Advertisement

Measurement of Geometrical and Functional Parameters Related to Ocular Blood Flow

  • Josh Gross
  • Daniele PradaEmail author
Chapter
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Abstract

This chapter examines the assessment of ocular hemodynamics in health and disease. Beginning with a discussion on ocular perfusion pressure and the physical principles, we systematically present the conceptual basis and details of blood flow measurement technology, paying particular attention to the scientific and clinical strengths and weaknesses of each technique.

References

  1. 1.
    Abegao-Pinto L, Willekens K, Van Keer K, et al. Ocular blood flow in glaucoma – the Leuven Eye Study. Acta Ophthalmol. 2016 Sep;94(6):592-8.CrossRefGoogle Scholar
  2. 2.
    Agemy SA, Scripsema NK, Shah CM, et al. Retinal vascular perfusion density mapping using optical coherence tomography angiography in normals and diabetic retinopathy patients. Retina. 2015 Nov;35(11):2353-63.CrossRefGoogle Scholar
  3. 3.
    Alder VA, Yu DY, Cringle SJ. Vitreal oxygen tension measurements in the rat eye. Exp Eye Res. 1991 Mar;52(3):293-9.CrossRefGoogle Scholar
  4. 4.
    Ang M, Sim D, Keane P, et al. Optical coherence tomography angiography for anterior segment vasculature imaging. Ophthalmology 2015 Sep;122(9):1740-7.CrossRefGoogle Scholar
  5. 5.
    Araie M. Laser Speckle Method (Laser Speckle Flowgraphy), in Weinreb RN, Harris A (eds) Ocular Blood Flow in Glaucoma. Amsterdam, Kugler Publications; 2009.Google Scholar
  6. 6.
    Attariwala R, Giebs CP, Glucksberg MR. The influence of elevated intraocular pressure on vascular pressures in the cat retina. Invest Ophthalmol Vis Sci. 1994;35(3):1019-25.Google Scholar
  7. 7.
    Berkowitz BA. Adult and newborn rat inner retinal oxygenation during carbogen and 100% oxygen breathing. Comparison using magnetic resonance imaging delta Po2 mapping. Invest Ophthalmol Vis Sci. 1996 Sep;37(10):2089-98.Google Scholar
  8. 8.
    Bohdanecka Z, Orgül S, Prünte C, Flammer J. Influence of acquisition parameters on hemodynamic measurements with the Heidelberg Retina Flowmeter at the optic disc. J Glaucoma. 1998 Jun;7(3):151-7.Google Scholar
  9. 9.
    Bonner RF, Nossal R. Principles of Laser-Doppler Flowmetry, in Laser-Doppler Blood Flowmetry. 1990, Springer.Google Scholar
  10. 10.
    Caprioli J, Coleman AL. Blood Flow in Glaucoma D. Blood pressure, perfusion pressure, and glaucoma. Am J Ophthalmol. 2010;149(5):704-12.CrossRefGoogle Scholar
  11. 11.
    Chen CL, Bojiian KD, Xin C, et al. Repeatability and reproducibility of optic nerve head perfusion measurements using optical coherence tomography angiography. J Biomed Opt. 2016 Jun 1;21(6):65002.CrossRefGoogle Scholar
  12. 12.
    Cicinelli MV, Rabiolo A, Marchese A, et al. Choroid morphometric analysis in non-neovascular age-related macular degeneration by means of optical coherence tomography angiography. Br J Ophthalmol. 2017 Jan 5. [Epub ahead of print].Google Scholar
  13. 13.
    Coscas G, Lupidi M, Coscas F. OCT angiography of the choriocapillaris and choroid. Acta Ophthalmol. 2015 Sep 23;93:n/a. doi: https://doi.org/10.1111/j.1755-3768.2015.0020.Google Scholar
  14. 14.
    Costa V, Harris A, Anderson D, et al. Ocular perfusion pressure in glaucoma. Acta Ophthalmol. 2014;92(4):e252-66.CrossRefGoogle Scholar
  15. 15.
    Cuypers MH, Kasanardio JS, Polak BC. Retinal blood flow changes in diabetic retinopathy measured with the Heidelberg scanning laser Doppler flowmeter. Graefes Arch Clin Exp Ophthalmol. 2000 Dec;238(12):935-41.CrossRefGoogle Scholar
  16. 16.
    Dimitrova G, Chihara E, Takahashi H, et al. Qualitative retinal optical coherence tomography angiography in patients with diabetes without diabetic retinopathy. Invest Ophthalmol Vis Sci. 2017 Jan 1;58(1):190-196.CrossRefGoogle Scholar
  17. 17.
    Dimitrova G, Kato S. Color Doppler Imaging of retinal diseases. Surv Ophthalmol. 2010 May-Jun;55(3):193-214.CrossRefGoogle Scholar
  18. 18.
    Ehrlich R, Harris A, Siesky BA, et al. Repeatability of retrobulbar blood flow velocity measured using color Doppler imaging in the Indianapolis Glaucoma Progression Study. J Glaucoma. 2011 Dec;20(9):540-7.CrossRefGoogle Scholar
  19. 19.
    Evans M. Anatomy of the Uvea. In: Ophthalmology, 4th Ed. Yanoff M, and Duker J, Editors. 2014. Mosby (London). 687-689.Google Scholar
  20. 20.
    Farecki ML, Gutfleisch M, Faatz H, et al. Characteristics of type 1 and 2 CNV in exudative AMD in OCT-Angiography. Graefes Arch Clin Exp Ophthalmol. 2017 Feb 23. [Epub ahead of print].Google Scholar
  21. 21.
    Founti P, Harris A, Papdopoulou D, et al. Agreement among three examiners of colour Doppler imaging retrobulbar blood flow velocity measurements. Acta Ophthalmol. 2011 Dec:89(8):e631-4.CrossRefGoogle Scholar
  22. 22.
    Gao SS, Jia Y, Zhang M, et al. Optical Coherence Tomography Angiography. Invest Ophthalmol Vis Sci. 2016 Jul 1;57(9):OCT 27-36.CrossRefGoogle Scholar
  23. 23.
    Geirsdottir A, Hardarson SH, Olafsdottir OB, Stefansson E. Retinal oxygen metabolism in exudative age-related macular degeneration. Acta Ophthalmol. 2104 Feb;92)1):27-33.CrossRefGoogle Scholar
  24. 24.
    Glucksberg MR, Dunn R. Direct measurement of retinal microvascular pressures in the live, anesthetized cat. Microvasc Res. 1993;45(2):158-65.CrossRefGoogle Scholar
  25. 25.
    Goharian I, Iverson SM, Ruiz RC, et al. Reproducibility of reintal oxygen saturation in normal and treated glaucomatous eyes. Br J Ophthalmol. 2015 Mar;99(3):318-22.CrossRefGoogle Scholar
  26. 26.
    Gozian J, Ingrand P, Lichtwitz O, et al. Retinal microvascular alterations related to diabetes assessed by optical coherence tomography angiography: a cross-sectional analysis. Medicine (Baltimore). 2017 Apr;96(15):e6427.CrossRefGoogle Scholar
  27. 27.
    Guidoboni G, Harris A, Cassani S, et al. Intraocular pressure, blood pressure, and retinal blood flow autoregulation: a mathematical model to clarify their relationship and clinical relevance. Invest Ophthalmol Vis Sci. 2014;55(7):4105-18.CrossRefGoogle Scholar
  28. 28.
    Hardarson SH, Harris A, Karlsson RA, et al. Automatic retinal oximetry. Invest Ophthalmol Vis Sci. 2006 Nov;47(11):5011-6.CrossRefGoogle Scholar
  29. 29.
    Harris A, Jonescu-Cuypers CP, Kagemann L, et al. Atlas of ocular blood flow. Oxford, UK, Butterworth-Heinemann; 2 ed, 2010.Google Scholar
  30. 30.
    Hendargo HC, McNabb RP, Dhalla AH, et al. Doppler velocity detection limitations in spectrometer-based versus swept-source optical coherence tomography. Biomed Opt Express. 2011 Aug 1;2(8):2175-88.CrossRefGoogle Scholar
  31. 31.
    Huang AS, Saraswathy S, Dastiridou A, et al. Aqueous angiography with fluorescein and indocyanine green in bovine eyes. Transl Vis Sci Technol. 2016 Nov:5(6):5.CrossRefGoogle Scholar
  32. 32.
    Huang D, Doppler Optical Coherence Tomography, in Weinreb RN, Harris A (eds) Ocular Blood Flow in Glaucoma. Amsterdam, Kugler Publications; 2009.Google Scholar
  33. 33.
    Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Science. 1991;254(5035):1178-81.CrossRefGoogle Scholar
  34. 34.
    Huber K, Plange N, Remky A, et al. Comparison of colour Doppler imaging and retinal scanning laser fluorescein angiography in healthy volunteers and normal pressure glaucoma patients. Acta Ophthalmol Scand. 2004 Aug;82(4):426-31.CrossRefGoogle Scholar
  35. 35.
    Hudson C, Flanagan J, Venkataraman ST, et al. Bi-directional Laser Doppler Velocimetry and Simultaneous Vessel Densitometry, in Weinreb RN, Harris A (eds) Ocular Blood Flow in Glaucoma. Amsterdam, Kugler Publications; 2009, pp 19-56.Google Scholar
  36. 36.
    Jia Y, Bailey ST, Hwang TS, et al. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc Natl Acad Sci U S A. 2015 May 5;112(18):E2395-402.CrossRefGoogle Scholar
  37. 37.
    Jia Y, Morrison JC, Tokayer J, et al. Quantitative OCT angiography of optic nerve head blood flow. Biomed Opt Express. 2012;3(12):3127-37.CrossRefGoogle Scholar
  38. 38.
    Jia Y, Tan O, Tokayer J, Potsaid B, Wang Y, Liu JJ, Kraus MF, Subhash H, Fujimoto JG, Hornegger J, Huang D. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express. 2012 Feb 13;20(4):4710-25.CrossRefGoogle Scholar
  39. 39.
    Jonescu-Cuypers CP, Chung HS, Kagemann, L. New neuroretinal rim blood flow evaluation method combining Heidelberg retina flowmetry and tomography. Br J Ophthalmol. 2001 Mar;85(3):304-9.CrossRefGoogle Scholar
  40. 40.
    Koustenis A, Harris A, Gross J, et al. Optical coherence tomography angiography: an overview of the technology and an assessment of applications for clinical research. Br J Ophthalmol. 2017 Jan;101(1):16-20.CrossRefGoogle Scholar
  41. 41.
    Kunikata H, Nakazawa T. Recent Clinical Applications of laser speckle flowgraphy in Eyes with retinal disease. Asia Pac J Ophthalmol (Phila). 2016 Mar-Apr;5(2):151-8.CrossRefGoogle Scholar
  42. 42.
    Leitgeb R, Hitzenberger C, Fercher A. Performance of fourier domain vs. time domain optical coherence tomography. Opt Express. 2003 Apr 21;11(8):889-94.CrossRefGoogle Scholar
  43. 43.
    Leitgeb R, Werkmeister RM, Blatter C, Schmetterer L. Doppler Optical Coherence Tomography. Progress in Retinal and Eye Research. 2014; 41: 26-43.CrossRefGoogle Scholar
  44. 44.
    Li P, An L, Reif R, et al. In vivo microstructural and microvascular imaging of the human corneo-scleral limbus using optical coherence tomography. Biomed Opt Express. 2011 Nov 1;2(11):3109-3118.CrossRefGoogle Scholar
  45. 45.
    Lindner M, Fang PP, Steinberg JS, et al. OCT angiography-based detection and quantification of the neovascular network in exudative AMD. Invest Ophthalmol Vis Sci. 2016 Nov 1;57)14):6342-6348.CrossRefGoogle Scholar
  46. 46.
    MacKenzie LE, Choudhary TR, McNaughty AI, Harvey AR. In vivo oximetry of human bulbar conjunctival and episcleral microvasculature using snapshot multispectral imaging. Exp Eye Res. 2016 Aug:149:48-58.CrossRefGoogle Scholar
  47. 47.
    Mansoori T, Sivaswamy J, Gamalapati JS, et al. Radial peripapillary capillary density measurement using optical coherence tomography angiography in early glaucoma. J Glaucoma. 2017 Feb 23. [Epub ahead of print].Google Scholar
  48. 48.
    Mavroudis L, Harris A, Topouzis F, et al. Reproducibility of pixel-by-pixel analysis of Heidelberg retinal flowmetry images: the Thessaloniki Eye Study. Acta Ophthalmol. 2008 Feb;86(1):81-6.CrossRefGoogle Scholar
  49. 49.
    Meng N, Liu J, Zhang Y, et al. Color Doppler imaging analysis of retrobulbar blood flow velocities in diabetic patients without or with retinopathy: a meta-analysis. J Ultrasound Med. 2014 Aug;33(8):1381-9.CrossRefGoogle Scholar
  50. 50.
    Michelson G, Schmauss B. Two dimensional mapping of the perfusion of the retina and optic nerve head. Br J Ophthalmol. 1995 Dec;79(12):1126-32.CrossRefGoogle Scholar
  51. 51.
    Miura M, Hong YJ, Yasuno Y, et al. Three-dimensional vascular imaging of proliferative diabetic retinopathy by Doppler optical coherence tomography. Am J Ophthalmol. 2015 Mar;159(3):528-38.e3.CrossRefGoogle Scholar
  52. 52.
    Mohindroo C, Ichhpuiani P, Kumar S. Current imaging modalities for assessing ocular blood flow in glaucoma. J Curr Glaucoma Pract. 2016 Sep-Dec;10(3):104-112.Google Scholar
  53. 53.
    Moore NA, Harris A, Wentz S, et al. Baseline retrobulbar blood flow is associated with both functional and structural glaucomatous progression after 4 years. Br J Ophthalmol. 2016 Jun 13. [Epub ahead of print].Google Scholar
  54. 54.
    Nagaoka T, Sato E, Takahashi A, et al. Impaired retinal circulation in patients with type 2 diabetes mellitus: retinal laser Doppler velocimetry study. Invest Ophthalmol Vis Sci. 2010 Dec;51(12):6729-34.CrossRefGoogle Scholar
  55. 55.
    Nilsson SFE, Alm A. Determination of Ocular Blood Flow with the Microsphere Method, in L. Schmetterer, J.W. Kiel (eds.), Ocular Blood Flow, 2012.Google Scholar
  56. 56.
    Ozcan PY, Dogan F, Sonmez K, et al. Assessment of orbital blood flow velocities in retinopathy of prematurity. Int Ophthalmol. 2016 Sep 3. [Epub ahead of print].Google Scholar
  57. 57.
    Prada D, Harris A, Guidoboni G, et al. Autoregulation and neurovascular coupling in the optic nerve head. Surv Ophthalmol. 2016 Mar-Apr;61(2):164-86.CrossRefGoogle Scholar
  58. 58.
    Regatieri CVS, Roh S, and Weiter JJ. Retinal and Choroidal Circulation. In: Ophthalmology. Yanoff M, and Duker J, Editors. Mosby (London). 2014: section 6.3.Google Scholar
  59. 59.
    Relven S, Torp TL, Grauslund J. Retinal oximetry in patients with ischaemic retinal diseases. Acta Ophthalmol. 2017 Mar;95(2): Epub 2016 Sep 1.Google Scholar
  60. 60.
    Rinck PA. Magnetic Resonance in Medicine. The Basic Textbook of the European Magnetic Resonance Forum. 10th edition; 2017. E-version 10.1 beta.Google Scholar
  61. 61.
    Riva CE, Hero M, Titze P, Petrig B. Autoregulation of human optic nerve head blood flow in response to acute changes in ocular perfusion pressure. Graefe’s Arch Clin Exp Ophthalmol. 1997;235(10):618-26.CrossRefGoogle Scholar
  62. 62.
    Riva CE, Geiser M, Petrig BL. Ocular blood flow assessment using continuous laser Doppler flowmetry. Acta Ophthalmol. 2010 Sep;88(6):622-9.CrossRefGoogle Scholar
  63. 63.
    Rush RB, Rush SW, Aragon AV 2nd, Ysasaga JE. Predictability of recurrent exudation and subretinal hemorrhaging in neovascular age-related macular degeneration with indocyanine green angiography. Ophthalmic Surg Lasers Imaging Retina. 2015 Jul-Aug;46(7):718-23.CrossRefGoogle Scholar
  64. 64.
    Sato EA, Ohtake Y, Shinoda K, et al. Decreased blood flow at neuroretinal rim of optic nerve head corresponds with visual field deficit in eyes with normal tension glaucoma. Graefes Arch Clin Exp Ophthalmol. 2006 Jul;244(7):795-801.CrossRefGoogle Scholar
  65. 65.
    Schmoll T, Singh AS, Blatter C, et al. Imaging of the parafoveal capillary network and its integrity analysis using fractal dimension. Biomed Opt Express. 2011 Apr 12;2(5):1159-68CrossRefGoogle Scholar
  66. 66.
    Shiga Y, Asano T, Kunikata H, et al. Relative flow volume, a novel blood flow index in the human retina derived from laser speckle flowgraphy. Invest Ophthalmol Vis Sci. 2014 May 29;55(6):3899-904.CrossRefGoogle Scholar
  67. 67.
    Shiga Y, Kunikata H, Aizawa N, et al. Optic nerve head blood flow, as measured by laser speckle flowgraphy, is significantly reduced in preperimetric glaucoma. Curr Eye Res. 2016 Nov;41(11):1447-1453.CrossRefGoogle Scholar
  68. 68.
    Shihota R, Saxena R, Taneja N, et al. Topography and fluorescein angiography of the optic nerve head in primary open-angle and chronic primary angle closure glaucoma. Optom Vis Sci. 2006 Jul;83(7):520-6.Google Scholar
  69. 69.
    Siesky B, Harris A, Carr J, et al. Reductions in retrobulbar and retinal capillary blood flow strongly correlate with changes in optic nerve head and retinal morphology over 4 years in open-angle glaucoma patients of African descent compared with patients of European descent. J Glaucoma. 2016 Sep;25(9):750-7.CrossRefGoogle Scholar
  70. 70.
    Sood S, Narang S, Kocchhar S, et al. Correlation of progression of diabetic retinopathy with the alterations in retrobulubar circulation. Nepal J Ophthalmol. 2013 Jul-Dec;5(2):147-53.CrossRefGoogle Scholar
  71. 71.
    Srinivas S, Tan O, Nittala MG, et al. Assessment of retinal blood flow in diabetic retinopathy using Doppler Fourier-domain optical coherence tomography. Retina. 2017 Jan 16. [Epub ahead of print].Google Scholar
  72. 72.
    Stanga PE, Lim JI, Hamilton P. Indocyanine green angiography in chorioretinal diseases: indications and interpretation: an evidence-based update. Ophthalmology. 2003;110(1):15-21.CrossRefGoogle Scholar
  73. 73.
    Stefánsson E. Retinal oximetry, in Weinreb RN, Harris A (eds) Ocular Blood Flow in Glaucoma. Amsterdam, Kugler Publications; 2009.Google Scholar
  74. 74.
    Sugiyama T, Araie M, Riva CE, et al. Use of laser speckle flowgraphy in ocular blood flow research. Acta Ophthalmol. 2010;88(7):723-9.CrossRefGoogle Scholar
  75. 75.
    Suh MN, Zangwill LM, Manaiastas PI, et al. Deep retinal microvascular dropout detected by the optical coherence tomography angiography in glaucoma. Ophthalmology. 2016 Dec;123(12):2509-2518.CrossRefGoogle Scholar
  76. 76.
    Tayyari F, Yusof F, Vymyslicky M, et al. Variability and repeatability of quantitative, Fourier-domain optical coherence tomography Doppler blood flow in young and elderly healthy subjects. Invest Ophthalmol Vis Sci. 2014 Oct 21;55(12):7716-25.CrossRefGoogle Scholar
  77. 77.
    Ting DS, Tan GS, Agrawal R, et al. Optical coherence tomography angiography in type 2 diabetes and diabetic retinopathy. JAMA Ophthalmol. 2017 Feb 16. [Epub ahead of print].Google Scholar
  78. 78.
    Tobe LA, Harris A, Hussain RM, et al. The role of retrobulbar and retinal circulation on optic nerve head and retinal nerve fibre layer structure in patients with open-angle glaucoma over an 18-month period. Br J Ophthalmol. 2015 May;99(5):609-12.CrossRefGoogle Scholar
  79. 79.
    Tsuchihashi T, Mori K, Peyman G, et al. Photodynamic effects on retinal oxygen saturation, blood flow, and electrophysiological function in patients with neovascular age-related macular degeneration. Retina. 2009 Nov-Dec;29(10):1450-6.CrossRefGoogle Scholar
  80. 80.
    Wang Y, Fawzi AA, Varma R, et al. Pilot study of optical coherence tomography measurement of retinal blood flow in retinal and optic nerve disease. Invest Ophthalmol Vis Sci. 2011 Feb;52(2):840-845.CrossRefGoogle Scholar
  81. 81.
    Wolf S, Arend O, Reim M. Measurement of retinal hemodynamics with scanning laser ophthalmoscopy: reference values and variation. Surv Ophthalmol. 1994 May;38 Suppl:S95-100.CrossRefGoogle Scholar
  82. 82.
    Xu S, Huang S, Lin Z, et al. Color Doppler imaging analysis of ocular blood flow velocities in normal tension glaucoma patients: a meta-analysis. J Ophthalmol. 2015;2015:919610,. [Epub 2015 Oct 29].Google Scholar
  83. 83.
    Yarmohammadi A, Zangwill LM, Diniz-Filho A, et al. Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes. Invest Ophthalmol Vis Sci. 2016 Jul 1;57(9):OCT451-9.CrossRefGoogle Scholar
  84. 84.
    Yarmohammadi A, Zangwill LM, Diniz-Filho A, et al. Relationship between optical coherence tomography angiography vessel density and severity of visual field loss in glaucoma. Ophthalmology. 2016 Dec;123(12):2498-2508.Google Scholar
  85. 85.
    Zhu W, Cui M, Yao F, et al. Retrobulbar and common carotid artery haemodynamics and carotid wall thickness in patients with non-arteritic ischaemic optic neuropathy. Graefes Arch Clin Exp Ophthalmol. 2014 Jul;252(7):1141-6.CrossRefGoogle Scholar
  86. 86.
    Zion IB, Harris A, Moore D, et al. Interobserver repeatability of Heidelberg Retinal Flowmeter using pixel-by-pixel analysis. J Glaucoma. 2009 Apr/May;18(4):280-283.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine IndianapolisUSA
  2. 2.Istituto di Matematica Applicata e Tecnologie Informatiche “Enrico Magenes” del Consiglio Nazionale delle RicerchePaviaItaly

Personalised recommendations