Advertisement

Imaging Techniques for the Visualization and Evaluation of Tear Film Dynamics

  • Jinxin Huang
  • Jannick P. Rolland
Chapter
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Abstract

Significant efforts have been made with the development of various imaging techniques to visualize and understand the tear film dynamics. This chapter reviews three imaging techniques with established impact on imaging the tear film dynamics: fluorescent imaging, interferometry, and optical coherence tomography.

References

  1. 1.
    Rieger, G., 1992. The importance of the precorneal tear film for the quality of optical imaging. British journal of ophthalmology, 76(3), pp.157-158.CrossRefGoogle Scholar
  2. 2.
    Tomlinson, A. and Khanal, S., 2005. Assessment of tear film dynamics: quantification approach. The ocular surface, 3(2), pp.81-95.CrossRefGoogle Scholar
  3. 3.
    Lemp, M.A., Baudouin, C., Baum, J., Dogru, M., Foulks, G.N., Kinoshita, S., Laibson, P., McCulley, J., Murube, J., Pflugfelder, S.C. and Rolando, M., 2007. The definition and classification of dry eye disease: report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop (2007). Ocular Surface, 5(2), pp.75-92.Google Scholar
  4. 4.
    Norn, M.S., 1969. Desiccation of the precorneal film. Acta ophthalmologica, 47(4), pp.865-880.CrossRefGoogle Scholar
  5. 5.
    Korb, D.R., 2000. Survey of preferred tests for diagnosis of the tear film and dry eye. Cornea, 19(4), pp.483-486.CrossRefGoogle Scholar
  6. 6.
    Cho, P. and Douthwaite, W., 1995. The relation between invasive and noninvasive tear break-up time. Optometry & vision science, 72(1), pp.17-22.Google Scholar
  7. 7.
    Bron, A.J., Abelson, M.B., Ousler, G., Pearce, E., Tomlinson, A., Yokoi, N., Smith, J.A., Begley, C., Caffery, B., Nichols, K. and Schaumberg, D., 2007. Methodologies to diagnose and monitor dry eye disease: report of the Diagnostic Methodology Subcommittee of the International Dry Eye WorkShop (2007). Ocular surface, 5(2), pp.108-152.Google Scholar
  8. 8.
    Norn, M.S., 1969. Dead, degenerate, and living cells in conjunctival fluid and mucous thread. Acta ophthalmologica, 47(5-6), pp.1102-1115.CrossRefGoogle Scholar
  9. 9.
    Pflugfelder, S.C., Tseng, S.C., Sanabria, O., Kell, H., Garcia, C.G., Felix, C., Feuer, W. and Reis, B.L., 1998. Evaluation of subjective assessments and objective diagnostic tests for diagnosing tear-film disorders known to cause ocular irritation. Cornea, 17(1), p.38.CrossRefGoogle Scholar
  10. 10.
    Begley, C.G., Liu, H., Chalmers, R.L., Renner, D. and Wilkinson, J., 2005. The forced staring tear breakup dynamics model: a quantitative method to measure tear film stability in dry eye. The ocular surface, 3, p.S47.Google Scholar
  11. 11.
    Liu, H., Begley, C.G., Chalmers, R., Wilson, G., Srinivas, S.P. and Wilkinson, J.A., 2006. Temporal progression and spatial repeatability of tear breakup. Optometry & vision science, 83(10), pp.723-730.Google Scholar
  12. 12.
    Begley, C., Simpson, T., Liu, H., Salvo, E.,Wu, Z., Bradley, A. and Situ, P., 2013. Quantitative analysis of tear film fluorescence and discomfort during tear film instability and thinning. Investigative ophthalmology & visual science, 54(4), pp.2645-2653.Google Scholar
  13. 13.
    Webber, W.R.S. and Jones, D.P., 1986. Continuous fluorophotometric method of measuring tear turnover rate in humans and analysis of factors affecting accuracy. Medical and biological engineering and computing, 24(4), p.386.CrossRefGoogle Scholar
  14. 14.
    Joshi, A., Maurice, D. and Paugh, J.R., 1996. A new method for determining corneal epithelial barrier to fluorescein in humans. Investigative ophthalmology & visual science, 37(6), pp.1008-1016.Google Scholar
  15. 15.
    King-Smith, P.E., Ramamoorthy, P., Braun, R.J. and Nichols, J.J., 2013. Tear film images and breakup analyzed using fluorescent quenching. Investigative ophthalmology & visual science, 54(9), p.6003.Google Scholar
  16. 16.
    King-Smith, P.E., Reuter, K.S., Braun, R.J., Nichols, J.J. and Nichols, K.K., 2013. Tear film breakup and structure studied by simultaneous video recording of fluorescence and tear film lipid layer images. Investigative ophthalmology & visual science, 54(7), pp.4900-4909.Google Scholar
  17. 17.
    Su, T.Y., Chang, S.W., Yang, C.J. and Chiang, H.K., 2014. Direct observation and validation of fluorescein tear film break-up patterns by using a dual thermal-fluorescent imaging system. Biomedical optics express, 5(8), pp.2614-2619.CrossRefGoogle Scholar
  18. 18.
    Doane, M.G., 1989. An instrument for in vivo tear film interferometry. Optometry and Vision Science, 66(6), pp.383-388.CrossRefGoogle Scholar
  19. 19.
    Fogt, N., King-Smith, P.E. and Tuell, G., 1998. Interferometric measurement of tear film thickness by use of spectral oscillations. JOSA A, 15(1), pp.268-275.CrossRefGoogle Scholar
  20. 20.
    King-Smith, P.E., Fink, B.A. and Fogt, N., 1999. Three interferometric methods for measuring the thickness of layers of the tear film. Optometry & vision science, 76(1), pp.19-32.Google Scholar
  21. 21.
    Goto, E., Dogru, M., Kojima, T. and Tsubota, K., 2003. Computer-synthesis of an interference color chart of human tear lipid layer, by a colorimetric approach. Investigative ophthalmology & visual science, 44(11), pp.4693-4697.Google Scholar
  22. 22.
    King-Smith, P.E., Fink, B.A., Fogt, N., Nichols, K.K., Hill, R.M. and Wilson, G.S., 2000. The thickness of the human precorneal tear film: evidence from reflection spectra. Investigative ophthalmology & visual science, 41(11), pp.3348-3359.Google Scholar
  23. 23.
    Prydal, J.I. and Campbell, F.W., 1992. Study of precorneal tear film thickness and structure by interferometry and confocal microscopy. Investigative ophthalmology & visual science, 33(6), pp.1996-2005.Google Scholar
  24. 24.
    Wojtkowski, M., Leitgeb, R., Kowalczyk, A., Bajraszewski, T. and Fercher, A.F., 2002. In vivo human retinal imaging by Fourier domain optical coherence tomography. Journal of biomedical optics, 7(3), pp.457-463.CrossRefGoogle Scholar
  25. 25.
    Huang, D., Swanson, E.A., Lin, C.P., Schuman, J.S., Stinson, W.G., Chang, W., Hee, M.R., Flotte, T., Gregory, K., Puliafito, C.A. and Fujimoto, J.G., 1991. Optical coherence tomography. Science (New York, NY), 254(5035), p.1178.CrossRefGoogle Scholar
  26. 26.
    Fercher, A.F., Hitzenberger, C.K., Kamp, G. and El-Zaiat, S.Y., 1995. Measurement of intraocular distances by backscattering spectral interferometry. Optics communications, 117(1-2), pp.43-48.CrossRefGoogle Scholar
  27. 27.
    De Boer, J.F., Cense, B., Park, B.H., Pierce, M.C., Tearney, G.J. and Bouma, B.E., 2003. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Optics letters, 28(21), pp.2067-2069.CrossRefGoogle Scholar
  28. 28.
    Bouma, B.E., Yun, S.H., Vakoc, B.J., Suter, M.J. and Tearney, G.J., 2009. Fourier-domain optical coherence tomography: recent advances toward clinical utility. Current opinion in biotechnology, 20(1), pp.111-118.CrossRefGoogle Scholar
  29. 29.
    Wang, J., Fonn, D., Simpson, T.L. and Jones, L., 2003. Precorneal and pre-and postlens tear film thickness measured indirectly with optical coherence tomography. Investigative ophthalmology & visual science, 44(6), pp.2524-2528.Google Scholar
  30. 30.
    Werkmeister, R.M., Alex, A., Kaya, S., Unterhuber, A., Hofer, B., Riedl, J., Bronhagl, M., Vietauer, M., Schmidl, D., Schmoll, T. and Garhöfer, G., 2013. Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography. Investigative ophthalmology & visual science, 54(8), pp.5578-5583.Google Scholar
  31. 31.
    Yadav, R., Lee, K.S., Rolland, J.P., Zavislan, J.M., Aquavella, J.V. and Yoon, G., 2011. Micrometer axial resolution OCT for corneal imaging. Biomedical optics express, 2(11), pp.3037-3046.CrossRefGoogle Scholar
  32. 32.
    Huang, J., Clarkson, E., Kupinski, M., Lee, K.S., Maki, K.L., Ross, D.S., Aquavella, J.V. and Rolland, J.P., 2013. Maximum-likelihood estimation in optical coherence tomography in the context of the tear film dynamics. Biomedical optics express, 4(10), pp.1806-1816.CrossRefGoogle Scholar
  33. 33.
    Huang, J., Lee, K.S., Clarkson, E., Kupinski, M., Maki, K.L., Ross, D.S., Aquavella, J.V. and Rolland, J.P., 2013. Phantom study of tear film dynamics with optical coherence tomography and maximum-likelihood estimation. Optics letters, 38(10), pp.1721-1723.CrossRefGoogle Scholar
  34. 34.
    Huang, J., Yuan, Q., Zhang, B., Xu, K., Tankam, P., Clarkson, E., Kupinski, M.A., Hindman, H.B., Aquavella, J.V., Suleski, T.J. and Rolland, J.P., 2014. Measurement of a multi-layered tear film phantom using optical coherence tomography and statistical decision theory. Biomedical optics express, 5(12), pp.4374-4386.CrossRefGoogle Scholar
  35. 35.
    Huang, J., Yao, J., Cirucci, N., Ivanov, T. and Rolland, J.P., 2015. Performance analysis of optical coherence tomography in the context of a thickness estimation task. Journal of biomedical optics, 20(12), p.121306.Google Scholar
  36. 36.
    Huang, J., Hindman, H.B. and Rolland, J.P., 2016. In vivo thickness dynamics measurement of tear film lipid and aqueous layers with optical coherence tomography and maximum-likelihood estimation. Optics letters, 41(9), pp.1981-1984.CrossRefGoogle Scholar
  37. 37.
    King-Smith, P.E., Fink, B.A., Nichols, J.J., Nichols, K.K., Braun, R.J. and McFadden, G.B., 2009. The contribution of lipid layer movement to tear film thinning and breakup. Investigative ophthalmology & visual science, 50(6), pp.2747-2756.Google Scholar
  38. 38.
    King-Smith, P.E., Hinel, E.A. and Nichols, J.J., 2010. Application of a novel interferometric method to investigate the relation between lipid layer thickness and tear film thinning. Investigative ophthalmology & visual science, 51(5), pp.2418-2423.Google Scholar
  39. 39.
    dos Santos, V.A., Schmetterer, L., Gröschl, M., Garhofer, G., Schmidl, D., Kucera, M., Unterhuber, A., Hermand, J.P. and Werkmeister, R.M., 2015. In vivo tear film thickness measurement and tear film dynamics visualization using spectral domain optical coherence tomography. Optics express, 23(16), pp.21043-21063.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jinxin Huang
    • 1
    • 2
  • Jannick P. Rolland
    • 3
  1. 1.Department of Physics and Astronomy, University of RochesterRochesterUSA
  2. 2.Corning Research and Development CorporationCorningUSA
  3. 3.The Institute of Optics, University of RochesterRochesterUSA

Personalised recommendations