Advertisement

Calabi–Yau Manifolds with Torsion and Geometric Flows

  • Sébastien PicardEmail author
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2246)

Abstract

The main theme of these lectures is the study of Hermitian metrics in non-Kähler complex geometry. We will specialize to a certain class of Hermitian metrics which generalize Kähler Ricci-flat metrics to the non-Kähler setting. These non-Kähler Calabi–Yau manifolds have their origins in theoretical physics, where they were introduced in the works of C. Hull and A. Strominger. We will introduce tools from geometric analysis, namely geometric flows, to study this non-Kähler Calabi–Yau geometry. More specifically, we will discuss the Anomaly flow, which is a version of the Ricci flow customized to this particular geometric setting. This flow was introduced in joint works with Duong Phong and Xiangwen Zhang. Section 2.1 contains a review of Hermitian metrics, connections, and curvature. Section 2.2 is dedicated to the geometry of Calabi–Yau manifolds equipped with a conformally balanced metric. Section 2.3 introduces the Anomaly flow in the simplest case of zero slope, where the flow can be understood as a deformation path connecting non-Kähler to Kähler geometry. Section 2.4 concerns the Anomaly flow with α′ corrections, which is motivated from theoretical physics and canonical metrics in non-Kähler geometry.

Notes

Acknowledgements

I would like to first thank D.H. Phong, my former Ph.D. advisor, for guiding me through this material over the course of many years, and whose style shaped the presentation of this course. I thank Xiangwen Zhang and Teng Fei, whose joint work is discussed here, for countless inspiring discussions on the content of these notes. I also thank Daniele Angella, Giovanni Bazzoni, Slawomir Dinew, Kevin Smith, Freid Tong, and Yuri Ustinovskiy for valuable comments and corrections. These lecture notes were prepared for a course given at the CIME Summer School on complex non-Kähler geometry in 2018, and I would like to thank D. Angella, L. Arosio and E. Di Nezza for the invitation and for organizing a wonderful conference.

References

  1. [AG86]
    E. Abbena, A. Grassi, Hermitian left invariant metrics on complex Lie groups and cosymplectic Hermitian manifolds. Bollettino della Unione Matematica Italiana-A 5(6), 371–379 (1986)MathSciNetzbMATHGoogle Scholar
  2. [AG121]
    B. Andreas, M. Garcia-Fernandez, Solutions of the Strominger system via stable bundles on Calabi-Yau threefolds. Commun. Math. Phys. 315, 153–168 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  3. [AG122]
    B. Andreas, M. Garcia-Fernandez, Heterotic non-Kähler geometries via polystable bundles on Calabi-Yau threefolds. J. Geom. Phys. 62(2), 183–188 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  4. [AN13]
    D. Angella, The cohomologies of the Iwasawa manifold and of its small deformations. J. Geom. Anal. 23(3), 1355–1378 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  5. [AT13]
    D. Angella, A. Tomassini, On the \(\partial \overline {\partial } \)-Lemma and Bott-Chern cohomology. Invent. Math. 192(1), 71–81 (2013)Google Scholar
  6. [ADT16]
    D. Angella, G. Dloussky, A. Tomassini, On Bott-Chern cohomology of compact complex surfaces. Annali di Matematica Pura ed Applicata 195(1), 199–217 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  7. [ACS17]
    D. Angella, S. Calamai, C. Spotti, On the Chern-Yamabe problem. Math. Res. Lett. 24(3), 645–677 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  8. [BD02]
    K. Becker, K. Dasgupta, Heterotic strings with torsion. J. High Energy Phys. 11, 006 (2002)MathSciNetGoogle Scholar
  9. [BBDG03]
    K. Becker, M. Becker, K. Dasgupta, P. Green, Compactifications of heterotic theory on non-Kahler complex manifolds. I. J. High Energy Phys. 4(04), 1–59 (2003)zbMATHGoogle Scholar
  10. [BI89]
    J.M. Bismut, A local index theorem for non Kahler manifolds. Math. Ann. 284(4), 681–699 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  11. [BL05]
    Z. Blocki, Weak solutions to the complex Hessian equation. Ann. Inst. Fourier 55(5), 1735–1756 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  12. [BR05]
    R. Bryant, Some remarks on G2-structures, in Proceedings of Gokova Geometry-Topology Conference (2005), pp. 75–109Google Scholar
  13. [BU88]
    N. Buchdahl, Hermitian-Einstein connections and stable vector bundles over compact complex surfaces. Math. Ann. 280, 625–684 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  14. [CA58]
    E. Calabi, Construction and properties of some 6-dimensional almost complex manifolds. Trans. Am. Math. Soc. 87(2), 407–438 (1958)MathSciNetzbMATHGoogle Scholar
  15. [CE53]
    E. Calabi, B. Eckmann, A class of compact complex manifolds which are not algebraic. Ann. Math. 58, 494–500 (1953)MathSciNetzbMATHCrossRefGoogle Scholar
  16. [CA851]
    P. Candelas, G. Horowitz, A. Strominger, E. Witten, Vacuum configurations for superstrings. Nucl. Phys. B 258, 46–74 (1985)MathSciNetCrossRefGoogle Scholar
  17. [CA852]
    H.-D. Cao, Deformation of Kahler matrics to Kahler-Einstein metrics on compact Kahler manifolds. Invent. Math. 81(2), 359–372 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  18. [CSW18]
    X.X. Chen, S. Sun, B. Wang, Kahler–Ricci flow, Kahler–Einstein metric, and K-stability. Geom. Topol. 22(6), 3145–3173 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  19. [CHZ118]
    J. Chu, L. Huang, X. Zhu, The Fu-Yau equation in higher dimensions (2018). arXiv:1801.09351Google Scholar
  20. [CHZ218]
    J. Chu, L. Huang, X. Zhu, The Fu-Yau equation on compact astheno-Kahler manifolds (2018). arXiv:1803.01475Google Scholar
  21. [CHT18]
    T. Collins, T. Hisamoto, R. Takahashi, The inverse Monge-Ampere flow and applications to Kahler-Einstein metrics (2018). arXiv:1712.01685Google Scholar
  22. [CJY15]
    T. Collins, A. Jacob, S.-T. Yau, (1,1) forms with specified Lagrangian phase: a priori estimates and algebraic obstructions (2015). arXiv:1508.01934Google Scholar
  23. [DRS99]
    K. Dasgupta, G. Rajesh, S. Sethi, M theory, orientifolds and g-flux. J. High Energy Phys. 8, 023 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  24. [DS14]
    X. de la Ossa, E. Svanes, Holomorphic bundles and the moduli space of N=1 supersymmetric heterotic compactifications. J. High Energy Phys. 2014, 123 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  25. [DL17]
    E. Di Nezza, C. Lu, Uniqueness and short time regularity of the weak Kahler-Ricci flow. Adv. Math. 305, 953–993 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  26. [DK17]
    S. Dinew, S. Kolodziej, Liouville and Calabi-Yau type theorems for complex Hessian equations. Am. J. Math. 139(2), 403–415 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  27. [DL15]
    S. Dinew, C.H. Lu, Mixed Hessian inequalities and uniqueness in the class \(\mathscr {E}(X,\omega , m)\). Math. Z. 279(3–4), 753–766 (2015)Google Scholar
  28. [DDT17]
    S. Dinew, H.S. Do, T.D. To, A viscosity approach to the Dirichlet problem for degenerate complex Hessian type equations (2017). arXiv:1712.08572Google Scholar
  29. [DPZ18]
    S. Dinew, S. Plis, X. Zhang, Regularity of degenerate Hessian equation (2018). arXiv:1805.05761Google Scholar
  30. [DO85]
    S.K. Donaldson, Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles. Proc. Lond. Math. Soc. 50(1), 1–26 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  31. [FE16]
    T. Fei, A construction of non-Kähler Calabi-Yau manifolds and new solutions to the Strominger system. Adv. Math. 302(22), 529–550 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  32. [FE15]
    T. Fei, Stable forms, vector cross products and their applications in geometry (2015). arXiv:1504.02807Google Scholar
  33. [FE17]
    T. Fei, Some torsional local models of heterotic strings. Commun. Anal. Geom. 25(5), 941–968 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  34. [FY15]
    T. Fei, S.T. Yau, Invariant solutions to the Strominger system on complex Lie groups and their quotients. Commun. Math. Phys. 338(3), 1–13 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  35. [FGP18]
    T. Fei, B. Guo, D.H. Phong, On convergence criteria for the coupled flow of Li-Yuan-Zhang (2018). arXiv:1808.06968Google Scholar
  36. [FHP17]
    T. Fei, Z. Huang, S. Picard, A construction of infinitely many solutions to the Strominger system (2017). arXiv:1703.10067 (preprint)Google Scholar
  37. [FHP17]
    T. Fei, Z. Huang, S. Picard, The anomaly flow over Riemann surfaces (2017). arXiv:1711.08186Google Scholar
  38. [FIUV09]
    M. Fernandez, S. Ivanov, L. Ugarte, R. Villacampa, Non-Kahler heterotic string compactifications with non-zero fluxes and constant dilaton. Commun. Math. Phys. 288, 677–697 (2009)zbMATHCrossRefGoogle Scholar
  39. [FIUV14]
    M. Fernandez, S. Ivanov, L. Ugarte, R. Villacampa, Non-Kahler heterotic string solutions with non-zero fluxes and non-constant dilaton. J. High Energy Phys. 2014)(6), 73 (2014)Google Scholar
  40. [FG04]
    A. Fino, G. Grantcharov, Properties of manifolds with skew-symmetric torsion and special holonomy. Adv. Math. 189(2), 439–450 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  41. [FT11]
    A. Fino, A. Tomassini, On astheno-Kahler metrics. J. Lond. Math. Soc. 83(2), 290–308 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  42. [FV16]
    A. Fino, L. Vezzoni, On the existence of balanced and SKT metrics on nilmanifolds. Proc. Am. Math. Soc. 144(6), 2455–2459 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  43. [FGV]
    A. Fino, G. Grantcharov, L. Vezzoni, Astheno-Kähler and balanced structures on fibrations. Int. Math. Res. Not. arXiv:1608.06743Google Scholar
  44. [FR85]
    D. Friedan, Nonlinear models in 2+ epsilon dimensions. Ann. Phys. 163(2), 318–419 (1985)zbMATHCrossRefGoogle Scholar
  45. [FX14]
    J.X. Fu, J. Xiao, Relations between the Kahler cone and the balanced cone of a Kahler manifold. Adv. Math. 263, 230–252 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  46. [FY07]
    J.X. Fu, S.T. Yau, A Monge-Ampère type equation motivated by string theory. Commun. Anal. Geom. 15(1), 29–76 (2007)zbMATHCrossRefGoogle Scholar
  47. [FY08]
    J.X. Fu, S.T. Yau, The theory of superstring with flux on non-Kähler manifolds and the complex Monge-Ampère equation. J. Differ. Geom. 78(3), 369–428 (2008)zbMATHCrossRefGoogle Scholar
  48. [FY09]
    J.X. Fu, L.S. Tseng, S.T. Yau, Local heterotic torsional models. Commun. Math. Phys. 289, 1151–1169 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  49. [FLY12]
    J.-X. Fu, J. Li, S.-T. Yau, Balanced metrics on non-Kahler Calabi-Yau threefolds. J. Differ. Geom. 90(1), 81–129 (2012)zbMATHCrossRefGoogle Scholar
  50. [FWW13]
    J.X. Fu, Z.-Z. Wang, D.-M. Wu, Semilinear equations, the γ k function, and generalized Gauduchon metrics. J. Eur. Math. Soc. 15, 659–680 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  51. [GA16]
    M. Garcia-Fernandez, Lectures on the Strominger system. Travaux Math. XXIV, 7–61 (2016). Special Issue: School GEOQUANT at the ICMATGoogle Scholar
  52. [GA40]
    M. Garcia-Fernandez, T-dual solutions of the Hull-Strominger system on non-Kahler threefolds (2018). arXiv:1810.04740Google Scholar
  53. [GRST18]
    M. Garcia-Fernandez, R. Rubio, C. Shahbazi, C. Tipler, Canonical metrics on holomorphic Courant algebroids (2018). arXiv:1803.01873Google Scholar
  54. [GA75]
    P. Gauduchon, La constante fondamentale d’un fibre en droites au-dessus d’une variete hermitienne compacte. C.R. Acad. Sci. Paris Ser. T. 281, 393–396 (1975)Google Scholar
  55. [GA77]
    P. Gauduchon, Le theoreme de l’excentricite nulle. C. R. Acad. Sci. Paris Ser. A-B 285(5), 387–390 (1977)MathSciNetzbMATHGoogle Scholar
  56. [GA97]
    P. Gauduchon, Hermitian connections and Dirac operators. Bollettino della Unione Matematica Italiana-B 11(2), 257–288 (1997)MathSciNetzbMATHGoogle Scholar
  57. [GMPW04]
    J. Gauntlett, D. Martelli, S. Pakis, D. Waldram, G-structures and wrapped NS5-branes. Commun. Math. Phys. 247(2), 421–445 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  58. [GGI13]
    K. Gimre, C. Guenther, J. Isenberg, A geometric introduction to the two-loop renormalization group flow. J. Fixed Point Theory Appl. 14(1), 3–20 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  59. [GO04]
    E. Goldstein, S. Prokushkin, Geometric model for complex non-Kähler manifolds with SU(3) structure. Commun. Math. Phys. 251(1), 65–78 (2004)zbMATHCrossRefGoogle Scholar
  60. [GR11]
    G. Grantcharov, Geometry of compact complex homogeneous spaces with vanishing first Chern class. Adv. Math. 226, 3136–3159 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  61. [GGP08]
    D. Grantcharov, G. Grantcharov, Y.S. Poon, Calabi-Yau connections with torsion on toric bundles. J. Differ. Geom. 78(1), 13–32 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  62. [GR69]
    A. Gray, Vector cross products on manifolds. Trans. AMS 141, 465–504 (1969)MathSciNetzbMATHCrossRefGoogle Scholar
  63. [GS87]
    M. Green, J. Schwarz, Anomaly cancellations in supersymmetric D = 10 gauge theory and superstring theory. Phys. Lett. B. 149, 117–122 (1987)MathSciNetCrossRefGoogle Scholar
  64. [GZ17]
    V. Guedj, A. Zeriahi, Regularizing properties of the twisted Kahler-Ricci flow. J. Reine Angew. Math. 729, 275–304 (2017)MathSciNetzbMATHGoogle Scholar
  65. [HIS16]
    N. Halmagyi, D. Israel, E. Svanes, The Abelian heterotic conifold. J. High Energy Phys. 7, 29 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  66. [HA82]
    R. Hamilton, Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17, 255–306 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  67. [HL11]
    Q. Han, F. Lin, Elliptic Partial Differential Equations, vol. 1 (American Mathematical Society, Providence, 2011)zbMATHGoogle Scholar
  68. [HMW10]
    Z. Hou, X.N. Ma, D. Wu, A second order estimate for complex Hessian equations on a compact Kähler manifold. Math. Res. Lett. 17, 547–561 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  69. [HU186]
    C. Hull, Superstring compactifications with torsion and space-time supersymmetry, in Proceedings of the First Torino Meeting on Superunification and Extra Dimensions, ed. by R. D’ Auria, P. Fre (World Scientific, Singapore, 1986)Google Scholar
  70. [HU286]
    C. Hull, Compactifications of the heterotic superstring. Phys. Lett. B 178, 357–364 (1986)MathSciNetCrossRefGoogle Scholar
  71. [HU305]
    D. Huybrechts, Complex Geometry: An Introduction Universitext (Springer, Berlin, 2005)zbMATHGoogle Scholar
  72. [IP01]
    S. Ivanov, G. Papadopoulos, Vanishing theorems and string backgrounds. Classical Quant. Gravity 18, 1089–1110 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  73. [JY93]
    J. Jost, S.-T. Yau, A nonlinear elliptic system for maps from Hermitian to Riemannian manifolds and rigidity theorems in Hermitian geometry. Acta Math. 170(2), 221–254 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  74. [KA09]
    S. Karigiannis, Flows of G2-structures, I. Quar. J. Math. 60(4), 487–522 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  75. [LU17]
    A. Latorre, L. Ugarte, On non-Kähler compact complex manifolds with balanced and astheno-Kähler metrics. C. R. Acad. Sci. Paris, Ser. I 355, 90–93 (2017)Google Scholar
  76. [LE11]
    H. Lee, Strominger’s system on non-Kahler Hermitian manifolds. Ph.D. Dissertation. University of Oxford (2011)Google Scholar
  77. [LY86]
    J. Li, S.T. Yau, Hermitian-Yang-Mills connections on non-Kahler manifolds, in Mathematical Aspects of String Theory. Advanced Series in Mathematical Physics (World Scientific Publishing, Singapore, 1986), pp. 560–573Google Scholar
  78. [LY05]
    J. Li, S.T. Yau, The existence of supersymmetric string theory with torsion. J. Differ. Geom. 70(1), 143–181 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  79. [LY12]
    K.F. Liu, X.K. Yang, Geometry of Hermitian manifolds. Int. J. Math. 23(06), 1250055 (2012)Google Scholar
  80. [LY17]
    K.F. Liu, X.K. Yang, Ricci curvatures on Hermitian manifolds. Trans. Am. Math. Soc. 369(7), 5157–5196 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  81. [MS11]
    D. Martelli, J. Sparks, Non-Kahler heterotic rotations. Adv. Theor. Math. Phys. 15(1), 131–174 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  82. [MT01]
    K. Matsuo, T. Takahashi, On compact astheno-Kähler manifolds. Colloq. Math. 2(89), 213–221 (2001)zbMATHCrossRefGoogle Scholar
  83. [ME90]
    W.H. Meeks III, The theory of triply periodic minimal surfaces. Indiana Univ. Math. J. 39(3), 877–936 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  84. [MI82]
    M.L. Michelsohn, On the existence of special metrics in complex geometry. Acta Math. 149, 261–295 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  85. [OL09]
    T.A. Oliynyk, The second-order renormalization group flow for nonlinear sigma models in two dimensions. Classical Quant. Gravity 26(10), 105020 (2009)Google Scholar
  86. [OUV17]
    A. Otal, L. Ugarte, R. Villacampa, Invariant solutions to the Strominger system and the heterotic equations of motion on solvmanifolds. Nucl. Phys. B 920, 442–474 (2017)zbMATHCrossRefGoogle Scholar
  87. [PS06]
    D.H. Phong, J. Sturm, On stability and the convergence of the Kahler-Ricci flow. J. Differ. Geom. 72(1), 149–168 (2006)zbMATHCrossRefGoogle Scholar
  88. [PT17]
    D.H. Phong, T.D. To, Fully non-linear parabolic equations on compact Hermitian manifolds (2017). arXiv:1711.10697Google Scholar
  89. [PPZ117]
    D.H. Phong, S. Picard, X.W. Zhang, On estimates for the Fu-Yau generalization of a Strominger system (2017). J. Reine Angew. Math. arXiv:1507.08193Google Scholar
  90. [PPZ217]
    D.H. Phong, S. Picard, X.W. Zhang, The Anomaly flow on unimodular Lie groups (2017). arXiv:1705.09763Google Scholar
  91. [PPZ118]
    D.H. Phong, S. Picard, X.W. Zhang, Fu-Yau Hessian equations (2018). arXiv:1801.09842Google Scholar
  92. [PPZ19]
    D.H. Phong, S. Picard, X.W. Zhang, A flow of conformally balanced metrics with Kähler fixed points (2019). arXiv:1805.01029Google Scholar
  93. [PPZ116]
    D.H. Phong, S. Picard, X.W. Zhang, A second order estimate for general complex Hessian equations. Anal. PDE 9(7), 1693–1709 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  94. [PPZ216]
    D.H. Phong, S. Picard, X.W. Zhang, The Fu-Yau equation with negative slope parameter. Invent. Math. 209(2), 541–576 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  95. [PPZ317]
    D.H. Phong, S. Picard, X.W. Zhang, New curvature flows in complex geometry. Surveys Differ. Geom. 22(1), 331–364 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  96. [PPZ218]
    D.H. Phong, S. Picard, X.W. Zhang, Geometric flows and Strominger systems. Math. Z. 288, 101–113 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  97. [PPZ318]
    D.H. Phong, S. Picard, X.W. Zhang, Anomaly flows. Commun. Anal. Geom. 26(4), 955–1008 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  98. [PPZ418]
    D.H. Phong, S. Picard, X.W. Zhang, The Anomaly flow and the Fu-Yau equation. Ann. PDE 4(2), 13 (2018)Google Scholar
  99. [ST07]
    J. Song, G. Tian, The Kahler-Ricci flow on surfaces of positive Kodaira dimension. Invent. Math. 170(3), 609–653 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  100. [SW13]
    J. Song, B. Weinkove, An introduction to the Kahler–Ricci flow, in An Introduction to the Kahler-Ricci Flow (Springer, Cham, 2013), pp. 89–188zbMATHCrossRefGoogle Scholar
  101. [ST10]
    J. Streets, G. Tian, A parabolic flow of pluriclosed metrics. Int. Math. Res. Not. 16, 3101–3133 (2010)MathSciNetzbMATHGoogle Scholar
  102. [ST11]
    J. Streets, G. Tian, Hermitian curvature flow. J. Eur. Math. Soc. 13(3), 601–634 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  103. [ST86]
    A. Strominger, Superstrings with torsion. Nuclear Phys. B 274(2), 253–284 (1986)MathSciNetCrossRefGoogle Scholar
  104. [STW17]
    G. Szekelyhidi, V. Tosatti, B. Weinkove, Gauduchon metrics with prescribed volume form. Acta Math. 219(1), 181–211 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  105. [TZ06]
    G. Tian, Z. Zhang, On the Kahler-Ricci flow on projective manifolds of general type. Chin. Ann. Math. Ser. B 27(2), 179–192 (2006)zbMATHCrossRefGoogle Scholar
  106. [TZ16]
    G. Tian, Z. Zhang, Regularity of Kahler-Ricci flows on Fano manifolds. Acta Math. 216(1), 127–176 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  107. [TO09]
    V. Tosatti, Limits of Calabi-Yau metrics when the Kahler class degenerates. J. Eur. Math. Soc. 11, 755–776 (2009)zbMATHCrossRefGoogle Scholar
  108. [TO15]
    V. Tosatti, Non-Kahler Calabi-Yau manifolds. Contemp. Math. 644, 261–277 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  109. [TW10]
    V. Tosatti, B. Weinkove, The complex Monge-Ampere equation on compact Hermitian manifolds. J. Am. Math. Soc. 23(4), 1187–1195 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  110. [TW15]
    V. Tosatti, B. Weinkove, On the evolution of a Hermitian metric by its Chern-Ricci form. J. Differ. Geom. 99(1), 125–163 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  111. [TW17]
    V. Tosatti, B. Weinkove, The Monge-Ampère equation for (n-1)-plurisubharmonic functions on a compact Kähler manifold. J. Am. Math. Soc. 30(2), 311–346 (2017)zbMATHCrossRefGoogle Scholar
  112. [TR08]
    M. Traizet, On the genus of triply periodic minimal surfaces. J. Differ. Geom. 79(2), 243–275 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  113. [UG07]
    L. Ugarte, Hermitian structures on six-dimensional nilmanifolds. Transform. Groups 12(1), 175–202 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  114. [UV14]
    L. Ugarte, R. Villacampa, Non-nilpotent complex geometry of nilmanifolds and heterotic supersymmetry. Asian J. Math. 18(2), 229–246 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  115. [UV15]
    L. Ugarte, R. Villacampa, Balanced Hermitian geometry on 6-dimensional nilmanifolds. Forum Math. 27(2), 1025–1070 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  116. [UY85]
    K. Uhlenbeck, S.T. Yau, On the existence of Hermitian-Yang-Mills connections in stable vector bundles. Commun. Pure Appl. Math. 39(Suppl.), S257–S293 (1985). Frontiers of the mathematical sciences: 1985 (New York, 1985)Google Scholar
  117. [US16]
    Y. Ustinovskiy, The Hermitian curvature flow on manifolds with non-negative Griffiths curvature (2016). arXiv:1604.04813Google Scholar
  118. [WA54]
    H.-C. Wang, Closed manifolds with homogeneous complex structure. Am. J. Math. 76(1), 1–32 (1954)MathSciNetzbMATHCrossRefGoogle Scholar
  119. [YA78]
    S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I. Commun. Pure Appl. Math. 31, 339–411 (1978)zbMATHCrossRefGoogle Scholar
  120. [ZH16]
    T. Zheng, A parabolic Monge-Ampere type equation of Gauduchon metrics. Int. Math. Res. Not. 2019(17), 5497–5538 (2019)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MathematicsHarvard UniversityCambridgeUSA

Personalised recommendations