, S.K., et al., Seasonal changes in visual field sensitivity and intraocular pressure in the ocular hypertension treatment study. Ophthalmology, 2013. 120(4): p. 724-30.Google Scholar
  17. 17.
    Qureshi, I.A., et al., Seasonal and diurnal variations of ocular pressure in ocular hypertensive subjects in Pakistan. Singapore Med J, 1999. 40(5): p. 345-8.Google Scholar
  18. 18.
    Roy, D., et al., Cyclical regulation of GnRH gene expression in GT1-7 GnRH-secreting neurons by melatonin. Endocrinology, 2001. 142(11): p. 4711-20.CrossRefGoogle Scholar
  19. 19.
    Treister, G. and S. Mannor, Intraocular pressure and outflow facility. Effect of estrogen and combined estrogen-progestin treatment in normal human eyes. Arch Ophthalmol, 1970. 83(3): p. 311-8.CrossRefGoogle Scholar
  20. 20.
    Paterson, G.D. and S.J. Miller, Hormonal influence in simple glaucoma. A preliminary report. Br J Ophthalmol, 1963. 47: p. 129-37.Google Scholar
  21. 21.
    Ismail, S.A. and H.A. Mowafi, Melatonin Provides Anxiolysis, Enhances Analgesia, Decreases Intraocular Pressure, and Promotes Better Operating Conditions During Cataract Surgery Under Topical Anesthesia. Anesthesia and Analgesia, 2009. 108(4): p. 1146-1151.CrossRefGoogle Scholar
  22. 22.
    Musumeci, T., et al., Polymeric nanoparticles augment the ocular hypotensive effect of melatonin in rabbits. International Journal of Pharmaceutics, 2013. 440(2): p. 135-140.CrossRefGoogle Scholar
  23. 23.
    Samples, J.R., G. Krause, and A.J. Lewy, Effect of melatonin on intraocular pressure. Current Eye Research, 1988. 7(7): p. 649-653.CrossRefGoogle Scholar
  24. 24.
    Chiou, G.C.Y., T. Aimoto, and L.Y. Chiou, Melatonergic Involvement in Diurnal Changes of Intraocular Pressure in Rabbit Eyes. Ophthalmic Research, 1985. 17(6): p. 373-378.CrossRefGoogle Scholar
  25. 25.
    Hirota, A., et al., Ultraviolet A Irradiation Induces NF-E2-Related Factor 2 Activation in Dermal Fibroblasts: Protective Role in UVA-Induced Apoptosis. Journal of Investigative Dermatology, 2005. 124(4): p. 825-832.CrossRefGoogle Scholar
  26. 26.
    Pintor, J., et al., Involvement of melatonin MT(3) receptors in the regulation of intraocular pressure in rabbits. European journal of pharmacology, 2001. 416(3): p. 251-254.CrossRefGoogle Scholar
  27. 27.
    Rohde, B.H., M.A. McLaughlin, and L.Y. Chiou, Existence and role of endogenous ocular melatonin. J Ocul Pharmacol, 1985. 1(3): p. 235-43.CrossRefGoogle Scholar
  28. 28.
    Gianluca, T., et al., The circadian clock system in the mammalian retina. BioEssays, 2008. 30(7): p. 624-633.Google Scholar
  29. 29.
    Karasek, M. and K. Winczyk, Melatonin in humans. Journal of physiology and pharmacology: an official journal of the Polish Physiological Society, 2006. 57 Suppl 5: p. 19-39.Google Scholar
  30. 30.
    Harris, A., et al., Ocular hemodynamic effects of acute ethanol ingestion. Ophthalmic Res, 1996. 28(3): p. 193-200.CrossRefGoogle Scholar
  31. 31.
    Pexczon, J.D. and W.M. Grant, Glaucoma, Alcohol, and Intraocular Pressure. Arch Ophthalmol, 1965. 73: p. 495-501.Google Scholar
  32. 32.
    Wu, S.Y. and M.C. Leske, Associations with intraocular pressure in the Barbados Eye Study. Arch Ophthalmol, 1997. 115(12): p. 1572-6.CrossRefGoogle Scholar
  33. 33.
    Yoshida, M., et al., Association of life-style with intraocular pressure in middle-aged and older Japanese residents. Jpn J Ophthalmol, 2003. 47(2): p. 191-8.Google Scholar
  34. 34.
    Hong, S.W., et al., Association of alcohol consumption pattern with risk of hypertension in Korean adults based on the 2010-2012 KNHANES. Alcohol, 2016. 54: p. 17-22.Google Scholar
  35. 35.
    Klatsky, A.L. and E. Gunderson, Alcohol and hypertension: a review. J Am Soc Hypertens, 2008. 2(5): p. 307-17.CrossRefGoogle Scholar
  36. 36.
    Briasoulis, A., V. Agarwal, and F.H. Messerli, Alcohol consumption and the risk of hypertension in men and women: a systematic review and meta-analysis. J Clin Hypertens (Greenwich), 2012. 14(11): p. 792-8.CrossRefGoogle Scholar
  37. 37.
    Razvodovsky, Y.E., Contribution of alcohol to hypertension mortality in Russia. J Addict, 2014. 2014: p. 483910.Google Scholar
  38. 38.
    Rani, B., M. Chaturvedi, and O. Singh, Epidemiological correlates of smoking and alcohol addiction in increasing prevalence of hypertension in persons aged >/= 45 years. J Assoc Physicians India, 2016. 64(1): p. 114.Google Scholar
  39. 39.
    Klein, R., B.E. Klein, and S.E. Moss, The relation of systemic hypertension to changes in the retinal vasculature: the Beaver Dam Eye Study. Trans Am Ophthalmol Soc, 1997. 95: p. 329-48; discussion 348-50.Google Scholar
  40. 40.
    Xu, L., et al., Intraocular pressure correlated with arterial blood pressure: the beijing eye study. Am J Ophthalmol, 2007. 144(3): p. 461-2.Google Scholar
  41. 41.
    Kaiser, H.J., A. Schoetzau, and J. Flammer, Blood flow velocity in the extraocular vessels in chronic smokers. Br J Ophthalmol, 1997. 81(2): p. 133-5.CrossRefGoogle Scholar
  42. 42.
    Govind, A.P., P. Vezina, and W.N. Green, Nicotine-induced upregulation of nicotinic receptors: underlying mechanisms and relevance to nicotine addiction. Biochem Pharmacol, 2009. 78(7): p. 756-65.CrossRefGoogle Scholar
  43. 43.
    Jiwani, A.Z., et al., Effects of caffeinated coffee consumption on intraocular pressure, ocular perfusion pressure, and ocular pulse amplitude: a randomized controlled trial. Eye (Lond), 2012. 26(8): p. 1122-30.Google Scholar
  44. 44.
    Opremcak, E.M. and P.A. Weber, Interaction of timolol and caffeine on intraocular pressure. J Ocul Pharmacol, 1985. 1(3): p. 227-34.CrossRefGoogle Scholar
  45. 45.
    Tomida, I., R.G. Pertwee, and A. Azuara-Blanco, Cannabinoids and glaucoma. Br J Ophthalmol, 2004. 88(5): p. 708-13.Google Scholar
  46. 46.
    Zhan, G.L., et al., Effects of marijuana on aqueous humor dynamics in a glaucoma patient. J Glaucoma, 2005. 14(2): p. 175-7.Google Scholar
  47. 47.
    Chien, F.Y., et al., Effect of WIN 55212-2, a cannabinoid receptor agonist, on aqueous humor dynamics in monkeys. Arch Ophthalmol, 2003. 121(1): p. 87-90.Google Scholar
  48. 48.
    Green, K. and J.E. Pederson, Effect of 1 -tetrahydrocannabinol on aqueous dynamics and ciliary body permeability in the rabbit. Exp Eye Res, 1973. 15(4): p. 499-507.CrossRefGoogle Scholar
  49. 49.
    Merritt, J.C., et al., Topical delta 9-tetrahydrocannabinol and aqueous dynamics in glaucoma. J Clin Pharmacol, 1981. 21(8-9 Suppl): p. 467S-471S.Google Scholar
  50. 50.
    American Academy of Ophthalmology Complementary Therapy Task Force, Hoskins Center for Quality Eye Care. Marijuana in the Treatment of Glaucoma CTA - 2014 Complementary Therapy Assessments. San Francisco: American Academy of Ophthalmology. 2014.Google Scholar
  51. 51.
    Jaafar, M.S. and G.A. Kazi, Normal intraocular pressure in children: a comparative study of the Perkins applanation tonometer and the pneumatonometer. J Pediatr Ophthalmol Strabismus, 1993. 30(5): p. 284-7.Google Scholar
  52. 52.
    Jiang, W.J., et al., Intraocular pressure and associated factors in children: the Shandong children eye study. Invest Ophthalmol Vis Sci, 2014. 55(7): p. 4128-34.Google Scholar
  53. 53.
    Dusek, W.A., B.K. Pierscionek, and J.F. McClelland, Age variations in intraocular pressure in a cohort of healthy Austrian school children. Eye (Lond), 2012. 26(6): p. 841-5.CrossRefGoogle Scholar
  54. 54.
    Tint, N.L., et al., Hormone therapy and intraocular pressure in nonglaucomatous eyes. Menopause, 2010. 17(1): p. 157-60.CrossRefGoogle Scholar
  55. 55.
    Feldman, F., J. Bain, and A.R. Matuk, Daily assessment of ocular and hormonal variables throughout the menstrual cycle. Arch Ophthalmol, 1978. 96(10): p. 1835-8.CrossRefGoogle Scholar
  56. 56.
    Becker, B. and C.K. Ramsey, Plasma cortisol and the intraocular pressure response to topical corticosteroids. Am J Ophthalmol, 1970. 69(6): p. 999-1003.CrossRefGoogle Scholar
  57. 57.
    Becker, B., Intraocular pressure response to topical corticosteroids. Invest Ophthalmol, 1965. 4: p. 198-205.Google Scholar
  58. 58.
    Otte, C., et al., A meta-analysis of cortisol response to challenge in human aging: importance of gender. Psychoneuroendocrinology, 2005. 30(1): p. 80-91.CrossRefGoogle Scholar
  59. 59.
    Zhou, J.N., et al., Alterations in the circadian rhythm of salivary melatonin begin during middle-age. Journal of Pineal Research, 2003. 34(1): p. 11-16.Google Scholar
  60. 60.
    Ohashi, Y., et al., Differential pattern of the circadian rhythm of serum melatonin in young and elderly healthy subjects. Biological Signals, 1997. 6(4-6): p. 301-306.Google Scholar
  61. 61.
    Wetterberg, L., et al., Normative melatonin excretion: a multinational study. Psychoneuroendocrinology, 1999. 24(2): p. 209-226.CrossRefGoogle Scholar
  62. 62.
    Klein, B.E., R. Klein, and K.L. Linton, Intraocular pressure in an American community. The Beaver Dam Eye Study. Invest Ophthalmol Vis Sci, 1992. 33(7): p. 2224-8.Google Scholar
  63. 63.
    Leske, M.C., et al., Distribution of intraocular pressure. The Barbados Eye Study. Arch Ophthalmol, 1997. 115(8): p. 1051-7.CrossRefGoogle Scholar
  64. 64.
    Memarzadeh, F., et al., Associations with intraocular pressure in Latinos: the Los Angeles Latino Eye Study. Am J Ophthalmol, 2008. 146(1): p. 69-76.Google Scholar
  65. 65.
    Nakano, T., et al., Long-term physiologic changes of intraocular pressure: a 10-year longitudinal analysis in young and middle-aged Japanese men. Ophthalmology, 2005. 112(4): p. 609-16.Google Scholar
  66. 66.
    Lin, H.Y., et al., Intraocular pressure measured with a noncontact tonometer in an elderly Chinese population: the Shihpai Eye Study. Arch Ophthalmol, 2005. 123(3): p. 381-6.Google Scholar
  67. 67.
    Lee, J.S., et al., Relationship between intraocular pressure and systemic health parameters in a Korean population. Clinical and Experimental Ophthalmology, 2002. 30(4): p. 237-241.Google Scholar
  68. 68.
    Guo, T., et al., Aqueous humour dynamics and biometrics in the ageing Chinese eye. Br J Ophthalmol, 2017. 101(9): p. 1290-1296.CrossRefGoogle Scholar
  69. 69.
    Khawaja, A.P., et al., Associations with intraocular pressure across Europe: The European Eye Epidemiology (E3) Consortium. European Journal of Epidemiology, 2016. 31(11): p. 1101-1111.Google Scholar
  70. 70.
    Cohen, E., et al., Relationship Between Body Mass Index and Intraocular Pressure in Men and Women: A Population-based Study. J Glaucoma, 2016. 25(5): p. e509-13.Google Scholar
  71. 71.
    Kocak, N., et al., Evaluation of the intraocular pressure in obese adolescents. Minerva Pediatr, 2015. 67(5): p. 413-8.Google Scholar
  72. 72.
    Wang, C., et al., Changes in intraocular pressure and central corneal thickness during pregnancy: a systematic review and Meta-analysis. Int J Ophthalmol, 2017. 10(10): p. 1573-1579.Google Scholar
  73. 73.
    Akar, Y., et al., Effect of pregnancy on intraobserver and intertechnique agreement in intraocular pressure measurements. Ophthalmologica, 2005. 219(1): p. 36-42.CrossRefGoogle Scholar
  74. 74.
    Ibraheem, W.A., et al., Tear Film Functions and Intraocular Pressure Changes in Pregnancy. Afr J Reprod Health, 2015. 19(4): p. 118-22.Google Scholar
  75. 75.
    Qureshi, I.A., X.R. Xi, and T. Yaqob, The ocular hypotensive effect of late pregnancy is higher in multigravidae than in primigravidae. Graefes Arch Clin Exp Ophthalmol, 2000. 238(1): p. 64-7.Google Scholar
  76. 76.
    Qureshi, I.A., et al., Effect of third trimester of pregnancy on diurnal variation of ocular pressure. Chin Med Sci J, 1997. 12(4): p. 240-3.Google Scholar
  77. 77.
    Qureshi, I.A., Measurements of intraocular pressure throughout the pregnancy in Pakistani women. Chin Med Sci J, 1997. 12(1): p. 53-6.Google Scholar
  78. 78.
    Qureshi, I.A., Intraocular pressure and pregnancy: a comparison between normal and ocular hypertensive subjects. Arch Med Res, 1997. 28(3): p. 397-400.Google Scholar
  79. 79.
    Qureshi, I.A., Intraocular pressure: association with menstrual cycle, pregnancy and menopause in apparently healthy women. Chin J Physiol, 1995. 38(4): p. 229-34.Google Scholar
  80. 80.
    Saylik, M. and S.A. Saylik, Not only pregnancy but also the number of fetuses in the uterus affects intraocular pressure. Indian J Ophthalmol, 2014. 62(6): p. 680-2.CrossRefGoogle Scholar
  81. 81.
    Ziai, N., et al., Beta-human chorionic gonadotropin, progesterone, and aqueous dynamics during pregnancy. Arch Ophthalmol, 1994. 112(6): p. 801-6.CrossRefGoogle Scholar
  82. 82.
    Kass, M.A. and M.L. Sears, Hormonal regulation of intraocular pressure. Surv Ophthalmol, 1977. 22(3): p. 153-76.CrossRefGoogle Scholar
  83. 83.
    Saylik, M. and S.A. Saylık, Not only pregnancy but also the number of fetuses in the uterus affects intraocular pressure. Indian journal of ophthalmology, 2014. 62(6): p. 680-2.CrossRefGoogle Scholar
  84. 84.
    Hisaw, F.L., Experimental relaxation of the pubic ligament of the guinea pig. Proc Soc Exp Biol Med 1926. 23(8): p. 661-663.CrossRefGoogle Scholar
  85. 85.
    Sherwood, O.D., Relaxin's physiological roles and other diverse actions. Endocr Rev, 2004. 25(2): p. 205-34.Google Scholar
  86. 86.
    Bathgate, R.A., et al., Relaxin family peptides and their receptors. Physiol Rev, 2013. 93(1): p. 405-80.Google Scholar
  87. 87.
    Dehghan, F., et al., The effect of relaxin on the musculoskeletal system. Scand J Med Sci Sports, 2014. 24(4): p. e220-9.CrossRefGoogle Scholar
  88. 88.
    Weiss, G., E.M. O'Byrne, and B.G. Steinetz, Relaxin: a product of the human corpus luteum of pregnancy. Science, 1976. 194(4268): p. 948-9.CrossRefGoogle Scholar
  89. 89.
    Quagliarello, J., et al., Serial relaxin concentrations in human pregnancy. Am J Obstet Gynecol, 1979. 135(1): p. 43-4.Google Scholar
  90. 90.
    Goldsmith, L.T. and G. Weiss, Relaxin in human pregnancy. Ann N Y Acad Sci, 2009. 1160: p. 130-5.Google Scholar
  91. 91.
    Palejwala, S., et al., Relaxin gene and protein expression and its regulation of procollagenase and vascular endothelial growth factor in human endometrial cells. Biol Reprod, 2002. 66(6): p. 1743-8.Google Scholar
  92. 92.
    Goldsmith, L.T., et al., Relaxin regulation of endometrial structure and function in the rhesus monkey. Proc Natl Acad Sci U S A, 2004. 101(13): p. 4685-9.Google Scholar
  93. 93.
    Lenhart, J.A., et al., Relaxin increases secretion of tissue inhibitor of matrix metalloproteinase-1 and -2 during uterine and cervical growth and remodeling in the pig. Endocrinology, 2002. 143(1): p. 91-8.Google Scholar
  94. 94.
    De Groef, L., et al., MMPs in the trabecular meshwork: promising targets for future glaucoma therapies? Invest Ophthalmol Vis Sci, 2013. 54(12): p. 7756-63.Google Scholar
  95. 95.
    Borras, T., L.K. Buie, and M.G. Spiga, Inducible scAAV2.GRE.MMP1 lowers IOP long-term in a large animal model for steroid-induced glaucoma gene therapy. Gene Ther, 2016.Google Scholar
  96. 96.
    O'Callaghan, J., et al., Therapeutic potential of AAV-mediated MMP-3 secretion from corneal endothelium in treating glaucoma. Hum Mol Genet, 2017. 26(7): p. 1230-1246.Google Scholar
  97. 97.
    Pattabiraman, P.P. and C.B. Toris, The exit strategy: Pharmacological modulation of extracellular matrix production and deposition for better aqueous humor drainage. Eur J Pharmacol, 2016. 787: p. 32-42.CrossRefGoogle Scholar
  98. 98.
    Weinreb, R., E. Cotlier, and B.Y.J.T. Yue, The extracellular matrix and its modulation in the trabecular meshwork. Survey of Ophthalmology, 1996. 40(5): p. 379-390.CrossRefGoogle Scholar
  99. 99.
    Tane, N., et al., Effect of excess synthesis of extracellular matrix components by trabecular meshwork cells: possible consequence on aqueous outflow. Exp Eye Res, 2007. 84(5): p. 832-42.Google Scholar
  100. 100.
    Acott, T.S. and M.J. Kelley, Extracellular matrix in the trabecular meshwork. Exp Eye Res, 2008. 86(4): p. 543-61.CrossRefGoogle Scholar
  101. 101.
    Fuchshofer, R. and E.R. Tamm, Modulation of extracellular matrix turnover in the trabecular meshwork. Experimental Eye Research, 2009. 88(4): p. 683-688.CrossRefGoogle Scholar
  102. 102.
    Keller, K.E., et al., Extracellular matrix turnover and outflow resistance. Exp Eye Res, 2009. 88(4): p. 676-82.Google Scholar
  103. 103.
    Samuel, C.S., R.J. Summers, and T.D. Hewitson, Antifibrotic Actions of Serelaxin - New Roles for an Old Player. Trends Pharmacol Sci, 2016. 37(6): p. 485-97.CrossRefGoogle Scholar
  104. 104.
    Bennett, R.G., Relaxin and its role in the development and treatment of fibrosis. Transl Res, 2009. 154(1): p. 1-6.Google Scholar
  105. 105.
    Bennett, R.G., et al., Relaxin decreases the severity of established hepatic fibrosis in mice. Liver Int, 2014. 34(3): p. 416-26.Google Scholar
  106. 106.
    Samuel, C.S., et al., Anti-fibrotic actions of relaxin. Br J Pharmacol, 2017. 174(10): p. 962-976.Google Scholar
  107. 107.
    Fuchshofer, R. and E.R. Tamm, The role of TGF-beta in the pathogenesis of primary open-angle glaucoma. Cell Tissue Res, 2012. 347(1): p. 279-90.Google Scholar
  108. 108.
    Heeg, M.H., et al., The antifibrotic effects of relaxin in human renal fibroblasts are mediated in part by inhibition of the Smad2 pathway. Kidney Int, 2005. 68(1): p. 96-109.Google Scholar
  109. 109.
    Sassoli, C., et al., Relaxin prevents cardiac fibroblast-myofibroblast transition via notch-1-mediated inhibition of TGF-beta/Smad3 signaling. PLoS One, 2013. 8(5): p. e63896.CrossRefGoogle Scholar
  110. 110.
    Masterson, R., et al., Relaxin down-regulates renal fibroblast function and promotes matrix remodelling in vitro. Nephrol Dial Transplant, 2004. 19(3): p. 544-52.Google Scholar
  111. 111.
    Huang, X., et al., Relaxin regulates myofibroblast contractility and protects against lung fibrosis. Am J Pathol, 2011. 179(6): p. 2751-65.Google Scholar
  112. 112.
    Chow, B.S., et al., Relaxin signals through a RXFP1-pERK-nNOS-NO-cGMP-dependent pathway to up-regulate matrix metalloproteinases: the additional involvement of iNOS. PLoS One, 2012. 7(8): p. e42714.Google Scholar
  113. 113.
    Wang, C., et al., The Anti-fibrotic Actions of Relaxin Are Mediated Through a NO-sGC-cGMP-Dependent Pathway in Renal Myofibroblasts In Vitro and Enhanced by the NO Donor, Diethylamine NONOate. Front Pharmacol, 2016. 7: p. 91.Google Scholar
  114. 114.
    Chow, B.S., et al., Relaxin requires the angiotensin II type 2 receptor to abrogate renal interstitial fibrosis. Kidney Int, 2014. 86(1): p. 75-85.Google Scholar
  115. 115.
    Singh, S., R.L. Simpson, and R.G. Bennett, Relaxin activates peroxisome proliferator-activated receptor gamma (PPARgamma) through a pathway involving PPARgamma coactivator 1alpha (PGC1alpha). J Biol Chem, 2015. 290(2): p. 950-9.Google Scholar
  116. 116.
    Singh, S. and R.G. Bennett, Relaxin family peptide receptor 1 activation stimulates peroxisome proliferator-activated receptor gamma. Ann N Y Acad Sci, 2009. 1160: p. 112-6.Google Scholar
  117. 117.
    Brubaker, R.F., Flow of aqueous humor in humans [The Friedenwald Lecture]. Invest Ophthalmol Vis Sci, 1991. 32(13): p. 3145-66.Google Scholar
  118. 118.
    Carlson, K.H., et al., Effect of body position on intraocular pressure and aqueous flow. Invest Ophthalmol Vis Sci, 1987. 28(8): p. 1346-52.Google Scholar
  119. 119.
    Gharagozloo, N.Z., R.H. Baker, and R.F. Brubaker, Aqueous dynamics in exfoliation syndrome. Am J Ophthalmol, 1992. 114(4): p. 473-8.Google Scholar
  120. 120.
    Larsson, L.I., E.S. Rettig, and R.F. Brubaker, Aqueous flow in open-angle glaucoma. Arch Ophthalmol, 1995. 113(3): p. 283-6.MathSciNetCrossRefGoogle Scholar
  121. 121.
    Fan, S., et al., Aqueous humor dynamics during the day and night in volunteers with ocular hypertension. Arch Ophthalmol, 2011. 129(9): p. 1162-6.CrossRefGoogle Scholar
  122. 122.
    Koskela, T. and R.F. Brubaker, The nocturnal suppression of aqueous humor flow in humans is not blocked by bright light. Invest Ophthalmol Vis Sci, 1991. 32(9): p. 2504-6.Google Scholar
  123. 123.
    McLaren, J.W., R.F. Brubaker, and J.S. FitzSimon, Continuous measurement of intraocular pressure in rabbits by telemetry. Invest Ophthalmol Vis Sci, 1996. 37(6): p. 966-75.Google Scholar
  124. 124.
    Dortch-Carnes, J. and G. Tosini, Melatonin receptor agonist-induced reduction of SNP-released nitric oxide and cGMP production in isolated human non-pigmented ciliary epithelial cells. Exp Eye Res, 2013. 107: p. 1-10.CrossRefGoogle Scholar
  125. 125.
    Wiechmann, A.F. and C.R. Wirsig-Wiechmann, Melatonin receptor mRNA and protein expression in Xenopus laevis nonpigmented ciliary epithelial cells. Exp Eye Res, 2001. 73(5): p. 617-23.CrossRefGoogle Scholar
  126. 126.
    Osborne, N.N. and G. Chidlow, The presence of functional melatonin receptors in the iris-ciliary processes of the rabbit eye. Exp Eye Res, 1994. 59(1): p. 3-9.CrossRefGoogle Scholar
  127. 127.
    Viggiano, S.R., et al., The effect of melatonin on aqueous humor flow in humans during the day. Ophthalmology, 1994. 101(2): p. 326-31.Google Scholar
  128. 128.
    Bill, A., Blood circulation and fluid dynamics in the eye. Physiol Rev, 1975. 55(3): p. 383-417.CrossRefGoogle Scholar
  129. 129.
    Zhao, M., et al., Aqueous humor dynamics during the day and night in juvenile and adult rabbits. Invest Ophthalmol Vis Sci, 2010. 51(6): p. 3145-51.CrossRefGoogle Scholar
  130. 130.
    Okuyama, M., S. Okisaka, and Y. Kadota, [Histological analysis of aging ciliary body]. Nippon Ganka Gakkai Zasshi, 1993. 97(11): p. 1265-73.Google Scholar
  131. 131.
    Green, K., et al., Aqueous humor flow rate and intraocular pressure during and after pregnancy. Ophthalmic Res, 1988. 20(6): p. 353-7.Google Scholar
  132. 132.
    Nau, C.B., et al., Circadian Variation of Aqueous Humor Dynamics in Older Healthy Adults. Investigative Ophthalmology & Visual Science, 2013. 54(12): p. 7623-7629.Google Scholar
  133. 133.
    Liu, H., et al., Aqueous humor dynamics during the day and night in healthy mature volunteers. Arch Ophthalmol, 2011. 129(3): p. 269-75.Google Scholar
  134. 134.
    Sheppard, A.L. and L.N. Davies, The effect of ageing on in vivo human ciliary muscle morphology and contractility. Invest Ophthalmol Vis Sci, 2011. 52(3): p. 1809-16.CrossRefGoogle Scholar
  135. 135.
    Tamm, E., et al., Posterior attachment of ciliary muscle in young, accommodating old, presbyopic monkeys. Invest Ophthalmol Vis Sci, 1991. 32(5): p. 1678-92.Google Scholar
  136. 136.
    Camras, L.J., et al., Differential effects of trabecular meshwork stiffness on outflow facility in normal human and porcine eyes. Invest Ophthalmol Vis Sci, 2012. 53(9): p. 5242-50.Google Scholar
  137. 137.
    Camras, L.J., et al., Circumferential tensile stiffness of glaucomatous trabecular meshwork. Invest Ophthalmol Vis Sci, 2014. 55(2): p. 814-23.CrossRefGoogle Scholar
  138. 138.
    Battista, S.A., et al., Reduction of the available area for aqueous humor outflow and increase in meshwork herniations into collector channels following acute IOP elevation in bovine eyes. Invest Ophthalmol Vis Sci, 2008. 49(12): p. 5346-52.CrossRefGoogle Scholar
  139. 139.
    Zeimer, R.C., et al., A practical venomanometer. Measurement of episcleral venous pressure and assessment of the normal range. Arch Ophthalmol, 1983. 101(9): p. 1447-9.CrossRefGoogle Scholar
  140. 140.
    Sit, A.J., et al., A novel method for computerized measurement of episcleral venous pressure in humans. Exp Eye Res, 2011. 92(6): p. 537-44.Google Scholar
  141. 141.
    Lavery, W.J. and J.W. Kiel, Effects of Head Down Tilt on Episcleral Venous Pressure in a Rabbit Model. Experimental eye research, 2013. 111: p. 88-94.CrossRefGoogle Scholar
  142. 142.
    Bigger, J.F., Glaucoma with elevated episcleral venous pressure. South Med J, 1975. 68(11): p. 1444-8.CrossRefGoogle Scholar
  143. 143.
    Theelen, T., et al., Impact factors on intraocular pressure measurements in healthy subjects. Br J Ophthalmol, 2004. 88(12): p. 1510-1.Google Scholar
  144. 144.
    Katsanos, A., et al., The Effect of Posture on Intraocular Pressure and Systemic Hemodynamic Parameters in Treated and Untreated Patients with Primary Open-Angle Glaucoma. J Ocul Pharmacol Ther, 2017. 33(8): p. 598-603.Google Scholar
  145. 145.
    Ozkok, A., et al., Posture-induced changes in intraocular pressure: comparison of pseudoexfoliation glaucoma and primary open-angle glaucoma. Jpn J Ophthalmol, 2014. 58(3): p. 261-6.Google Scholar
  146. 146.
    Cymbor, M., E. Knapp, and F. Carlin, Idiopathic elevated episcleral venous pressure with secondary glaucoma. Optom Vis Sci, 2013. 90(7): p. e213-7.CrossRefGoogle Scholar
  147. 147.
    Pikkel, J., et al., Is Episcleritis Associated to Glaucoma? J Glaucoma, 2015. 24(9): p. 669-71.CrossRefGoogle Scholar
  148. 148.
    Jorgensen, J.S. and R. Guthoff, [Sturge-Weber syndrome: glaucoma with elevated episcleral venous pressure]. Klin Monbl Augenheilkd, 1987. 191(4): p. 275-8.Google Scholar
  149. 149.
    Shiau, T., et al., The role of episcleral venous pressure in glaucoma associated with Sturge-Weber syndrome. J AAPOS, 2012. 16(1): p. 61-4.Google Scholar
  150. 150.
    Jorgensen, J.S. and R. Guthoff, [The role of episcleral venous pressure in the development of secondary glaucomas]. Klin Monbl Augenheilkd, 1988. 193(5): p. 471-5.Google Scholar
  151. 151.
    Kiekens, S., et al., Continuous positive airway pressure therapy is associated with an increase in intraocular pressure in obstructive sleep apnea. Invest Ophthalmol Vis Sci, 2008. 49(3): p. 934-40.CrossRefGoogle Scholar
  152. 152.
    Alvarez-Sala, R., et al., Nasal CPAP during wakefulness increases intraocular pressure in glaucoma. Monaldi Arch Chest Dis, 1994. 49(5): p. 394-5.Google Scholar
  153. 153.
    Toris, C.B. and J.E. Pederson, Effect of intraocular pressure on uveoscleral outflow following cyclodialysis in the monkey eye. Invest Ophthalmol Vis Sci, 1985. 26(12): p. 1745-9.Google Scholar
  154. 154.
    Bill, A., Conventional and uveo-scleral drainage of aqueous humour in the cynomolgus monkey (Macaca irus) at normal and high intraocular pressures. Exp Eye Res, 1966. 5(1): p. 45-54.CrossRefGoogle Scholar
  155. 155.
    Toris, C.B., Chapter 7 Aqueous Humor Dynamics I. Measurement Methods and Animal Studies Current Topics in Membranes, 2008. 62: p. 193-229.Google Scholar
  156. 156.
    Rosenquist, R., et al., Outflow resistance of enucleated human eyes at two different perfusion pressures and different extents of trabeculotomy. Curr Eye Res, 1989. 8(12): p. 1233-40.Google Scholar
  157. 157.
    Hann, C.R., et al., Anatomic changes in Schlemm's canal and collector channels in normal and primary open-angle glaucoma eyes using low and high perfusion pressures. Invest Ophthalmol Vis Sci, 2014. 55(9): p. 5834-41.Google Scholar
  158. 158.
    Bartels, S.P., et al., Pharmacological effects of topical timolol in the rabbit eye. Invest Ophthalmol Vis Sci, 1980. 19(10): p. 1189-97.Google Scholar
  159. 159.
    Gulati, V., et al., Diurnal and nocturnal variations in aqueous humor dynamics of patients with ocular hypertension undergoing medical therapy. Arch Ophthalmol, 2012. 130(6): p. 677-84.Google Scholar
  160. 160.
    Shahidullah, M., et al., Studies on bicarbonate transporters and carbonic anhydrase in porcine nonpigmented ciliary epithelium. Invest Ophthalmol Vis Sci, 2009. 50(4): p. 1791-800.CrossRefGoogle Scholar
  161. 161.
    Civan, M.M., The Eye's Aqueous humor, in Current Topics in Membranes, M.M. Civan, Editor. 2008, Elsevier, Inc: San Diego. p. 231-272.Google Scholar
  162. 162.
    McCannel, C.A., S.R. Heinrich, and R.F. Brubaker, Acetazolamide but not timolol lowers aqueous humor flow in sleeping humans. Graefes Arch Clin Exp Ophthalmol, 1992. 230(6): p. 518-20.CrossRefGoogle Scholar
  163. 163.
    Topper, J.E. and R.F. Brubaker, Effects of timolol, epinephrine, and acetazolamide on aqueous flow during sleep. Invest Ophthalmol Vis Sci, 1985. 26(10): p. 1315-9.Google Scholar
  164. 164.
    Vanlandingham, B.D., T.L. Maus, and R.F. Brubaker, The effect of dorzolamide on aqueous humor dynamics in normal human subjects during sleep. Ophthalmology, 1998. 105(8): p. 1537-40.CrossRefGoogle Scholar
  165. 165.
    Toris, C.B., C.B. Camras, and M.E. Yablonski, Acute versus chronic effects of brimonidine on aqueous humor dynamics in ocular hypertensive patients. Am J Ophthalmol, 1999. 128(1): p. 8-14.CrossRefGoogle Scholar
  166. 166.
    Reitsamer, H.A., M. Posey, and J.W. Kiel, Effects of a topical alpha2 adrenergic agonist on ciliary blood flow and aqueous production in rabbits. Exp Eye Res, 2006. 82(3): p. 405-15.Google Scholar
  167. 167.
    Toris, C.B., C.B. Camras, and M.E. Yablonski, Effects of PhXA41, a new prostaglandin F2 alpha analog, on aqueous humor dynamics in human eyes. Ophthalmology, 1993. 100(9): p. 1297-304.CrossRefGoogle Scholar
  168. 168.
    Ziai, N., et al., The effects on aqueous dynamics of PhXA41, a new prostaglandin F2 alpha analogue, after topical application in normal and ocular hypertensive human eyes. Arch Ophthalmol, 1993. 111(10): p. 1351-8.CrossRefGoogle Scholar
  169. 169.
    Lim, K.S., et al., Mechanism of Action of Bimatoprost, Latanoprost, and Travoprost in Healthy Subjects. Ophthalmology. 115(5): p. 790-795.e4.Google Scholar
  170. 170.
    Bahler, C.K., et al., Prostaglandins increase trabecular meshwork outflow facility in cultured human anterior segments. Am J Ophthalmol, 2008. 145(1): p. 114-9.Google Scholar
  171. 171.
    Lutjen-Drecoll, E. and E. Tamm, Morphological study of the anterior segment of cynomolgus monkey eyes following treatment with prostaglandin F2 alpha. Exp Eye Res, 1988. 47(5): p. 761-9.Google Scholar
  172. 172.
    Tamm, E., M. Rittig, and E. Lutjen-Drecoll, [Electron microscopy and immunohistochemical studies of the intraocular pressure lowering effect of prostaglandin F2 alpha]. Fortschr Ophthalmol, 1990. 87(6): p. 623-9.Google Scholar
  173. 173.
    Poyer, J.F., C. Millar, and P.L. Kaufman, Prostaglandin F2 alpha effects on isolated rhesus monkey ciliary muscle. Invest Ophthalmol Vis Sci, 1995. 36(12): p. 2461-5.Google Scholar
  174. 174.
    Alphen, G.W., P.B. Wilhelm, and P.W. Elsenfeld, The effect of prostaglandins on the isolated internal muscles of the mammalian eye, including man. Doc Ophthalmol, 1977. 42(2): p. 397-415.CrossRefGoogle Scholar
  175. 175.
    Sagara, T., et al., Topical prostaglandin F2alpha treatment reduces collagen types I, III, and IV in the monkey uveoscleral outflow pathway. Arch Ophthalmol, 1999. 117(6): p. 794-801.CrossRefGoogle Scholar
  176. 176.
    Weinreb, R.N., et al., Prostaglandins increase matrix metalloproteinase release from human ciliary smooth muscle cells. Invest Ophthalmol Vis Sci, 1997. 38(13): p. 2772-80.Google Scholar
  177. 177.
    Ocklind, A., Effect of latanoprost on the extracellular matrix of the ciliary muscle. A study on cultured cells and tissue sections. Exp Eye Res, 1998. 67(2): p. 179-91.CrossRefGoogle Scholar
  178. 178.
    Stjernschantz, J., et al., Uveoscleral Outflow Biology and Clinical Aspects. 1998, London, UK: Mosby International Limited.Google Scholar
  179. 179.
    Kazemi, A., et al., The Effects of Netarsudil Ophthalmic Solution on Aqueous Humor Dynamics in a Randomized Study in Humans. J Ocul Pharmacol Ther, 2018. 34(5): p. 380-386.Google Scholar
  180. 180.
    Kiel, J.W. and C.C. Kopczynski, Effect of AR-13324 on episcleral venous pressure in Dutch belted rabbits. J Ocul Pharmacol Ther, 2015. 31(3): p. 146-51.CrossRefGoogle Scholar
  181. 181.
    Inoue, T. and H. Tanihara, Rho-associated kinase inhibitors: a novel glaucoma therapy. Prog Retin Eye Res, 2013. 37: p. 1-12.CrossRefGoogle Scholar
  182. 182.
    Marshall-Goebel, K., et al., Intracranial and Intraocular Pressure During Various Degrees of Head-Down Tilt. Aerosp Med Hum Perform, 2017. 88(1): p. 10-16.Google Scholar
  183. 183.
    Lam, C.T., G.E. Trope, and Y.M. Buys, Effect of Head Position and Weight Loss on Intraocular Pressure in Obese Subjects. J Glaucoma, 2017. 26(2): p. 107-112.Google Scholar
  184. 184.
    Geloneck, M.M., et al., Correlation between intraocular pressure and body mass index in the seated and supine positions. J Glaucoma, 2015. 24(2): p. 130-4.Google Scholar
  185. 185.
    Cohen, Y., et al., The effect of nocturnal CPAP therapy on the intraocular pressure of patients with sleep apnea syndrome. Graefes Arch Clin Exp Ophthalmol, 2015. 253(12): p. 2263-71.CrossRefGoogle Scholar
  186. 186.
    David, R., et al., Diurnal intraocular pressure variations: an analysis of 690 diurnal curves. The British Journal of Ophthalmology, 1992. 76(5): p. 280-283.CrossRefGoogle Scholar
  187. 187.
    Zeimer, R.C., J.T. Wilensky, and D.K. Gieser, Presence and Rapid Decline of Early Morning Intraocular Pressure Peaks in Glaucoma Patients. Ophthalmology, 1990. 97(5): p. 547-550.CrossRefGoogle Scholar
  188. 188.
    Mansouri, K., R.N. Weinreb, and J.H.K. Liu, Effects of Aging on 24-Hour Intraocular Pressure Measurements in Sitting and Supine Body Positions. Investigative Ophthalmology & Visual Science, 2012. 53(1): p. 112-116.Google Scholar
  189. 189.
    Cheng, J., et al., Seasonal changes of 24-hour intraocular pressure rhythm in healthy Shanghai population. Medicine (Baltimore), 2016. 95(31): p. e4453.Google Scholar
  190. 190.
    Bengtsson, B.O., Some factors affecting the distribution of intraocular pressures in a population. Acta Ophthalmologica, 1972. 50(1): p. 33-46.CrossRefGoogle Scholar
  191. 191.
    Blumenthal, M., et al., Seasonal Variation in Intraocular Pressure. American Journal of Ophthalmology, 1970. 69(4): p. 608-610.CrossRefGoogle Scholar
  192. 192.
    Fukuoka, S., et al., Intraocular pressure in an ophthalmologically normal Japanese population. Acta Ophthalmol, 2008. 86(4): p. 434-9.Google Scholar
  193. 193.
    Kashiwagi, K., T. Shibuya, and S. Tsukahara, De novo age-related retinal disease and intraocular-pressure changes during a 10-year period in a Japanese adult population. Jpn J Ophthalmol, 2005. 49(1): p. 36-40.CrossRefGoogle Scholar
  194. 194.
    Nomura, H., et al., Age-related changes in intraocular pressure in a large Japanese population: a cross-sectional and longitudinal study. Ophthalmology, 1999. 106(10): p. 2016-22.Google Scholar
  195. 195.
    Nomura, H., et al., The relationship between age and intraocular pressure in a Japanese population: The influence of central corneal thickness. Current Eye Research, 2002. 24(2): p. 81-85.Google Scholar
  196. 196.
    Wong, T.T., et al., The relationship of intraocular pressure with age, systolic blood pressure, and central corneal thickness in an Asian population. Invest Ophthalmol Vis Sci, 2009. 50(9): p. 4097-102.CrossRefGoogle Scholar
  197. 197.
    Sit, A.J., et al., Circadian Variation of Aqueous Dynamics in Young Healthy Adults. Investigative Ophthalmology & Visual Science, 2008. 49(4): p. 1473-1479.Google Scholar
  198. 198.
    Becker, B., The Decline in Aqueous Secretion and Outflow Facility with Age<sup>∗</sup>. American Journal of Ophthalmology. 46(5): p. 731-736.Google Scholar
  199. 199.
    Gabelt, B.A.T. and P.L. Kaufman, Changes in aqueous humor dynamics with age and glaucoma. Progress in Retinal and Eye Research, 2005. 24(5): p. 612-637.CrossRefGoogle Scholar
  200. 200.
    Coakes, R.L. and R.F. Brubaker, The mechanism of timolol in lowering intraocular pressure. In the normal eye. Arch Ophthalmol, 1978. 96(11): p. 2045-8.CrossRefGoogle Scholar
  201. 201.
    Yablonski, M.E., et al., A fluorophotometric study of the effect of topical timolol on aqueous humor dynamics. Exp Eye Res, 1978. 27(2): p. 135-42.Google Scholar
  202. 202.
    Ingram, C.J. and R.F. Brubaker, Effect of brinzolamide and dorzolamide on aqueous humor flow in human eyes. Am J Ophthalmol, 1999. 128(3): p. 292-6.Google Scholar
  203. 203.
    Christiansen, G.A., et al., Mechanism of ocular hypotensive action of bimatoprost (Lumigan) in patients with ocular hypertension or glaucoma. Ophthalmology. 111(9): p. 1658-1662.Google Scholar
  204. 204.
    Brubaker, R.F., et al., Effects of AGN 192024, a new ocular hypotensive agent, on aqueous dynamics<sup>1</sup>. American Journal of Ophthalmology. 131(1): p. 19-24.Google Scholar
  205. 205.
    Dinslage, S., et al., The influence of Latanoprost 0.005% on aqueous humor flow and outflow facility in glaucoma patients: a double-masked placebo-controlled clinical study. Graefe's Archive for Clinical and Experimental Ophthalmology, 2004. 242(8): p. 654-660.CrossRefGoogle Scholar
  206. 206.
    Toris, C.B., et al., Effects of Travoprost on Aqueous Humor Dynamics in Patients With Elevated Intraocular Pressure. Journal of Glaucoma, 2007. 16(2): p. 189-195.Google Scholar
  207. 207.
    Toris, C.B., et al., Effects of brimonidine on aqueous humor dynamics in human eyes. Arch Ophthalmol, 1995. 113(12): p. 1514-7.CrossRefGoogle Scholar
  208. 208.
    Maus, T.L., C. Nau, and R.F. Brubaker, Comparison of the early effects of brimonidine and apraclonidine as topical ocular hypotensive agents. Arch Ophthalmol, 1999. 117(5): p.586-91.Google Scholar
  209. 209.
    Larsson, L.I., Aqueous humor flow in normal human eyes treated with brimonidine and timolol, alone and in combination. Arch Ophthalmol, 2001. 119(4): p. 492-5.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Carol B. Toris
    • 1
    • 2
    Email author
  • George Tye
    • 3
  • Padmanabhan Pattabiraman
    • 4
  1. 1.Department of Ophthalmology and Visual SciencesUniversity of Nebraska Medical Center OmahaNEUSA
  2. 2.Department of OphthalmologyCase Western Reserve UniversityClevelandUSA
  3. 3.Department of Ophthalmology and Visual SciencesCase Western Reserve UniversityClevelandUSA
  4. 4.Department of OphthalmologyIndiana University School of MedicineIndianapolisUSA

Personalised recommendations