Advertisement

Explosive Analysis: Introduction to Post-Blast Analysis

  • B. M. Crane CalhounEmail author
  • R. F. MothersheadII
Chapter

Abstract

The job of the forensic chemist in post-blast analysis is to look for the presence of explosive residues by conducting a visual examination and chemical analysis of evidence submitted. Analytical schemes are used to gather data in order to identify the explosive. Data interpretation can be challenging and report wording must be carefully considered to accurately present the analytical results.

Keywords

Analysis Collection Contamination Explosives Inorganic Nitrate esters Nitramines Nitroaromatics Organic Peroxide Post-blast Quality control Residues 

References

  1. 1.
    Song-im N, Benson S, Lennard C (2012) Evaluation of different sampling media for their potential use as a combined swab for the collection of both organic and inorganic explosive residues. Forensic Sci Int 222:102–110CrossRefGoogle Scholar
  2. 2.
    Crowson A, Hiley R, Todd C (2001) Quality assurance testing of an explosive trace analysis laboratory. J Forensic Sci 46:53–56CrossRefGoogle Scholar
  3. 3.
    Crowson A, Doyle S, Todd S et al (2007) Quality assurance testing of an explosives trace analysis laboratory—further improvements. J Forensic Sci 52:830–837CrossRefGoogle Scholar
  4. 4.
    Thompson R, Fetterolf D, Miller M, Mothershead R II (1999) Aqueous recovery from cotton swabs of organic explosives residues followed by solid phase extraction. J Forensic Sci 44:795–804CrossRefGoogle Scholar
  5. 5.
    Warren D, Hiley R, Phillips S et al (1999) Novel technique for the combined recovery, extraction and clean-up of forensic organic and inorganic trace explosives samples. Sci & Justice 39:11–18CrossRefGoogle Scholar
  6. 6.
    DeTata D, Collins P, McKinley A (2013) A comparison of solvent extract cleanup procedures in the analysis of organic explosives. J Forensic Sci 58:500–507CrossRefGoogle Scholar
  7. 7.
    Thomas J, Donnelly C, Waddell R et al (2018) Development and validation of a solid phase extraction cleanup procedure for the recovery of trace levels of nitro-organic explosives in soil. Forensic Sci Int 284:65–77CrossRefGoogle Scholar
  8. 8.
    Barshick S, Griest W (1998) Trace analysis of explosives in seawater using solid-phase microextraction and gas chromatography/ion trap mass spectrometry. Anal Chem 70:3015–3020CrossRefGoogle Scholar
  9. 9.
    Kirkbride K, Klass G, Pigou P (1998) Application of solid-phase microextraction to the recovery of organic explosives. J Forensic Sci 43:76–81PubMedGoogle Scholar
  10. 10.
    Furton K, Wu L, Almirall J (2000) Optimization of solid-phase microextraction (SPME) for the recovery of explosives from aqueous and post-explosion debris followed by gas and liquid chromatographic analysis. J Forensic Sci 45:857–864CrossRefGoogle Scholar
  11. 11.
    Muller D, Levy A, Shelef R et al (2004) Improved method for the detection of TATP after explosion. J Foren Sci 49:935–938CrossRefGoogle Scholar
  12. 12.
    Fetterolf D, Clark T (1993) Detection of trace explosive evidence by ion mobility spectrometry. J Forensic Sci 38:28–39CrossRefGoogle Scholar
  13. 13.
    Oxley J, Smith J, Kisrshenbaum L et al (2008) Detection of explosives in hair using ion mobility spectrometry. J Forensic Sci 53:690–693CrossRefGoogle Scholar
  14. 14.
    Cook G, LaPuma P, Hook G et al (2010) Using gas chromatography with ion mobility spectrometry to resolve explosive compounds in the presence of interferents. J Forensic Sci 55:1582–1591CrossRefGoogle Scholar
  15. 15.
    Xu X, van de Craats A, Kok E et al (2004) Trace analysis of peroxide explosives by high performance liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry (HPLC-APCI-MS/MS) for forensic applications. J Forensic Sci 49:1230–1236PubMedGoogle Scholar
  16. 16.
    Xu X, Koeberg M, Kuijpers C et al (2014) Development and validation of highly selective screening and confirmatory methods for the qualitative forensic analysis of organic explosive compounds with high performance liquid chromatography coupled with (photodiode array and) LTQ ion trap/Orbitrap mass spectrometric detections (HPLC-(PDA)-LTQOrbitrap). Sci and Justice 54:3–21CrossRefGoogle Scholar
  17. 17.
    Zhao M, Zhang S, Yang C et al (2008) Desorption electrospray tandem MS (DESI-MSMS) analysis of methyl centralite and ethyl centralite as gunshot residues on skin and other surfaces. J Forensic Sci 53:807–811CrossRefGoogle Scholar
  18. 18.
    Nilles J, Connell T, Stokes S, Durst H (2010) Explosives detection using direct analysis in real time (DART) mass spectrometry. Propellants, Explos, Pyrotech 35:451–466CrossRefGoogle Scholar
  19. 19.
    Beveridge A (ed) (1998) Forensic Investigation of Explosions. CRC Press, Boca Raton, FLGoogle Scholar
  20. 20.
    TWGFEX Laboratory Explosion Group Standards & Protocols Committee (2007) Recommended guidelines for forensic identification of post-blast explosive residues. In: TWGFEX Reference Library. http://www.swgfex.com/publications. Accessed 1 Aug 2018
  21. 21.
    Budavari S, O’Neil M, Smith A, Heckelman P, and Kinneary J (eds) (1996) The Merck IndexGoogle Scholar
  22. 22.
    Goodpaster J, Keto R (2004) Identification of ascorbic acid and its degradation products in black powder substitutes. J Forensic Sci 49:523–528CrossRefGoogle Scholar
  23. 23.
    Lang GH, Boyle K (2009) The analysis of black powder substitutes containing ascorbic acid by ion chromatography/mass spectrometry. J Forensic Sci 54:1315–1322CrossRefGoogle Scholar
  24. 24.
    Bottegal M, Lang L, Miller M, McCord B (2010) Analysis of ascorbic acid based black powder substitutes by high-performance liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrum 24:1377–1386CrossRefGoogle Scholar
  25. 25.
    Hargadon K, McCord B (1992) Explosive residue analysis by capillary electrophoresis and ion chromatography. J Chromatogr 602:241–247CrossRefGoogle Scholar
  26. 26.
    McCord B, Hargadon K, Hall K, Burmeister S (1994) Forensic analysis of explosives using ion chromatographic methods. Anal Chim Acta 288:43–56CrossRefGoogle Scholar
  27. 27.
    Crowson C, Cullum H, Hiley R, Lowe A (1996) A survey of high explosives traces in public places. J Forensic Sci 41:980–989CrossRefGoogle Scholar
  28. 28.
    Cullum H, McGavigan C, Uttley C, Stroud M, Warren D (2004) A second survey of high explosives traces in public places. J Forensic Sci 49:684CrossRefGoogle Scholar
  29. 29.
    Lahoda K, Collin O, Mathis J et al (2008) A survey of background levels of explosives and related compounds in the environment. J Forensic Sci 53:802–806CrossRefGoogle Scholar
  30. 30.
    Walker C, Cullum H, Hiley R (2001) An environmental survey relating to improvised and emulsion/gel explosives. J Forensic Sci 46:254–267CrossRefGoogle Scholar
  31. 31.
    Bender E (1989) The analysis of dicyandiamide and sodium benzoate in Pyrodex by HPLC. Crime Laboratory Digest 16:76–77Google Scholar
  32. 32.
    Srinivasan A, Viraraghavan T (2009) Perchlorate: health effects and technologies for its removal from water sources. Int J Environ Res Public Health 6:1418–1442CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Bureau of Alcohol, Tobacco, Firearms and Explosives-Forensic Science LaboratoryWalnut CreekUSA
  2. 2.Federal Bureau of Investigation LaboratoryQuanticoUSA

Personalised recommendations