Anatomy and Physiology of the Cerebrospinal Fluid

  • David Fleischman
  • John Berdahl
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


The cerebrospinal fluid (CSF) is the primary circulating fluid of the central nervous system. It serves numerous important physiologic and maintenance functions, and its production and movement are highly regulated. Herein, we describe the key anatomic structures of importance in regard to CSF production, circulation, and absorption, followed by the regulatory mechanisms responsible for its proper functioning.


  1. 1.
    Felten D, Jozefowicz R. Netter’s Atlas of Human Neuroscience. 2003. 1st ed. Elsevier Health Sciences.Google Scholar
  2. 2.
    Kiernan J. Barrs The Human Nervous System: An Anatomical Viewpoint. 2005. 8th Ed. Lippincott Williams & Wilkins.Google Scholar
  3. 3.
    Purves D, Augustine G, Fitzpatrick D, Katz L, LaMantia A-S, McNamara J, Williams S. Neuroscience. 2001. 2nd ed. Sinauer Associates, Inc. Sunderland, Massachusetts.Google Scholar
  4. 4.
    Redzic ZB, Preston JE, Duncan JA, Chodobski A, Szmydynger-Chodobska J. The choroid plexus cerebrospinal fluid system: from development to aging. Curr Top Dev Biol 2005 71: 1–52Google Scholar
  5. 5.
    Last R, Tompsett D. Casts of the cerebral ventricles. Brit J Surg 1953. 40:525-543CrossRefGoogle Scholar
  6. 6.
    Matys T, Horsburgh A, Kirollos R, Massoud T. The Aqueduct of Sylvius: Applied 3-T magnetic resonance imaging anatomy and morphometry with neuroendoscopic relevance. Neurosurgery 2013: 73(ONS Suppl 2):ons132-ons140CrossRefGoogle Scholar
  7. 7.
    Woodlam DH, Millen JW. Anatomical considerations in the pathology of stenosis of the cerebral aqueduct. Brain 1953:76(1):104-12.CrossRefGoogle Scholar
  8. 8.
    Mollanji R, Bozanovic-Sosic R, Zakharov A, Makarian L, Johnston M. Blocking cerebrospinal fluid absorption through the cribriform plate increases resting intracranial pressure. Am J Physiol Regul Integr Comp Physiol. 2002. 282(6):R1593-9.CrossRefGoogle Scholar
  9. 9.
    Rammling M, Madan M, Paul L, Behnam B, Pattisapu JV. Evidence for reduced lymphatic CSF absorption in the H-Tx rat hydrocephalus model. Cerebrospinal Fluid Res. 2008 Oct 16;5:15CrossRefGoogle Scholar
  10. 10.
    Brierly JB, Field EJ. The connexions of the spinal subarachnoid space with the lymphatic system. Jl Anat. 1948. 82: 153-66.Google Scholar
  11. 11.
    Bozanovic-Sosic R, Mollanji R, Johnston MG. Spinal and cranial contributions to total cerebrospinal fluid transport. J Physiol Regul Integr Comp Physiol 2001 281(3): R909-16.CrossRefGoogle Scholar
  12. 12.
    Leach J, Jones B, Tomsick T, Stewart C, Balko M. Normal appearance of arachnoid granulations on contrast-enhanced CT and MR of the brain: differentiation from dural sinus disease. AJNR Am J Neuroradiol 1996. 17: 1523-32.Google Scholar
  13. 13.
    LeGros Clark W. On the pacchionian bodies. J Anat. 1920. 55:40-8.Google Scholar
  14. 14.
    Davson H, Segal M. Physiology of the CSF and Blood-Brain Barriers. 1995. 1st Ed. CRC Press.Google Scholar
  15. 15.
    Pollay M. The function and structure of the cerebrospinal fluid outflow system. Cerebrospinal Fluid Res 2010 21(7):9Google Scholar
  16. 16.
    Bloomfield I, Johnston I, Bilston L. Effects of proteins, blood cells and glucose on the viscosity of cerebrospinal fluid. Pediatr Neurosurg 1998 May;28(5):246-51CrossRefGoogle Scholar
  17. 17.
    Burris CA, Ashwood ER, Burns DE. Tietz Textbook of Clinical Chemistry and Molecular Diagnostics. 4th ed. 2006. St Louis: Elsevier Saunders. 1633:962-967Google Scholar
  18. 18.
    Kaplan Pesce. Clinical Chemistry: Theory, Analysis, Correlation. 5th ed. 2010. St. Louis, MO: Elsevier, Inc; 904-928.Google Scholar
  19. 19.
    Lui A, Polis T, Cicutti N. Densities of cerebrospinal fluid and spinal anaesthetic solution in surgical patients at body temperature. Can J Anaesth. 1998 45(4):297-303CrossRefGoogle Scholar
  20. 20.
    Spector R, Snodgrass S, Johanson C. A balanced view of the cerebrospinal fluid composition and functions: Focus on adult humans. Exp Neurol. 2015. 273:57-68.CrossRefGoogle Scholar
  21. 21.
    Brown P, Davies S, Speake T, Millar I. Molecular mechanisms of cerebrospinal fluid production. Neuroscience 2004 129: 957-70.CrossRefGoogle Scholar
  22. 22.
    May C, Kaye JA, Atack JR, Schapiro MB, Friedland RP, Rapoport SI. Cerebrospinal fluid production is reduced in healthy aging. Neurology. 1990. 40(3 Pt 1):500-3.CrossRefGoogle Scholar
  23. 23.
    Sakka L, Coll G, Chazal J. Anatomy and physiology of cerebrospinal fluid. Eur Ann Otorhinolayngol Head Neck Dis. 2011 128(6):309-16.CrossRefGoogle Scholar
  24. 24.
    Spector R, Snodgrass S, Johanson C. A balanced view of the cerebrospinal fluid composition and functions: Focus on adult humans. Exp Neurol. 2015. 273:57-68.CrossRefGoogle Scholar
  25. 25.
    Fleischman D, Berdahl J, Zaydlarova J, Stinnett S, Fautsch M, Allingham R. Cerebrospinal fluid pressure decreases with older age. PLoS One. 2012 7(12):e52664.CrossRefGoogle Scholar
  26. 26.
    Samuels B, Hammes N, Johnson P, Shekhar A, McKinnon S, Allingham R. Dorsomedial/perifornical hypothalamic stimulation increases intraocular pressure, intracranial pressure, and the translaminar pressure gradient. Invest Ophthalmol Vis Sci. 2012 53(11):7328-35.CrossRefGoogle Scholar
  27. 27.
    Spector R, Keep R, Snodgrass S, Smith Q, Johanson C. A balanced view of choroid plexus structure and function: Focus on adult humans. Exp Neurol. 2015. 267:78-86.CrossRefGoogle Scholar
  28. 28.
    Alperin N, Lee S, Sivaramakrishnan A, Hushek S. Quantifying the effect of posture on intracranial physiology in humans by MRI flow studies. Journal of Magnetic Resonance Imaging. 2005. 22:591-6.CrossRefGoogle Scholar
  29. 29.
    Cserr HF, Harling-Berg CJ, Knopf PM: Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol 1992 4:269-76.CrossRefGoogle Scholar
  30. 30.
    Jessen N, Munk A, Lundgaard, Nedergaard M. The glymphatic system – a beginner’s guide. Neurochem Res. 2015 40(12): 2583-99.CrossRefGoogle Scholar
  31. 31.
    Lee H, Xie L, Yu M, Kang H, Feng T, Deane R, Logan J, Nedergaard M, Benveniste H. The effect of body posture on brain glymphatic transport. J of Neuroscience 2015: 35(31):11034-44.CrossRefGoogle Scholar
  32. 32.
    Thiery J, Lomet D, Bougoin S, Malpoux B. Turnover rate of cerebrospinal fluid in female sheep: changes related to different light-dark cycles. Cerebrospinal Fluid Research 2009 6:9Google Scholar
  33. 33.
    Elman R. Spinal arachnoid granulations with especial reference to the cerebrospinal fluid. Bull Johns Hopkins Hosp. 1923. 34:99.Google Scholar
  34. 34.
    Albeck MJ, Skak C, Nielsen PR, Olsen KS, Borgesen SE, Gjerris F. Age dependency of resistance to cerebrospinal fluid outflow. J Neurosurg 1998. 89: 275–8.CrossRefGoogle Scholar
  35. 35.
    Berdahl J, Fleischman D, Zaydlarova J, Stinnett S, Allingham R, Fautsch M. Body mass index has a linear relationship with cerebrospinal fluid pressure. Invest Ophthalmol Vis Sci. 2012 53(3):1422-7.CrossRefGoogle Scholar
  36. 36.
    Lenfeldt N, Koskinen LOD, Bergenheim AT, Malm, J, Eklund A. CSF pressure assessed by lumbar puncture agrees with intracranial pressure. Neurology. 2007. 68:155–158CrossRefGoogle Scholar
  37. 37.
    Nagra G, Johnston MG. Impact of ageing on lymphatic cerebrospinal fluid absorption in the rat. Neuropathology and Applied Neurobiology 2007 33: 684–691CrossRefGoogle Scholar
  38. 38.
    Morgan WH, Yu DY, Cooper RL, Alder VA, Cringle SJ, Constable IJ. The influence of cerebrospinal fluid pressure on the lamina cribrosa tissue pressure gradient. Invest Ophthalmol Vis Sci. 1995 May; 36(6): 1163-72.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • David Fleischman
    • 1
  • John Berdahl
    • 2
  1. 1.Department of OphthalmologyUniversity of North Carolina at Chapel HillChapel HillUSA
  2. 2.Vance Thompson VisionSioux FallsUSA

Personalised recommendations