Pathological Consequences of Vascular Alterations in the Eye

  • Daniele PradaEmail author
  • L. Rowe
  • A. Hajrasouliha
  • T. Ciulla
  • I. Januleviciene
  • G. Chiaravalli
  • G. Guidoboni
  • A. Harris
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


This chapter reviews the abundant evidence of correlations between vascular alterations and ocular diseases. In particular, we discuss retinal diseases, including age-related macular degeneration, diabetic retinopathy and retinal vessel occlusions, glaucoma, and non-arteritic ischemic optic neuropathy. Current inconsistencies among studies and outstanding controversial questions are emphasized to bring the reader up to date with respect to the main challenges in the field.


  1. 1.
    Aiello LP, Northrup JM, Keyt BA, et al. Hypoxic regulation of vascular endothelial growth factor in retinal cells. Arch Ophthalmol. 1995;113:1538–154.CrossRefGoogle Scholar
  2. 2.
    Albert DM, Miller JW, Azar DT, Blodi BA. Albert & Jakobiec's Principles & Practice of Ophthalmology. 3rd ed. Philadelphia, PA: Saunders Elsevier; 2008.Google Scholar
  3. 3.
    Aminoff MJ, Greenberg DA, Simon RP. Neuro-Ophthalmic Disorders. In: Clinical Neurology, 9e New York, NY: McGraw-Hill; 2015.Google Scholar
  4. 4.
    Arnold AC, Hepler RS. Fluorescein angiography in acute nonarteritic anterior ischemic optic neuropathy. Am J Ophthalmol. 1994 Feb 15; 117(2):222-30.CrossRefGoogle Scholar
  5. 5.
    Atkins et al. Treatment of Nonarteritic Anterior Ischemic Optic Neuropathy. Surv Ophthalmol. 2010 Jan-Feb; 55(1): 47–63.CrossRefGoogle Scholar
  6. 6.
    Augstburger E, Zéboulon P, Keilani C, et al. Quantitative analysis of optical coherence tomographic angiography (OCT-A) in patients with non-arteritic anterior ischemic optic neuropathy (NAION) corresponds to visual function. PLoS One. 2018 Jun 28;13(6):e0199793.CrossRefGoogle Scholar
  7. 7.
    Bertram B, Hoberg A, Wolf S. et al Videofluoresceinangiographic findings in acute anterior ischemic optic neuropathy. Klin Mbl Augenheilk 1991199419–423.Google Scholar
  8. 8.
    Boeri D, Maiello M, Lorenzi M. Increased prevalence of microthromboses in retinal capillaries of diabetic individuals. Diabetes. 2001;50(6):1432.CrossRefGoogle Scholar
  9. 9.
    Bonomi L, Marchini G, Marraffa M, et al. Vascular risk factors for primary open angle glaucoma: the Egna-Neumarkt Study. Ophthalmology. 2000 Jul;107(7):1287-93.CrossRefGoogle Scholar
  10. 10.
    Bose S, Piltz JR, Breton ME. Nimodipine, a centrally active calcium antagonist, exerts a beneficial effect on contrast sensitivity in patients with normal-tension glaucoma and in control subjects. Ophthalmology. 1995 Aug;102(8):1236-41.CrossRefGoogle Scholar
  11. 11.
    Boulton M, Foreman D, Williams G, McLeod D. VEGF localisation in diabetic retinopathy. Br J Ophthalmol. 1998;82(5):561.CrossRefGoogle Scholar
  12. 12.
    Bowers DK, Finkelstein D, Wolff SM, Green WR. Branch retinal vein occlusion. A clinicopathologic case report. Retina. 1987;7(4):252.CrossRefGoogle Scholar
  13. 13.
    Bowling B. Kanski’s Clinical Ophthalmology. Eighth Edition. Edinburgh: Elsevier; 2016. 13: Retinal vascular disease; 519-577.Google Scholar
  14. 14.
    Butt Z, O'Brien C, McKillop G, et al. Color Doppler imaging in untreated high- and normal-pressure open-angle glaucoma. Invest. Ophthalmol. Vis. Sci. 1997;38(3):690-696.Google Scholar
  15. 15.
    Centers for Disease Control and Prevention. 2003 National Diabetes Fact Sheet. (Accessed on March 28, 2008).
  16. 16.
    Channa R, Sophie R, Bagheri S, et al. Regression of choroidal neovascularization results in macular atrophy in anti-vascular endothelial growth factor-treated eyes. Am J Ophthalmol. 2015;159:9-19.CrossRefGoogle Scholar
  17. 17.
    Chiaravalli G. A virtual laboratory for retinal physiology: a theoretical study of retinal oxygenation in healthy and disease. Master’s thesis, Politecnico di Milano (Italy). Master in Engineering Physics, final examination held on 12/20/2018. Main Advisor: R. Sacco (Mathematics, Politecnico di Milano). Co-advisor: G. Guidoboni.Google Scholar
  18. 18.
    Choi j, Kim KH, Jeong J et al. Circadian Fluctuation of Mean Ocular Perfusion Pressure Is a Consistent Risk Factor for Normal-Tension Glaucoma. Invest. Ophthalmol. Vis. Sci. 2007;48(1):104-111.CrossRefGoogle Scholar
  19. 19.
    Chong NH, Keonin J, Luthert PJ, et al. Decreased thickness and integrity of the macular elastic layer of Bruch's membrane correspond to the distribution of lesions associated with age-related macular degeneration. Am J Pathol. 2005;166:241–251.CrossRefGoogle Scholar
  20. 20.
    Ciulla TA, Harris A, Kagemann L, et al. Choroidal perfusion perturbations in non-neovascular age related macular degeneration. Br J Ophthalmol. 2002 Feb;86(2):209-13.CrossRefGoogle Scholar
  21. 21.
    Ciulla TA, Harris A, Martin BJ. Ocular Perfusion and age-related macular degeneration. Acta Ophthalmol Scand. 2001 Apr;79(2):108-15.CrossRefGoogle Scholar
  22. 22.
    Collignon-Robe NJ, Feke GT, Rizzo JF 3rd. Optic nerve head circulation in nonarteritic anterior ischemic optic neuropathy and optic neuritis. Ophthalmology. 2004 Sep; 111(9):1663-72.CrossRefGoogle Scholar
  23. 23.
    Costa V, Harris A, Anderson D, et al. Ocular perfusion pressure in glaucoma. Acta Ophthalmol. 2014;92(4):252-66.CrossRefGoogle Scholar
  24. 24.
    Cugati S, Wang JJ, Rochtchina E, Mitchell P. Ten-year incidence of retinal vein occlusion in an older population: the Blue Mountains Eye Study. Arch Ophthalmol. 2006;124(5):726.CrossRefGoogle Scholar
  25. 25.
    Diabetic Retinopathy Study Research Group. Preliminary report on effects of photocoagulation therapy Am J Ophthalmol, 81 (1976), pp. 383-396.Google Scholar
  26. 26.
    Do DV, Gower EW, Cassard SD, et al. Detection of new-onset choroidal neovascularization using optical coherence tomography: the AMD DOC study. Ophthalmology 2012;119:771-778.CrossRefGoogle Scholar
  27. 27.
    Do DV. Detection of new-onset choroidal neovascularization. Curr Opin Ophthalmol. 2013;24:224-227.CrossRefGoogle Scholar
  28. 28.
    Doucette LP, Rasnitsyn A, Seifi M, Walter MA. The interactions of genes, age, and environment in glaucoma pathogenesis. Surv Ophthalmol. 2015;60(4):310–26.CrossRefGoogle Scholar
  29. 29.
    Early Treatment Diabetic Retinopathy Study Research Group. Early treatment diabetic retinopathy study design and baseline patient characteristics. ETDRS report number 7. Ophthalmology, 98 (1991), pp. 741-756.Google Scholar
  30. 30.
    Ehrlich R, Kheradiya NS, Winston DM, et al. Age-related ocular vascular changes. Graefes Arch Clin Exp Ophthalmol. 2009;247(5):583–91.CrossRefGoogle Scholar
  31. 31.
    Embleton SJ, Hosking SL, Roff Hilton EJ, Cunliffe IA. Effect of senescence on ocular blood flow in the retina, neuroretinal rim and lamina cribrosa, using scanning laser Doppler flowmetry. Eye (Lond). 2002 Mar;16(2):156-62.CrossRefGoogle Scholar
  32. 32.
    Emre M, Orgül S, Gugleta K, Flammer J. Ocular blood flow alteration in glaucoma is related to systemic vascular dysregulation. Br J Ophthalmol. 2004 May; 88(5): 662–666.CrossRefGoogle Scholar
  33. 33.
    Engin KN, Engin G, Kucuksahin H, et al. Clinical evaluation of the neuroprotective effect of alpha-tocopherol against glaucomatous damage. Eur J Ophthalmol. 2007 Jul-Aug;17(4):528-33.CrossRefGoogle Scholar
  34. 34.
    Evans DW, Harris A, Garrett M, et al. Glaucoma patients demonstrate faulty autoregulation of ocular blood flow during posture change. Br J Ophthalmol. 1999;83(7):809-13.CrossRefGoogle Scholar
  35. 35.
    Farecki ML, Gutfleisch M, Faatz H, et al. Characteristics of type 1 and 2 CNV in exudative AMD in OCT-Angiography. Graefes Arch Clin Exp Ophthalmol. 2017;255:913-921.CrossRefGoogle Scholar
  36. 36.
    Flammer J, Orgul S, Costa V, et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res. 2002;21(4):359-93.CrossRefGoogle Scholar
  37. 37.
    Flammer J, Pache M, Resink T. Vasospasm, its role in the pathogenesis of diseases with particular reference to the eye. Prog Retin Eye Res. 2001 May;20(3):319-49.CrossRefGoogle Scholar
  38. 38.
    Fraser CE, D’Amico DJ. Diabetic retinopathy: Classification and clinical features. Mulder JE, ed. UpToDate. Waltham, MA: UpToDate Inc.Google Scholar
  39. 39.
    Friedman DS, O'Colmain BJ, Munoz B, et al. Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol. 2004;122: 564-572.CrossRefGoogle Scholar
  40. 40.
    Friedman E, Ivry M, Ebert E, et al. Increased Scleral Rigidity and Age-related Macular Degeneration. Ophthalmology. 1989 Jan;96(1):104-8.CrossRefGoogle Scholar
  41. 41.
    Friedman E, Krupsky S, Lane AM, et al. Ocular blood flow velocity in age-related macular degeneration. Ophthalmology. 1995 Apr;102(4):640-6.CrossRefGoogle Scholar
  42. 42.
    Friedman E. A Hemodynamic Model of the Pathogenesis of Age-related Macular Degeneration. Am J Ophthalmol. 1997 Nov;124(5):677-82.CrossRefGoogle Scholar
  43. 43.
    Gaier ED, Wang M, Gilbert AL, et al. Quantitative analysis of optical coherence tomographic angiography (OCT-A) in patients with non-arteritic anterior ischemic optic neuropathy (NAION) corresponds to visual function. PLoS One. 2018 Jun 28;13(6):e0199793.CrossRefGoogle Scholar
  44. 44.
    Gasser P, Flammer J. Blood-cell velocity in the nailfold capillaries of patients with normal-tension and high-tension glaucoma. Am J Ophthalmol. 1991 May 15;111(5):585-8.CrossRefGoogle Scholar
  45. 45.
    Ghasemi Falavarjani K, Phasukkijwatana N, Freund KB, et al. En Face Optical Coherence Tomography Analysis to Assess the Spectrum of Perivenular Ischemia and Paracentral Acute Middle Maculopathy in Retinal Vein Occlusion. Am J Ophthalmol. 2017 May;177:131-138.CrossRefGoogle Scholar
  46. 46.
    González-López A, Ortega M, Penedo MG, Charlón P. Automatic Vessel Shade-Robust Segmentation of Retinal Layers in OCT Images. Stud Health Technol Inform. 2014;207:47-54.Google Scholar
  47. 47.
    Gordon MO, Beiser JA, Brandt JD, et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002 Jun;120(6):714-20; discussion 829-30.CrossRefGoogle Scholar
  48. 48.
    Grunwald JE, Hariprasad SM, DuPont J, et al. Foveolar choroidal blood flow in age-related macular degeneration. Invest Ophthalmol Vis Sci. 1998 Feb;39(2):385-90.Google Scholar
  49. 49.
    Grunwald JE, Metelitsina TI, Dupont JC, et al. Reduced foveolar choroidal blood flow in eyes with increasing AMD severity. Invest Ophthalmol Vis Sci. 2005 Mar;46(3):1033-8.CrossRefGoogle Scholar
  50. 50.
    Haefliger IO, Meyer P, Flammer J, Lüscher TF. The vascular endothelium as a regulator of the ocular circulation: a new concept in ophthalmology?. Surv Ophthalmol. 1994;39:123–132.CrossRefGoogle Scholar
  51. 51.
    Haefliger IO, Zschauer A, Anderson DR. Relaxation of retinal pericyte contractile tone through the nitric oxide-cyclic guanosine monophosphate pathway. Invest Ophthalmol Vis Sci. 1995;35:991–997.Google Scholar
  52. 52.
    Hamard P, Hamard H, Dufaux J, Quesnot S. Optic nerve head blood flow using a laser Doppler velocimeter and haemorheology in primary open angle glaucoma and normal pressure glaucoma. Br J Ophthalmol. 1994 Jun;78(6):449-53.CrossRefGoogle Scholar
  53. 53.
    Harris A, Harris M, Biller J, et al. Aging affects the retrobulbar circulation differently in women and men. Arch Ophthalmol. 2000 Aug;118(8):1076-80.CrossRefGoogle Scholar
  54. 54.
    Harris A, Rechtman E, Siesky B, et al. The role of optic nerve blood flow in the pathogenesis of glaucoma. Ophthalmol Clin North Am. 2005;18(3):345-53, v.CrossRefGoogle Scholar
  55. 55.
    Hayreh SS. Non-arteritic anterior ischemic optic neuropathy versus cerebral ischemic stroke. Graefes Arch Clin Exp Ophthalmol (2012) 250: 1255-60.CrossRefGoogle Scholar
  56. 56.
    Hayreh SS. Posterior ciliary artery circulation in health and disease: the Weisenfeld lecture. Invest Ophthalmol Vis Sci. 2004 Mar;45(3):749-57; 748.CrossRefGoogle Scholar
  57. 57.
    Hayreh SS. Posterior ischaemic optic neuropathy: clinical features, pathogenesis, and management. Eye (Lond). 2004;18(11):1188.CrossRefGoogle Scholar
  58. 58.
    Hernandez MR, Miao H, Lukas T. Astrocytes in glaucomatous optic neuropathy. Prog Brain Res. 2008;173:353-73.CrossRefGoogle Scholar
  59. 59.
    Hollows FC, Graham PA. Intra-ocular pressure, glaucoma, and glaucoma suspects in a defined population. Br J Ophthalmol. 1966;50(10):570-86.CrossRefGoogle Scholar
  60. 60.
    Hussain AA, Starita C, Marshall J. Transport characteristics of aging human Bruch's membrane: implications for age-related macular degeneration. In: Ioseliani O, editor. Focus on Macular Degeneration Research (AMD) Nova Biomedical Books; 2004. pp. 59–113.Google Scholar
  61. 61.
    Hyman L. Epidemiology of eye disease in the elderly. Eye (Lond). 1987;1 ( Pt 2):330.CrossRefGoogle Scholar
  62. 62.
    Iroku-Malize T, Kirsch S. Eye Conditions in Older Adults: Age-Related Macular Degeneration. FP Essent. 2016;445:24-8.Google Scholar
  63. 63.
    Jaulim A, Ahmed B, Khanam T, Chatziralli IP. Branch retinal vein occlusion: epidemiology, pathogenesis, risk factors, clinical features, diagnosis, and complications. An update of the literature. Retina. 2013 May;33(5):901-10.CrossRefGoogle Scholar
  64. 64.
    Jia Y, Bailey ST, Wilson DJ, et al. Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration. Ophthalmology. 2014;121:1435-44.CrossRefGoogle Scholar
  65. 65.
    Jia Y, Wei E, Wang X, et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014;121(7):1322–32.CrossRefGoogle Scholar
  66. 66.
    Kaiser HJ, Schoetzau A, Stumpfig D, Flammer J. Blood-flow velocities of the extraocular vessels in patients with high-tension and normal-tension primary open-angle glaucoma. Am J Ophthalmol 1997; 123: 320-327.CrossRefGoogle Scholar
  67. 67.
    Karia N. Retinal vein occlusion: pathophysiology and treatment options. Clin Ophthalmol. 2010; 4: 809–816.CrossRefGoogle Scholar
  68. 68.
    Kass MA, Heuer DK, Higginbotham EJ, et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002 Jun;120(6):701-13; discussion 829-30.CrossRefGoogle Scholar
  69. 69.
    Katsura Y, Okano T, Noritake M, et al. Hepatocyte growth factor in vitreous fluid of patients with proliferative diabetic retinopathy and other retinal disorders. Diabetes Care. 1998;21(10):1759.CrossRefGoogle Scholar
  70. 70.
    Kaup M, Plange N, Arend KO, Remky A. Retrobulbar haemodynamics in non-arteritic anterior ischaemic optic neuropathy. Br J Ophthalmol. 2006 Nov; 90(11): 1350–1353.CrossRefGoogle Scholar
  71. 71.
    Kitazawa Y, Shirai H, Go FJ. The effect of Ca2+-antagonist on visual field in low-tension glaucoma. Graefes Arch Clin Exp Ophthalmol 1989; 227: 408-412.CrossRefGoogle Scholar
  72. 72.
    Klaver JH, Greve EL, Goslinga H, et al. Blood and plasma viscosity measurements in patients with glaucoma. Br J Ophthalmol. 1985 Oct;69(10):765-70.CrossRefGoogle Scholar
  73. 73.
    Kohner EM, Patel V, Rassam SM. Role of blood flow and impaired autoregulation in the pathogenesis of diabetic retinopathy. Diabetes. 1995;44(6):603.CrossRefGoogle Scholar
  74. 74.
    Koseki N, Araie M, Yamagami J, et al. Effects of oral brovincamine on visual field damage in patients with normal-tension glaucoma with low-normal intraocular pressure. J Glaucoma. 1999 Apr;8(2):117-23.CrossRefGoogle Scholar
  75. 75.
    Kotsolis AI, Killian FA, Ladas ID, Yannuzzi LA. Fluorescein angiography and optical coherence tomography concordance for choroidal neovascularization in multifocal choroiditis. Br J Ophthalmol. 2010;94:1506-1508.CrossRefGoogle Scholar
  76. 76.
    Leske MC, Wu SY, Nemesure B, Hennis A. Incident open-angle glaucoma and blood pressure. Arch Ophthalmol. 2002 Jul;120(7):954-9.CrossRefGoogle Scholar
  77. 77.
    Lim LS, Mitchell P, Seddon JM, et al. Age-related macular degeneration. Lancet 2012;379:1728-1738.CrossRefGoogle Scholar
  78. 78.
    Lin WJ, Kuang HY. Oxidative stress induces autophagy in response to multiple noxious stimuli in retinal ganglion cells. Autophagy. 2014;10(10):1692-701.CrossRefGoogle Scholar
  79. 79.
    Liu L, Jia Y, Takusagawa HL, et al. Optical Coherence Tomography Angiography of the Peripapillary Retina in Glaucoma. JAMA ophthalmology. 2015;133(9):1045–52.CrossRefGoogle Scholar
  80. 80.
    Martinet V, Guigui B, Glacet-Bernard A, et al. Macular edema in central retinal vein occlusion: correlation between optical coherence tomography, angiography and visual acuity. Int Ophthalmol. 2012 Aug;32(4):369-77.CrossRefGoogle Scholar
  81. 81.
    Martinez A. Retrobulbar Ocular Blood Flow Evaluation in Open-Angle Glaucoma. In: Ferreras A. (eds) Glaucoma Imaging. Springer, Cham, 2016.Google Scholar
  82. 82.
    Mizutani M, Kern TS, Lorenzi M. Accelerated death of retinal microvascular cells in human and experimental diabetic retinopathy. J Clin Invest 1996;97:2883-2890.CrossRefGoogle Scholar
  83. 83.
    Moore D, Harris A, WuDunn D, et al. Dysfunctional regulation of ocular blood flow: a risk factor for glaucoma? Clin Ophthalmol. 2008;2(4):849–61.Google Scholar
  84. 84.
    Moult E, Choi W, Waheed NK, et al. Ultrahigh-speed swept-source OCT angiography in exudative AMD. Ophthalmic Surg Lasers Imaging Retina. 2014;45:496-505.CrossRefGoogle Scholar
  85. 85.
    Munk MR, Ceklic L, Ebneter A, et al. Macular atrophy in patients with long-term anti-VEGF treatment for neovascular age-related macular degeneration. Acta Ophthalmol. 2016;94:e757-e764.CrossRefGoogle Scholar
  86. 86.
    Netland PA, Chaturvedi N, Dreyer EB. Calcium channel blockers in the management of low-tension and open-angle glaucoma. Am J Ophthalmol. 1993 May 15;115(5):608-13.CrossRefGoogle Scholar
  87. 87.
    Novais EA, Adhi M, Moult EM, et al. Choroidal Neovascularization Analyzed on Ultrahigh-Speed Swept-Source Optical Coherence Tomography Angiography Compared to Spectral-Domain Optical Coherence Tomography Angiography. Am J Ophthalmol. 2016;164:80-8.CrossRefGoogle Scholar
  88. 88.
    Nowak JZ. AMD--the retinal disease with an unprecised etiopathogenesis: in search of effective therapeutics. Acta Pol Pharm. 2014;71:900-16.Google Scholar
  89. 89.
    Oellers P, Hahn P, Fekrat S. Ryan’s Retina. Sixth Edition. Edinburgh: Elsevier; 2018. 57: Central Retinal Vein Occlusion; 1166-1179.Google Scholar
  90. 90.
    Osborne NN. Mitochondria: their role in ganglion cell death and survival in primary open angle glaucoma. Exp Eye Res. 2010;90(6):750-7.CrossRefGoogle Scholar
  91. 91.
    Owen CG, Jarrar Z, Wormald R, et al. The estimated prevalence and incidence of late stage age related macular degeneration in the UK. Br J Ophthalmol. 2012;96:752-6.CrossRefGoogle Scholar
  92. 92.
    Pascolini D, Mariotti SP, Pokharel GP, et al. 2002 global update of available data on visual impairment: a compilation of population-based prevalence studies. Ophthalmic Epidemiol. 2004;11:67-115.CrossRefGoogle Scholar
  93. 93.
    Pournaras CJ, Logean E, Riva CE, et al. Regulation of subfoveal choroidal blood flow in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2006 Apr;47(4):1581-6.CrossRefGoogle Scholar
  94. 94.
    Prada D, Harris A, Guidoboni G, et al. Autoregulation and neurovascular coupling in the optic nerve head. Surv Ophthalmol. 2016 Mar-Apr;61(2):164-86.CrossRefGoogle Scholar
  95. 95.
    Quaranta L, Bettelli S, Uva MG, et al. Effect of Ginkgo biloba extract on preexisting visual field damage in normal tension glaucoma. Ophthalmology. 2003 Feb;110(2):359-62; discussion 362-4.CrossRefGoogle Scholar
  96. 96.
    Querques G, Miere A, Souied EH. Optical Coherence Tomography Angiography Features of Type 3 Neovascularization in Age-Related Macular Degeneration. Dev Ophthalmol. 2016;56:57-61.CrossRefGoogle Scholar
  97. 97.
    Quigley HA, West SK, Rodriguez J, et al. The prevalence of glaucoma in a population-based study of Hispanic subjects: Proyecto VER. Arch Ophthalmol. 2001 Dec;119(12):1819-26.CrossRefGoogle Scholar
  98. 98.
    Quigley HA. Neuronal death in glaucoma. Prog Retin Eye Res. 1999;18(1):39-57CrossRefGoogle Scholar
  99. 99.
    Ramrattan RS, van der Schaft TL, Mooy CM, et al. Morphometric analysis of Bruch’s membrane, the choriocapillaris, and the choroid in aging. Invest Ophthalmol Vis Sci. 1994 May;35(6):2857-64.Google Scholar
  100. 100.
    Ren R, Jonas JB, Tian G, et al. Cerebrospinal fluid pressure in glaucoma: a prospective study. Ophthalmology. 2010;117(2):259–66.CrossRefGoogle Scholar
  101. 101.
    Resch H, Garhofer G, Fuchsjäger-Mayrl G, et al. Endothelial dysfunction in glaucoma. Acta Ophthalmol. 2009 Feb;87(1):4-12.CrossRefGoogle Scholar
  102. 102.
    Ropper AH, Samuels MA, Klein JP. Chapter 13. Disturbances of Vision. In: Adams & Victor's Principles of Neurology, 10e New York, NY: McGraw-Hill; 2014.Google Scholar
  103. 103.
    Rosen RB, Andrade Romo JS, Krawitz BD, et al. Earliest Evidence of Preclinical Diabetic Retinopathy Revealed using OCT Angiography (OCTA) Perfused Capillary Density. Am J Ophthalmol. 2019 Jan 25. pii: S0002-9394(19)30025-X. doi: 10.1016/j.ajo.2019.01.012. [Epub ahead of print].CrossRefGoogle Scholar
  104. 104.
    Ross RD, Barofsky JM, Cohen G, et al. Presumed macular choroidal watershed vascular filling, choroidal neovascularization, and systemic vascular disease in patients with age-related macular degeneration. Am J Ophthalmol. 1998 Jan;125(1):71-80.CrossRefGoogle Scholar
  105. 105.
    Ryan S, Schachat A, Wilkinson C, et al. Retina. 5th ed. Philadelphia, PA: Saunders Elsevier; 2013.Google Scholar
  106. 106.
    Sawada A, Kitazawa Y, Yamamoto T, et al. Prevention of visual field defect progression with brovincamine in eyes with normal-tension glaucoma. Ophthalmology. 1996 Feb;103(2):283-8.CrossRefGoogle Scholar
  107. 107.
    Seknazi D, Coscas F, Sellam A, et al. OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY IN RETINAL VEIN OCCLUSION: Correlations Between Macular Vascular Density, Visual Acuity, and Peripheral Nonperfusion Area on Fluorescein Angiography. Retina. 2018 Aug;38(8):1562-1570.CrossRefGoogle Scholar
  108. 108.
    Shah R, Wormald RP. Glaucoma. BMJ Clin Evid. 2011.Google Scholar
  109. 109.
    Shirinifard A, Glazier JA, Swat M, et al. Adhesion Failures determine the pattern of choroidal neovascularization in the eye: A computer simulation study. PLoS Comput Biol. 2012;8(5):e1002440. doi: Epub 2012 May 3.CrossRefGoogle Scholar
  110. 110.
    Siaudvytyte L, Januleviciene I, Daveckaite A, et al. Neuroretinal rim area and ocular haemodynamic parameters in patients with normal-tension glaucoma with differing intracranial pressures. Br J Ophthalmol. 2016 Aug;100(8):1134-8.CrossRefGoogle Scholar
  111. 111.
    Souied EH, El Ameen A, Semoun O, et al. Optical Coherence Tomography Angiography of Type 2 Neovascularization in Age-Related Macular Degeneration. Dev Ophthalmol. 2016;56:52-6.CrossRefGoogle Scholar
  112. 112.
    Spraul CW, Grossniklaus HE. Characteristics of drusen and Bruch's membrane in postmortem eyes with age-related macular degeneration. Arch Ophthalmol. 1997;115:267–273.CrossRefGoogle Scholar
  113. 113.
    Spraul CW, Lang GE, Grossniklaus HE, Lang GK. Histologic and morphometric analysis of the choroid, Bruch's membrane, and retinal pigment epithelium in postmortem eyes with age-related macular degeneration and histologic examination of surgically excised choroidal neovascular membranes. Surv Ophthalmol. 1999;44:10–32.CrossRefGoogle Scholar
  114. 114.
    Su D, Garg S. The retinal function imager and clinical applications. Eye Vis (Lond). 2018 Aug 12;5:20. doi: 10.1186/s40662-018-0114-1. eCollection 2018.Google Scholar
  115. 115.
    Suh MH, Zangwill LM, Manalastas PI, et al. Optical Coherence Tomography Angiography Vessel Density in Glaucomatous Eyes with Focal Lamina Cribrosa Defects. Ophthalmology. 2016;123(11):2309–17.CrossRefGoogle Scholar
  116. 116.
    Takusagawa HL, Liu L, Ma KN, et al. Projection-Resolved Optical Coherence Tomography Angiography of Macular Retinal Circulation in Glaucoma. Ophthalmology. 2017;124(11):1589-1599.CrossRefGoogle Scholar
  117. 117.
    Talisa E, de Carlo BA, Marco A, et al. Spectral-Domain Optical Coherence Tomography Angiography of Choroidal Neovascularization. Ophthalmology 2015;122:1228-1238.CrossRefGoogle Scholar
  118. 118.
    The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. The AGIS Investigators. Am J Ophthalmol. 2000;130(4):429-40.Google Scholar
  119. 119.
    Tielsch JM, Katz J, Sommer A, et al. Hypertension, perfusion pressure, and primary open-angle glaucoma. A population-based assessment. Arch Ophthalmol. 1995 Feb;113(2):216-21.CrossRefGoogle Scholar
  120. 120.
    Topouzis F, Coleman AL, Harris A, et al. Association of blood pressure status with the optic disk structure in non-glaucoma subjects: the Thessaloniki Eye Study. Am J Ophthalmol. 2006;142(11):60–7.CrossRefGoogle Scholar
  121. 121.
    Topouzis F, Wilson MR, Harris A, et al. Association of open-angle glaucoma with perfusion pressure status in the Thessaloniki Eye Study. Am J Ophthalmol. 2013;155(5):843–51.CrossRefGoogle Scholar
  122. 122.
    Vasudevan SK, Gupta V, Crowston JG. Neuroprotection in glaucoma. Indian J Ophthalmol. 2011;59(Suppl):S102-13.CrossRefGoogle Scholar
  123. 123.
    Wang X, Jiang C, Ko T et al. Correlation between optic disc perfusion and glaucomatous severity in patients with open-angle glaucoma: an optical coherence tomography angiography study Graefes Arch Clin Exp Ophthalmol (2015) 253: 1557-1564.Google Scholar
  124. 124.
    Xu L, Wang YX, Jonas JB. Ocular perfusion pressure and glaucoma: the Beijing Eye Study. Eye (Lond). 2009 Mar;23(3):734-6.CrossRefGoogle Scholar
  125. 125.
    Yarmohammadi A, Zangwill LM, Diniz-Filho A, et al. Relationship between Optical Coherence Tomography Angiography Vessel Density and Severity of Visual Field Loss in Glaucoma. Ophthalmology. 2016;123(12):2498–508.CrossRefGoogle Scholar
  126. 126.
    Yuzurihara D, Iijima H. Visual outcome in central retinal and branch retinal artery occlusion. Jpn J Ophthalmol. 2004;48(5):490.CrossRefGoogle Scholar
  127. 127.
    Zeng Y, Cao D, Yu H, et al. Early retinal neurovascular impairment in patients with diabetes without clinically detectable retinopathy. Br J Ophthalmol. 2019 Jan 23. pii: bjophthalmol-2018-313582. doi: 10.1136/bjophthalmol-2018-313582. [Epub ahead of print].Google Scholar
  128. 128.
    Zhu J, Merkle CW, Bernucci MT, et al. Can OCT Angiography Be Made a Quantitative Blood Measurement Tool? Appl Sci (Basel). 2017;7:687.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Daniele Prada
    • 1
    Email author
  • L. Rowe
    • 2
  • A. Hajrasouliha
    • 2
  • T. Ciulla
    • 3
  • I. Januleviciene
    • 4
  • G. Chiaravalli
    • 5
    • 6
  • G. Guidoboni
    • 5
    • 6
  • A. Harris
    • 7
  1. 1.Istituto di Matematica Applicata e Tecnologie Informatiche “Enrico Magenes” del Consiglio Nazionale delle RicerchePaviaItaly
  2. 2.Department of OphthalmologyIndiana University School of MedicineIndianapolisUSA
  3. 3.Midwest Eye InstituteIndianapolisUSA
  4. 4.Eye ClinicLithuanian University of Health SciencesKaunasLithuania
  5. 5.Department of Electrical Engineering and Computer ScienceUniversity of MissouriColumbiaUSA
  6. 6.Department of MathematicsUniversity of MissouriColumbiaUSA
  7. 7.Icahn School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations