Advertisement

Mathematical Modeling of Blood Flow in the Eye

  • Julia ArcieroEmail author
  • Lucia Carichino
  • Simone Cassani
  • Giovanna Guidoboni
Chapter
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Abstract

Mathematical models linking ocular mechanics, circulation, and oxygenation are needed to improve the interpretation and prediction of key components of ocular health and disease. This chapter presents the most recent achievements in modeling the retinal, retrobulbar, and choroidal vascular beds in the eye. These models incorporate elements of flow regulation, oxygen transport, angiogenesis, and venous collapsibility and are used to answer important questions related to ocular diseases such as glaucoma and age-related macular degeneration.

References

  1. 1.
    Aletti, M., Gerbeau, J., Lombardi, D.: Modeling autoregulation in three- dimensional simulations of retinal hemodynamics. Journal for Modeling in Ophthalmology 1 (2015)Google Scholar
  2. 2.
    Anderson, A.R.A., Chaplain, M.A.J.: A mathematical model for capillary network formation in the absence of endothelial cell proliferation. Applied mathematics letters 11(3) 109–114 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Anderson, A.R.A., Chaplain, M.A.J.: Continuous and discrete mathematical models of tumorinduced angiogenesis. Bull. Math. Biol. 60, 857–900 (1998)zbMATHCrossRefGoogle Scholar
  4. 4.
    Araujo, R.P., Sean McElwain, D.L.: A mixture theory for the genesis of residual stresses in growing tissues I: a general formulation. SIAM J. Appl. Math. 65(4), 1261–1284 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Arciero, J.C., Carlson, B.E., Secomb, T.W.: Theoretical model of metabolic blood flow regulation: roles of ATP release by red blood cells and conducted responses. Am J Physiol Heart Circ Physiol 295 H1562–H1571 (2008)CrossRefGoogle Scholar
  6. 6.
    Arciero, J., Harris, A., Siesky, B., et al.: Theoretical analysis of vascular regulatory mechanisms contributing to retinal blood flow autoregulation. Invest Ophthalmol Vis Sci. 54 5584–5593 (2013)CrossRefGoogle Scholar
  7. 7.
    Aubert, M., Chaplain, M.A.J., McDougall, S.R., Devlin, A., Mitchell, C.A.: A Continuum Mathematical Model of the Developing Murine Retinal Vasculature. Bull Math Biol 73 2430–2451 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Balding, D., McElwain, D.: A mathematical model of tumour−induced capillary growth. J. Theor. Biol. 114, 53–73 (1985)CrossRefGoogle Scholar
  9. 9.
    Bartha, K., Rieger, H.: Vascular network remodeling via vessel cooption, regression and growth in tumors. J Theor Biol. 241(4) 903–18 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bentley, K., Gerhardt, H., Bates, P.A.: Agent−based simulation of notch−mediated tip cell selection in angiogenic sprout initialisation. J Theor Biol. 250(1) 25–36 (2008)CrossRefGoogle Scholar
  11. 11.
    Bill, A.: The uveal venous pressure. Archives of Ophthalmology 69(6) 780–782 (1963)CrossRefGoogle Scholar
  12. 12.
    Bociu, L., Guidoboni, G., Sacco, R., Webster, J.T.: Analysis of nonlinear poro-elastic and poro-visco-elastic models. Archive for Rational Mechanics and Analysis 222(3) 1445–1519 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Braun, R.J.: ARVO 2017 highlights in mathematical modeling. Journal for Modeling in Ophthalmology 2(1) 4–6 (2018)Google Scholar
  14. 14.
    Buttery, R.G., Hinrichsen, C.F., Weller, W.L., Haight, J.R.: How thick should a retina be? A comparative study of mammalian species with and without intraretinal vasculature. Vis Res. 31: 169–187 (1991)Google Scholar
  15. 15.
    Byrne, H.M., Chaplain, M.A.J.: Mathematical models for tumour angiogenesis: Numerical simulations and nonlinear wave solutions. Bull. Math. Biol. 57 461–486 (1995)zbMATHCrossRefGoogle Scholar
  16. 16.
    Byrne, H.M., Chaplain, M.A.J.: Explicit solutions of a simplified model of capillary sprout growth during tumor angiogenesis. Appl. Math. Lett. 9 69–74 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Cancelli, C., Pedley, T.J.: A separated-flow model for collapsible-tube oscillations. Journal of Fluid Mechanics. Cambridge Univ Press, 157 375–404 (1985)CrossRefGoogle Scholar
  18. 18.
    Carlson, B.E., Arciero, J.C., Secomb, T.W.: Theoretical model of blood flow autoregulation: roles of myogenic, shear-dependent, and metabolic responses. Am J Physiol Heart Circ Physiol. 295 H1572–H1579 (2008)CrossRefGoogle Scholar
  19. 19.
    Carichino, L.: Multiscale mathematical modeling of ocular blood flow and oxygenation and their relevance to glaucoma. Ph.D. thesis, Purdue University (2016)Google Scholar
  20. 20.
    Carichino, L., Guidoboni, G., Siesky, B.A., Amireskandari, A., Januleviciene, I., Harris, A.: Effect of intraocular pressure and cerebrospinal fluid pressure on the blood flow in the central retinal vessels. In: Causin, P., Guidoboni, G., Sacco, R., Harris, A. (eds) Integrated Multidisciplinary Approaches in the Study and Care of the Human Eye. Kugler Publications, 59–66 (2014)Google Scholar
  21. 21.
    Carichino, L., Harris, A., Guidoboni, G., Siesky, B.A., Pinto, L., Vandewalle, E., Olafsdottir, O.B., Hardarson, S.H., Van Keer, K., Stalmans, I., Stefansson, E., Arciero, J.C.: A theoretical investigation of the increase in venous oxygen saturation levels in advanced glaucoma patients. Journal for Modeling in Ophthalmology 1 64–87 (2016)Google Scholar
  22. 22.
    Carichino, L., Guidoboni, G., Verticchio Vercellin, A.C., Milano, G., Cutolo, C.A., Tinelli, C., De Silvestri, A., Lapin, S., Gross, J.C., Siesky, B.A., Harris, A.: Computer-aided identification of novel ophthalmic artery waveform parameters in healthy subjects and glaucoma patients. Journal for Modeling in Ophthalmology 1(2), 59–69 (2016)CrossRefGoogle Scholar
  23. 23.
    Carichino, L., Guidoboni, Szopos, M.: Energy-based operator splitting approach for the time discretization of coupled systems of partial and ordinary differential equations for fluid flows: The Stokes case. Journal of Computational Physics 364, 235–256 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Cassani, S.: Blood circulation and aqueous humor flow in the eye: multi-scale modeling and clinical applications. Ph.D. thesis, Purdue University (2016)Google Scholar
  25. 25.
    Cassani, S., Harris, A., Siesky, B., Arciero, J: Theoretical analysis of the relationship between changes in retinal blood flow and ocular perfusion pressure J. Coupled Syst. Multiscale Dyn. 3(1) (2015)CrossRefGoogle Scholar
  26. 26.
    Cassani, S., Arciero, J., Guidoboni, G., Siesky, B., Harris, A.: Theoretical predictions of metabolic flow regulation in the retina Journal for Modeling in Ophthalmology. (2016)Google Scholar
  27. 27.
    Causin, P., Guidoboni, G., Harris, A., Prada, D., Sacco, R., Terragni, S.: A poroelastic model for the perfusion of the lamina cribrosa in the optic nerve head. Mathematical Biosciences 257 33–41 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Causin, P., Guidoboni, G., Malgaroli, F., Sacco, R., Harris, A.: Blood flow mechanics and oxygen transport and delivery in the retinal microcirculation: multiscale mathematical modeling and numerical simulation. Biomech Model Mechanobiol. 15 525–542 (2016)CrossRefGoogle Scholar
  29. 29.
    Chuangsuwanich, T., Birgersson, K.E., Thiery, A., Thakku, S.G., Leo, H.L., Girard, M.J.A.: Factors Influencing Lamina Cribrosa Microcapillary Hemodynamics and Oxygen ConcentrationsModeling of Lamina Cribrosa Hemodynamics. Investigative Ophthalmology & Visual Science 57(14) 6167–6179 (2016)CrossRefGoogle Scholar
  30. 30.
    Connor, A.J., Nowak, R.P., Lorenzon, E., Thomas, M., Herting, F., Hoert, S., Quaiser, T., Shochat, E., Pitt-Francis, J., Cooper, J., Maini, P.K., Byrne, H.M.: An integrated approach to quantitative modelling in angiogenesis research. J R Soc Interface. 12(110) (2015)CrossRefGoogle Scholar
  31. 31.
    Conway, M.L., Wevill, M., Benavente−Perez, A., Hosking, S.L.: Ocular blood-flow hemodynamics before and after application of a laser in situ keratomileusis ring. J Cataract Refract Surg. 36 268–272 (2010)CrossRefGoogle Scholar
  32. 32.
    Cringle, S.J., Yu, D.-Y.: A multi-layer model of retinal oxygen supply and consumption helps explain the muted rise in inner retinal PO2 during systemic hyperoxia. Comparative Biochemistry and Physiology Part A 132 61–66 (2002)CrossRefGoogle Scholar
  33. 33.
    Delaey, C., Van de Voorde, J.: Pressure-induced myogenic responses in isolated bovine retinal arteries. Investigative Ophthalmology & Visual Science 41(7) 1871–1875 (2000).Google Scholar
  34. 34.
    Dielemans, I., Vingerling, J.R., Algra, D., Hofman, A., Grobbee, D.E., de Jong, P.T.V.M.: Primary open-angle glaucoma, intraocular pressure, and systemic blood pressure in the general elderly population: the Rotterdam Study. Ophthalmology 102(1) 54–60 (1995).CrossRefGoogle Scholar
  35. 35.
    Dorner, G.T., Garhofer, G., Huemer, K.H., Riva, C.E., Wolzt, M., and Schmetterer, L.: Hyperglycemia affects flicker−induced vasodilation in the retina of healthy subjects. Vision Research. 43(13) 1495–1500 (2003).CrossRefGoogle Scholar
  36. 36.
    Downs, J.C.: Optic nerve head biomechanics in aging and disease. Experimental Eye Research 133(13) 19–29 (2015).CrossRefGoogle Scholar
  37. 37.
    Downs, J.C., Suh, J.K.F., Thomas, K.A., Bellezza, A.J., Burgoyne, C.F., Hart, R.T.: Viscoelastic characterization of peripapillary sclera: material properties by quadrant in rabbit and monkey eyes. Journal of Biomechanical Engineering 125(1) 124 (2003).CrossRefGoogle Scholar
  38. 38.
    Downs, J.C., Suh, J.K.F., Thomas, K.A., Bellezza, A.J., Hart, R.T., Burgoyne, C.F.: Viscoelastic material properties of the peripapillary sclera in normal and early-glaucoma monkey eyes. Investigative Ophthalmology & Visual Science 46(2) 540–546 (2005).CrossRefGoogle Scholar
  39. 39.
    Fallon, T.J., Maxwell, D., Kohner, E.M.: Measurement of autoregulation of retinal blood flow using the blue field entoptic phenomenon. Trans Ophthalmol Soc UK. 104 857–860 (1985)Google Scholar
  40. 40.
    Federspiel, W.J., Popel, A.S.: A theoretical analysis of the effect of the particulate nature of blood on oxygen release in capillaries. Microvasc Res 32 164–189 (1986)CrossRefGoogle Scholar
  41. 41.
    Feke, G.T., Zuckerman, R., Green, G.J., Weirer, J.J.: Response of Human Retinal Blood Flow to Light and Dark. Invest Ophthalmol Vis Sci 24 136–141 (1983)Google Scholar
  42. 42.
    Findl, O., Strenn, K., Wolzt, M., Menapace, R., Vass, C., Eichler, H., Schmetterer, L.: Effects of changes in intraocular pressure on human ocular haemodynamics. Curr. Eye Res. 16(10), 1024–1029 (1997)CrossRefGoogle Scholar
  43. 43.
    Friedland, A.B.: A mathematical model of transmural transport of oxygen to the retina. Bull. Math. Biol. 40(6), 823–837 (1978)zbMATHCrossRefGoogle Scholar
  44. 44.
    Frijns, A.J.H.: A Four-Component Mixture Theory Applied to Cartilaginous Tissues: Numerical Modelling and Experiments. Thesis (Dr.ir.), Technische Universiteit Eindhoven (The Netherlands), 2000Google Scholar
  45. 45.
    Fry, B.C., Coburn, E.B., Whiteman, S., Harris, A., Siesky, B., Arciero, J.: Predicting retinal tissue oxygenation using an image-based theoretical model. Mathematical Biosciences 305, 1–9 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Garhofer, G., Zawinka, C., Resch, H., Huemer, K.H., Dorner, G.T., Schmetterer, L.: Diffuse luminance flicker increases blood flow in major retinal arteries and veins. Vision Research, 44(8) 833–838 (2004)CrossRefGoogle Scholar
  47. 47.
    Garhofer, G., Zawinka, C., Resch, H., Kothy, P., Schmetterer, L., Dorner, G.T.: Reduced response of retinal vessel diameters to flicker stimulation in patients with diabetes. British Journal of Ophthalmology. 88(7) 887–891 (2004)CrossRefGoogle Scholar
  48. 48.
    Goldman, D.: Theoretical models of microvascular oxygen transport to tissue. Microcirculation 15 795–811 (2008)CrossRefGoogle Scholar
  49. 49.
    Grytz, R., Meschke, G.: A computational remodeling approach to predict the physiological architecture of the collagen fibril network in corneo-scleral shells. Biomechanics and Modeling in Mechanobiology 9(2) 225–235 (2010)CrossRefGoogle Scholar
  50. 50.
    Grytz, R., Meschke, G., Jonas, J.B.: The collagen fibril architecture in the lamina cribrosa and peripapillary sclera predicted by a computational remodeling approach. Biomechanics and Modeling in Mechanobiology 10(3) 371–382 (2011)CrossRefGoogle Scholar
  51. 51.
    Grytz, R., Girkin, C.A., Libertiaux, V., Downs, J.C.: Perspectives on biomechanical growth and remodeling mechanisms in glaucoma. Mechanics Research Communications 42 92–106 (2012)CrossRefGoogle Scholar
  52. 52.
    Grotberg, J.B., Jensen, O.E.: Biofluid mechanics in flexible tubes. Annual Review of Fluid Mechanics. 36(1) 121 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Guidoboni, G., Harris, A., Arciero, J.C., Siesky, B.A., Amireskandari, A., Gerber, A.L., Huck, A. H, Kim, N.J., Cassani, S., Carichino, L.: Mathematical modeling approaches in the study of glaucoma disparities among people of African and European descents. J. Coupled Syst. Multiscale Dyn. 1(1), 1–21 (2013)CrossRefGoogle Scholar
  54. 54.
    Guidoboni, G., Harris, A., Carichino, L., Arieli, Y., Siesky, B.A.: Effect of intraocular pressure on the hemodynamics of the central retinal artery: a mathematical model. Math. Biosci. Eng. 11(3), 523–546 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Guidoboni, G., Harris, A., Cassani, S., Arciero, J., Siesky, B., Amireskandari, A., Tobe, L., Egan, P., Januleviciene, I., Park, J.: Intraocular pressure, blood pressure, and retinal blood flow autoregulation: a mathematical model to clarify their relationship and clinical relevanceeffects of IOP, BP, and AR on retinal hemodynamics. Invest. Ophthalmol. Vis. Sci. 55(7), 4105–4118 (2014)CrossRefGoogle Scholar
  56. 56.
    Guidoboni, G., Salerni, F., Repetto, R., Szopos, M., Harris, A.: Relationship between intraocular pressure, blood pressure and cerebrospinal fluid pressure: a theoretical approach. IOVS (2018) (ARVO Abstract 1665)Google Scholar
  57. 57.
    Güler, I., Übeyli, E.D.: Detection of ophthalmic artery stenosis by least-mean squares backpropagation neural network. Comput. Biol. Med. 33(4), 333–343 (2003)CrossRefGoogle Scholar
  58. 58.
    Güler, I., Übeyli, E.D.: Application of classical and model-based spectral methods to ophthalmic arterial Doppler signals with uveitis disease. Comput. Biol. Med. 33(6), 455–471 (2003)CrossRefGoogle Scholar
  59. 59.
    Güler, I., Übeyli, E.D.: Automatic detection of ophthalmic artery stenosis using the adaptive neuro-fuzzy inference system. Eng. Appl. Artif. Intel. 18(4), 413–422 (2005)CrossRefGoogle Scholar
  60. 60.
    Güler, N.F., Übeyli, E.D.: Wavelet-based neural network analysis of ophthalmic artery Doppler signals. Comput. Biol. Med. 34(7), 601–613 (2004)CrossRefGoogle Scholar
  61. 61.
    Hammer, M., Vilser, W., Riemer, T., Liemt, F., Jentsch, S., Dawczynski,J., Schweitzer, J.: Retinal venous oxygen saturation increases by flicker light stimulation. Investigative Ophthalmology & Visual Science. 52(1) 274–277 (2011)CrossRefGoogle Scholar
  62. 62.
    Harris, A.: Atlas of ocular blood flow: vascular anatomy, pathophysiology, and metabolism, 2nd edn. Elsevier Health Sciences (2010)Google Scholar
  63. 63.
    Harris, A., Joos, K., Kay, M., Evans, D., Shetty, R., Sponsel, W.E., Martin, B.: Acute IOP elevation with scleral suction: effects on retrobulbar haemodynamics. Br. J. Ophthalmol. 80(12), 1055–1059 (1996)CrossRefGoogle Scholar
  64. 64.
    Haugh, L.M., Linsenmeier, R.A., Goldstick, T.K.: Mathematical models of the spatial distribution of retinal oxygen tension and consumption, including changes upon illumination Ann Biomed Eng 18 (1990)Google Scholar
  65. 65.
    Hayreh, S.S.: Orbital vascular anatomy. Eye 20, 1130–1144 (2006)CrossRefGoogle Scholar
  66. 66.
    He, Z., Nguyen, C.T., Armitage, J.A., Vingrys, A.J., Bui, B.V.: Blood pressure modifies retinal susceptibility to intraocular pressure elevation. PloS One 7 e31104 (2012)CrossRefGoogle Scholar
  67. 67.
    Hellums, J.D., Nair, P.K., Huang, N.S., et al.: Simulation of intraluminal gas transport processes in the microcirculation. Ann Biomed Eng 24 1–24 (1996)CrossRefGoogle Scholar
  68. 68.
    Hsu, R., Secomb, T.W.: A Greens function method for analysis of oxygen delivery to tissue by microvascular networks. Math Biosci 96 61–78 (1989)zbMATHCrossRefGoogle Scholar
  69. 69.
    Jackson, T., Zheng, X.: A Cell-based Model of Endothelial Cell Migration, Proliferation and Maturation During Corneal Angiogenesis Bulletin of Mathematical Biology 72 830–868 (2010)zbMATHGoogle Scholar
  70. 70.
    Jensen, O.E.: Flows through deformable airways. Centre for Mathematical Medicine, School of Mathematical Sciences, University of Nottingham, (2002)Google Scholar
  71. 71.
    Jeppesen, P., Aalkjaer, C., Bek, T.: Myogenic response in isolated porcine retinal arterioles. Curr Eye Res. 27 217–222 (2003)CrossRefGoogle Scholar
  72. 72.
    Katz, A.M.: Application of the Starling resistor concept to the lungs during CPPV. Critical Care Medicine. LWW, 5(2), 67–72 (1977)CrossRefGoogle Scholar
  73. 73.
    Kiel, J.W., Shepherd, A.P.: Autoregulation of choroidal blood flow in the rabbit. Investigative Ophthalmology & Visual Science 33(8), 2399–2410 (1992)Google Scholar
  74. 74.
    Kiel, J.W., Hollingsworth, M., Rao, R., Chen, M., Reitsamer, H.A.: Ciliary blood flow and aqueous humor production. Progress in Retinal and Eye Research 30(1), 1–17 (2011)CrossRefGoogle Scholar
  75. 75.
    Kim, M., Lee, E.J., Seo, J.H., Kim, T.: Relationship of spontaneous retinal vein pulsation with ocular circulatory cycle. PLoS One. Public Library of Science, 9(5), e97943 (2014)CrossRefGoogle Scholar
  76. 76.
    Klisch, S.M.: Internally constrained mixtures of elastic continua. Math. Mech. Solids 4 481–498 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  77. 77.
    Krogh, A.: The supply of oxygen to the tissues and the regulation of the capillary circulation. J Physiol 52 457–474 (1919)CrossRefGoogle Scholar
  78. 78.
    Kur, J., Newman, E.A., Chan−Ling, T.: Cellular and physiological mechanisms underlying blood flow regulation in the retina choroid in health disease. Prog Retin Eye Res 31, 377–406 (2012)CrossRefGoogle Scholar
  79. 79.
    Lakin, W.D., Stevens, S.A., Tranmer, B.I., Penar, P.L.: A whole-body mathematical model for intracranial pressure dynamics. Journal of Mathematical Biology 46(4), 347–383 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  80. 80.
    Lau, J.C.M., Linsenmeier, R.A.: Oxygen consumption and distribution in the Long-Evans rat retina. Experimental Eye Research 102, 50–58 (2012)CrossRefGoogle Scholar
  81. 81.
    Lemon, G., King, J.R., Byrne, H.M., Jensen, O.E., Shakesheff,K.M.: Mathematical modelling of engineered tissue growth using a multiphase porous flow mixture theory. Journal of mathematical biology. J. Math. Biol. 52, 571–594 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  82. 82.
    Levine, D.N.: Spontaneous pulsation of the retinal veins. Microvasc. Res. 56(3), 154–165 (1998)CrossRefGoogle Scholar
  83. 83.
    Levine, H.A., Tucker, A.L., Nilsen-Hamilton, M.: A Mathematical Model for the Role of Cell Signal Transduction in the Initiation and Inhibition of Angiogenesis. Growth Factors 20(4) (2003)CrossRefGoogle Scholar
  84. 84.
    Levine, D.N., Bebie, H.: Phase and amplitude of spontaneous retinal vein pulsations: an extended constant inflow and variable outflow model. Microvasc. Res. 106, 67–79 (2016)CrossRefGoogle Scholar
  85. 85.
    Liu, D., Wood, N. B., Witt, N., et al: Computational Analysis of Oxygen Transport in the Retinal Arterial Network. Current Eye Research 34(11) 945–956 (2009)CrossRefGoogle Scholar
  86. 86.
    Mader, T.H., Gibson, C.R., Pass, A.F., Kramer, L.A., Lee, A.G., Fogarty, J., Tarver, W.J., Dervay, J.P., Hamilton, D.R., Sargsyan, A. et al: Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight. Ophthalmology 118(10) 2058–2069 (2011)CrossRefGoogle Scholar
  87. 87.
    Maggelakis, S. A., Savakis, A. E.: A mathematical model of growth factor induced capillary growth in the retina. Math. Comput. Model. 24 33–41. (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  88. 88.
    Maggelakis, S. A., Savakis, A. E.: A mathematical model of retinal neovascularization. Math. Comput. Model. 29 91–97 (1999)zbMATHCrossRefGoogle Scholar
  89. 89.
    Mandecka, A., Dawczynski, J., Blum, M., Muller, N., Kloos, C., Wolf, G., Vilser, W., Hoyer, H., Muller, U.A.: Influence of flickering light on the retinal vessels in diabetic patients. Diabetes Care. 30(12) 3048–3052 (2007)CrossRefGoogle Scholar
  90. 90.
    Mantzaris, N., Webb, S., Othmer, H.G.: Mathematical modeling of tumor-induced angiogenesis. J. Math. Biol. 49 111–187 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  91. 91.
    McDougall S.R., Watson, M.G., Devlin, A.H., Mitchell, C.A., Chaplain, M.A.: A hybrid discrete-continuum mathematical model of pattern prediction in the developing retinal vasculature. Bull Math Biol. 74(10) 2272–314 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  92. 92.
    McGuire, B.J., Secomb, T.W.: A theoretical model for oxygen transport in skeletal muscle under conditions of high oxygen demand. J Appl Physiol. 91(5) 2255–65 (2001)CrossRefGoogle Scholar
  93. 93.
    McGuire, B.J., Secomb, T.W.: Estimation of capillary density in human skeletal muscle based on maximal oxygen consumption rates. Am J Physiol Heart Circ Physiol 285 H2382–H2391 (2003)CrossRefGoogle Scholar
  94. 94.
    Merks, R.M.H., Glazier, J.A.: Dynamic mechanisms of blood vessel growth Nonlinearity. 19(1) C1-C10 (2006)Google Scholar
  95. 95.
    Misiulis, E., Džiugys, A., Navakas, R., Striūgas, N.: A fluid-structure interaction model of the internal carotid and ophthalmic arteries for the noninvasive intracranial pressure measurement method. Comput. Biol. Med. 84, 79–88 (2017)CrossRefGoogle Scholar
  96. 96.
    Mitchell, P. Lee, A.J., Wang, J.J., Rochtchina, E.: Intraocular pressure over the clinical range of blood pressure: blue mountains eye study findings. American Journal of Ophthalmology 140(1), 131–132 (2005)CrossRefGoogle Scholar
  97. 97.
    Morgan, W.H., Chauhan, B.C., Yu, D.Y., Cringle, S.J., Alder, V.A., House, P.H.: Optic disc movement with variations in intraocular and cerebrospinal fluid pressure. Invest. Ophthalmol. Vis. Sci. 43(10), 1419–1428 (2002)Google Scholar
  98. 98.
    Morgan, W.H, Yu, D.Y., Balaratnasingam, C.: The role of cerebrospinal fluid pressure in glaucoma pathophysiology: the dark side of the optic disc. J. Glaucoma 17(5), 408–413 (2008)CrossRefGoogle Scholar
  99. 99.
    Morgan, W.H., Lind, C.R.P., Kain, S., Fatehee, N., Bala, A. Yu, D.Y.: Retinal Vein Pulsation Is in Phase with Intracranial Pressure and Not Intraocular PressureVein Pulsation Phase Relations. Invest. Ophthalmol. Vis. Sci. Eng. 53(8), 4676–4681 (2012)CrossRefGoogle Scholar
  100. 100.
    Moses R.A.: Intraocular Pressure. In Adlers Physiology of the Eye: clinical application, ed. by Moses, R.A. (C.V. Mosby Co, St Louis,1981), p. 227–254.Google Scholar
  101. 101.
    Nakabayashi, S., Nagaoka, T., Tani, T., Sogawa, K., Hein, T.W., Kuo, L., Yoshida, A.: Retinal arteriolar responses to acute severe elevation in systemic blood pressure in cats: role of endothelium-derived factors. Experimental Eye Research. Elsevier 103, 63–70 (2012)CrossRefGoogle Scholar
  102. 102.
    Neudorfer, M., Kessner, R., Goldenberg, D., Lavie, A., Kessler, A.: Retrobulbar blood flow changes in eyes with diabetic retinopathy: a 10-year follow-up study. Clinical Ophthalmology 8, 2325–32 (2014)Google Scholar
  103. 103.
    Newson, T., El-Sheikh, A.: Mathematical modeling of the biomechanics of the lamina cribrosa under elevated intraocular pressures. J. Biomech. Eng. 128(4), 496–504 (2006)CrossRefGoogle Scholar
  104. 104.
    Oliva, I., Roztocil, K.: Toe pulse wave analysis in obliterating atherosclerosis. Angiology 34(9), 610–619 (1983)CrossRefGoogle Scholar
  105. 105.
    Olson, J.L., Asadi-Zeydabadi, M., Tagg, R.: Theoretical estimation of retinal oxygenation in chronic diabetic retinopathy. Comput. Biol. Med. 58, 154–162 (2015)CrossRefGoogle Scholar
  106. 106.
    Page, T.C., Light, W.R., Hellums, J.D.: Prediction of microcirculatory oxygen transport by erythrocyte/hemoglobin solution mixtures. Microvasc Res 56 113–126 (1998)CrossRefGoogle Scholar
  107. 107.
    Pedley, T.J., Brook, B.S., Seymour, R.S.: Blood pressure and flow rate in the giraffe jugular vein. Philosophical Transactions of the Royal Society of London B: Biological Sciences. The Royal Society, 351(1342) 855–866 (1996)CrossRefGoogle Scholar
  108. 108.
    Pettet, G.J., Byrne, H.M., McElwain, D.L.S., Norbury, J.: A model of wound-healing angiogenesis in soft tissue. Math. Biosci. 263, 1487–1493 (1996)zbMATHGoogle Scholar
  109. 109.
    Pinto, L.A., Vandewalle, E., DeClerck, E., Marques-Neves, C., Stalmans, I.: Ophthalmic artery Doppler waveform changes associated with increased damage in glaucoma patients. Invest. Ophthalmol. Vis. Sci. 53(4), 2448–2453 (2012)CrossRefGoogle Scholar
  110. 110.
    Popel, A.S.: Theory of oxygen transport to tissue. Crit Rev Biomed Eng 17 257–321 (1989)Google Scholar
  111. 111.
    Prada, D.: A hybridizable discontinuous Galerkin method for nonlinear porous media viscoelasticity with applications in ophthalmology. Ph.D. thesis, Purdue University (2016)Google Scholar
  112. 112.
    Preziosi, L., Tosin, A.: Multiphase modelling of tumour growth and extracellular matrix interaction: mathematical tools and applications. J. Math. Biol. 58 625–656 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  113. 113.
    Quarteroni, A., Formaggia, L., Ayache, N.: Mathematical modelling and numerical simulation of the cardiovascular system. EPFL (2002)Google Scholar
  114. 114.
    Formaggia, L., Quarteroni, A., Veneziani, A.: Cardiovascular Mathematics: Modeling and simulation of the circulatory system. Springer Science & Business Media (2010)Google Scholar
  115. 115.
    Ragauskas, A., Daubaris, G., Dziugys, A., Azelis, V., Gedrimas, V.: Innovative non-invasive method for absolute intracranial pressure measurement without calibration. Acta. Neurochir. 95[Suppl.], 357–361 (2005)Google Scholar
  116. 116.
    Ragauskas, A., Matijosaitis, V., Zakelis, R., Petrikonis, K., Rastenyte, D., Piper, I., Daubaris, G.: Clinical assessment of noninvasive intracranial pressure absolute value measurement method. Neural. 78(21), 1684–1691 (2012)Google Scholar
  117. 117.
    Ren, R., Jonas, J.B., Tian, G., Zhen, Y., Ma, K., Li, S., Wang, H., Li, B., Zhang, X., Wang, N.: Cerebrospinal fluid pressure in glaucoma: a prospective study. Ophthalmology 117(2), 259–266 (2010)CrossRefGoogle Scholar
  118. 118.
    Roos, M. W.: Theoretical estimation of retinal oxygenation during retinal artery occlusion. Physiological Measurement. IOP Publishing, 25(6), 1523 (2004)CrossRefGoogle Scholar
  119. 119.
    Saari, J.C.: Metabolism and photochemistry in the retina. In Adler’s Physiology of the Eye Clinical Application, ed. by Moses, RA.; Hart, WM. (Mosby, St Louis,1987), p. 356–373.Google Scholar
  120. 120.
    Sacco, R., Mauri, A.G., Cardani, A., Siesky, B.A., Guidoboni, G., Harris, A.: Increased levels of nitric oxide may pathologically affect functional hyperemia in the retina: model and simulation. IOVS 58(8) 214–214 (2017) (ARVO Abstract 214)Google Scholar
  121. 121.
    Sala, L., Prud’homme, C., Guidoboni, G., Szopos, M., Siesky, B.A., Harris, A.: Analysis of IOP and CSF alterations on ocular biomechanics and lamina cribrosa hemodynamics. IOVS (2018) (ARVO Abstract 4475)Google Scholar
  122. 122.
    Schugart, R.C., Friedman, A., Zhao, R., Sen, C.K.: Wound angiogenesis as a function of tissue oxygen tension: A mathematical model. PNAS 105 2628–2633 (2008)CrossRefGoogle Scholar
  123. 123.
    Secomb, T.W., Hsu, R., Park, E.Y., et al.: Greens function methods for analysis of oxygen delivery to tissue by microvascular networks. Ann Biomed Eng 32 1519–1529 (2004)CrossRefGoogle Scholar
  124. 124.
    Secomb, T.W.: Krogh-Cylinder and Infinite-Domain Models for Washout of an Inert Diffusible Solute from Tissue. Microcirculation 22(1) 91–98 (2015)CrossRefGoogle Scholar
  125. 125.
    Secomb, T.W.: A Greens function method for simulation of time-dependent solute transport and reaction in realistic microvascular geometries. Math Med Biol 33 475–494 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  126. 126.
    Shapiro, A.H.: Steady flow in collapsible tubes. Journal of Biomechanical Engineering. American Society of Mechanical Engineers, 99(3), 126–147 (1977)Google Scholar
  127. 127.
    Stathopoulos, N.A., Nair, P.K., Hellums, J.D.: Oxygen transport studies of normal and sickle red cell suspensions in artificial capillaries. Microvasc Res 34 200–210 (1987)CrossRefGoogle Scholar
  128. 128.
    Stewart, P.S., Jensen, O.E., Foss, A.JE.: A theoretical model to allow prediction of the csf pressure from observations of the retinal venous pulse. Invest. Ophthalmol. Vis. Sci. 55(10), 6319–6323 (2014)CrossRefGoogle Scholar
  129. 129.
    Takahashi, T., Nagaoka, T., Yanagida, H., Saitoh, T., Kamiya, A., Hein, T., Kuo, L., Yoshida, A.: A mathematical model for the distribution of hemodynamic parameters in the human retinal microvascular network. J. Biorheol. 23(2), 77–86 (2009)CrossRefGoogle Scholar
  130. 130.
    Tani,T., Nagaoka, T., Nakabayashi, S., Yoshioka, T., Yoshida, A.: Autoregulation of retinal blood flow in response to decreased ocular perfusion pressure in cats: Comparison of the effects of increased intraocular pressure and systemic hypotension. Investigative Ophthalmology and Visual Science. 55 360 (2014).CrossRefGoogle Scholar
  131. 131.
    Tham, Y.-C., Lim, S.-H., Gupta, P., et al: Inter-relationship between ocular perfusion pressure, blood pressure, intraocular pressure profiles and primary open-angle glaucoma: the Singapore Epidemiology of Eye Diseases study. B J Ophthalmol 0 1–5 (2018)Google Scholar
  132. 132.
    Übeyli, E. D.: Adaptive neuro-fuzzy inference system employing wavelet coefficients for detection of ophthalmic arterial disorders. Expert. Syst. Appl. 34(3), 2201–2209 (2008)CrossRefGoogle Scholar
  133. 133.
    Verri, M., Guidoboni, G., Bociu, L., Sacco, R.: The role of structural viscoelasticity in deformable porous media with incompressible constituents: applications in biomechanics. Mathematical Biosciences and Engineering 154(4), 933–959 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  134. 134.
    Wangsa-Wirawan, N.D., Linsenmeier, R.A.: Retinal oxygen: fundamental and clinical aspects. Archives of Ophthalmology 121(4), 547–557 (2003)CrossRefGoogle Scholar
  135. 135.
    Watson, M.G., McDougall1, S.R., Chaplain, M. A. J., Devlin, A.H., Mitchell, C.A.: Dynamics of angiogenesis during murine retinal development: a coupled in vivo and in silico study J.R. Soc. Interface 9 2351–2364 (2012)Google Scholar
  136. 136.
    Wellman, A., Genta, P.R., Owens, R.L., Edwards, B.A., Sands, S.A., Loring, S.H., White, D.P., Jackson, A.C., Pedersen, O.F., Butler, J.P.: Test of the Starling resistor model in the human upper airway during sleep. Journal of applied physiology. Am Physiological Soc, 117(12), 1478–1485 (2014)CrossRefGoogle Scholar
  137. 137.
    Whiteley, J.P., Gavaghan, D.J., Hahn, C.E.: Mathematical modelling of pulmonary gas transport. J Math Biol 47 79–99 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  138. 138.
    Woo, S., Kobayashi, A.S., Schlegel, W.A., Lawrence, C.: Nonlinear material properties of intact cornea and sclera. Exp. Eye Res. 14(1), 29–39 (1972)CrossRefGoogle Scholar
  139. 139.
    Xu, L., Wang, H., Wang, Y., Jonas, J.B.: Intraocular pressure correlated with arterial blood pressure: the Beijing Eye Study. American Journal of Ophthalmology 144(3), 461–462 (2007)CrossRefGoogle Scholar
  140. 140.
    Ye, G.F., Moore, T.W., Buerk, D.G., Jaron, D.: A compartmental model for oxygen−carbon dioxide coupled transport in the microcirculation. Ann Biomed Eng. 22 464–479 (1994)CrossRefGoogle Scholar
  141. 141.
    Yu, D.Y., Cringle, S.J.: Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease. Progress in Retinal and Eye Research 20(2) 175–208 (2001)CrossRefGoogle Scholar
  142. 142.
    Zunino, P.: Mathematical and numerical modeling of mass transfer in the vascular system. Ph.D. thesis, École Oolytechnique Fédérale de Lausanne (2002)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Julia Arciero
    • 1
    Email author
  • Lucia Carichino
    • 2
  • Simone Cassani
    • 2
  • Giovanna Guidoboni
    • 3
  1. 1.Mathematical SciencesIndiana University – Purdue University IndianapolisIndianapolisUSA
  2. 2.Mathematical SciencesWorcester Polytechnic InstituteWorcesterUSA
  3. 3.Electrical Engineering and Computer Science, and MathematicsUniversity of MissouriColumbiaUSA

Personalised recommendations