Advertisement

Fetal Programming of Adult Disease in a Translational Point of View

  • Francesca MastorciEmail author
  • Jacopo Agrimi
Chapter

Abstract

Prenatal development constitutes a critical time for shaping adult behavior, setting the basis for vulnerability or protection to disease in adulthood. According to a translational perspective, a wealth of information from human and animal studies has revealed that exposure to adverse conditions during fetal period may have a great impact on health not only in infancy and childhood but also in later life. Indeed, hostile intrauterine life can result in a series of coordinated biological responses aimed at enhancing the probability of survival or increasing risk and susceptibility of chronic degenerative disease. Regardless of the type stimulus, the nature and severity of the long-term effects due to fetal environment seem to be influenced by the timing of insults during gestation, because prenatal development is characterized by sensitive time windows in which organisms are more or less vulnerable to critical events. In this chapter, we explore the fetal origin hypothesis of adult chronic degenerative disease, from a translational point of view, according to the theories of the twentieth century and of the possible mechanisms involved in these long-term physiological/behavioral alterations.

Keywords

Fetal programming Chronic degenerative disease Prenatal stress Epigenetics 

References

  1. 1.
    Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol. 2017;70(1):1–25.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Khot UN, Khot MB, Bajzer CT, Sapp SK, Ohman EM, Brener SJ, Ellis SG, Lincoff AM, Topol EJ. Prevalence of conventional risk factors in patients with coronary heart disease. JAMA. 2003;290:898–904.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Ferreira AJ. Emotional factors in prenatal environment. A review. J Nerv Ment Dis. 1965;141(1):108–18.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Barker DJ. Adult consequences of fetal growth restriction. Clin Obstet Gynecol. 2006;49(2):270–83.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Berenson GS, Srinivasan SR, Bao W, Newman WP, Tracy RE, Wattigney WA. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults: the Bogalusa Heart Study. N Engl J Med. 1998;338:1650–6.  https://doi.org/10.1056/NEJM199806043382302.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Barker DJ, Osmond C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet. 1986;1:1077–81.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Barker DJP. Fetal origins of coronary heart disease. BMJ. 1995;311:171.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Hales CN, Barker DJ. Type 2 (non-insulin dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia. 1992;35:595–601.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Eriksson JG, Forsén T, Tuomilehto J, Winter PD, Osmond C, Barker DJ. Catch-up growth in childhood and death from coronary heart disease: longitudinal study. BMJ. 1999;318(7181):427–31.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Roseboom T, de Rooij S, Painter R. The Dutch famine and its long-term consequences for adult health. Early Hum Dev. 2006;82(8):485–91.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    de Rooij SR, Painter RC, Phillips DI, et al. Hypothalamic- pituitary-adrenal axis activity in adults who were prenatally exposed to the Dutch famine. Eur J Endocrinol. 2006;155(1):153–60.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    de Rooij SR, Wouters H, Yonker JE, Painter RC, Roseboom TJ. Prenatal undernutrition and cognitive function in late adulthood. Proc Natl Acad Sci U S A. 2010;107(39):16881–6.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Lane RH. Fetal programming, epigenetics, and adult onset disease. Clin Perinatol. 2014;41(4):815–31.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Schmatz M, Madan J, Marino T, Davis J. Maternal obesity: the interplay between inflammation, mother and fetus. J Perinatol. 2010;30(7):441–6.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Gaudet L, Ferraro ZM, Wen SW, Walker M. Maternal obesity and occurrence of fetal macrosomia: a systematic review and meta-analysis. Biomed Res Int. 2014;2014:640291.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Gillman MW, Rifas-Shiman S, Berkey CS, Field AE, Colditz GA. Maternal gestational diabetes, birth weight, and adolescent obesity. Pediatrics. 2003;111(3):e221–6.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Sørensen HT, Sabroe S, Rothman KJ, Gillman M, Fischer P, Sørensen TI. Relation between weight and length at birth and body mass index in young adulthood: cohort study. BMJ. 1997;315(7116):1137.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Bouret S, Levin BE, Ozanne SE. Gene-environment interactions controlling energy and glucose homeostasis and the developmental origins of obesity. Physiol Rev. 2015;95(1):47e82.CrossRefGoogle Scholar
  19. 19.
    Sasson IE, Vitins AP, Mainigi MA, Moley KH, Simmons RA. Pre-gestational vs gestational exposure to maternal obesity differentially programs the offspring in mice. Diabetologia. 2015;58(3):615–24.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Baeten JM, Bukusi EA, Lambe M. Pregnancy complications and outcomes among overweight and obese nulliparous women. Am J Public Health. 2001;91(3):436–40.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Thompson WR. Influence of prenatal maternal anxiety on emotionality in young rats. Science. 1957;125(3250):698–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Thompson WR, Watson J, Charlesworth WR. The effects of prenatal maternal stress on offspring behavior in rats. Psychol Monogr. 1962;76(38):1.CrossRefGoogle Scholar
  23. 23.
    Weinstock M. Prenatal stressors in rodents: effects on behavior. Neurobiol Stress. 2016;6:3–13.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Charil A, Laplante DP, Vaillancourt C, King S. Prenatal stress and brain development. Brain Res Rev. 2010;65(1):56–79.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Buynitsky T, Mostofsky DI. Restraint stress in biobehavioral research: recent developments. Neurosci Biobehav Rev. 2009;33(7):1089–98.PubMedCrossRefGoogle Scholar
  26. 26.
    Głombik K, Stachowicz A, Ślusarczyk J, Trojan E, Budziszewska B, Suski M, Basta-Kaim A. Maternal stress predicts altered biogenesis and the profile of mitochondrial proteins in the frontal cortex and hippocampus of adult offspring rats. Psychoneuroendocrinology. 2015;60:151–62.PubMedCrossRefGoogle Scholar
  27. 27.
    Jia N, Li Q, Sun H, Song Q, Tang G, Sun Q, Zhu Z. Alterations of group I mGluRs and BDNF associated with behavioral abnormity in prenatally stressed offspring rats. Neurochem Res. 2015;40(5):1074–82.PubMedCrossRefGoogle Scholar
  28. 28.
    Xu J, Yang B, Yan C, Hu H, Cai S, Liu J, Shen X. Effects of duration and timing of prenatal stress on hippocampal myelination and synaptophysin expression. Brain Res. 2013;1527:57–66.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Aziz NA, Kendall DA, Pardon MC. Prenatal exposure to chronic mild stress increases corticosterone levels in the amniotic fluid and induces cognitive deficits in female offspring, improved by treatment with the antidepressant drug amitriptyline. Behav Brain Res. 2012;231(1):29–39.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Son GH, Geum D, Chung S, Kim EJ, Jo JH, Kim CM, Lee CJ. Maternal stress produces learning deficits associated with impairment of NMDA receptor-mediated synaptic plasticity. J Neurosci. 2006;26(12):3309–18.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Weinstock M. The long-term behavioural consequences of prenatal stress. Neurosci Biobehav Rev. 2008;32(6):1073–86.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Dong E, Dzitoyeva SG, Matrisciano F, Tueting P, Grayson DR, Guidotti A. Brain-derived neurotrophic factor epigenetic modifications associated with schizophrenia-like phenotype induced by prenatal stress in mice. Biol Psychiatry. 2015;77(6):589–96.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Ehrlich DE, Rainnie DG. Prenatal stress alters the development of socioemotional behavior and amygdala neuron excitability in rats. Neuropsychopharmacology. 2015;40(9):2135.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Van den Hove DLA, Leibold NK, Strackx E, Martinez-Claros M, Lesch KP, Steinbusch HWM, et al. Prenatal stress and subsequent exposure to chronic mild stress in rats; interdependent effects on emotional behavior and the serotonergic system. Eur Neuropsychopharmacol. 2014;24(4):595–607.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Yeh CM, Huang CC, Hsu KS. Prenatal stress alters hippocampal synaptic plasticity in young rat offspring through preventing the proteolytic conversion of pro-brain-derived neurotrophic factor (BDNF) to mature BDNF. J Physiol. 2012;590(4):991–1010.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Barbazanges A, Piazza PV, Le Moal M, Maccari S. Maternal glucocorticoid secretion mediates long-term effects of prenatal stress. J Neurosci. 1996;16(12):3943–9.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Luoni A, Berry A, Calabrese F, Capoccia S, Bellisario V, Gass P, Riva MA. Delayed BDNF alterations in the prefrontal cortex of rats exposed to prenatal stress: preventive effect of lurasidone treatment during adolescence. Eur Neuropsychopharmacol. 2014;24(6):986–95.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Mastorci F, Vicentini M, Viltart O, Manghi M, Graiani G, Quaini F, Meerlo P, Nalivaiko E, Maccari S, Sgoifo A. Long-term effects of prenatal stress: changes in adult cardiovascular regulation and sensitivity to stress. Neurosci Biobehav Rev. 2009;33(2):191–203.PubMedCrossRefGoogle Scholar
  39. 39.
    Symonds ME, Stephenson T, Gardner DS, Budge H. Long-term effects of nutritional programming of the embryo and fetus: mechanisms and critical windows. Reprod Fertil Dev. 2007;19:53–63.PubMedCrossRefGoogle Scholar
  40. 40.
    Talge NM, Neal C, Glover V. Antenatal maternal stress and long-term effects on child neurodevelopment: how and why? J Child Psychol Psychiatry. 2007;48:245–61.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Smith JW, Seckl JR, Evans AT, et al. Gestational stress induces post-partum depression-like behaviour and alters maternal care in rats. Psychoneuroendocrinology. 2004;29:227–44.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Buitelaar JK, Huizink AC, Mulder EJ, de Medina PG, Visser GH. Prenatal stress and cognitive development and temperament in infants. Neurobiol Aging. 2003;24:53–60.CrossRefGoogle Scholar
  43. 43.
    Weinstock M. Alterations induced by gestational stress in brain morphology and behavior of the offspring. Prog Neurobiol. 2001;65:427–51.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Cottrell EC, Seckl JR. Prenatal stress, glucocorticoids and the programming of adult disease. Front Behav Neurosci. 2009;3:19.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Huizink AC, de Medina PG, Mulder EJ, Visser GH, Buitelaar JK. Psychological measures of prenatal stress as predictors of infant temperament. J Am Acad Child Adolesc Psychiatry. 2002;41(9):1078–85.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    O’Connor TG, Caprariello P, Blackmore ER, et al. Prenatal mood disturbance predicts sleep problems in infancy and toddlerhood. Early Hum Dev. 2007;83:451–8.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    O’Connor TG, Heron J, Golding J, et al. Maternal antenatal anxiety and children’s behavioral/emotional problems at 4 years. Report from the Avon Longitudinal Study of Parents and Children. Br J Psychiatry. 2002;180:502–8.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Loomans EM, van der Stelt O, van Eijsden M, et al. High levels of antenatal maternal anxiety are associated with altered cognitive control in five-year-old children. Dev Psychobiol. 2012;54:441–50.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Van den Bergh BR, Marcoen A. High antenatal maternal anxiety is related to ADHD symptoms, externalizing problems, and anxiety in 8- and 9-year-olds. Child Dev. 2004;75:1085–97.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Van den Bergh BR, Mennes M, Oosterlaan J, et al. High antenatal maternal anxiety is related to impulsivity during performance on cognitive tasks in 14- and 15-year-olds. Neurosci Biobehav Rev. 2005;29:259–69.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Laplante DP, Brunet A, Schmitz N, et al. Project ice storm: prenatal maternal stress affects cognitive and linguistic functioning in 5 1/2-yearold children. J Am Acad Child Adolesc Psychiatry. 2008;47:1063–72.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Huizink AC, Dick DM, Sihvola E, et al. Chernobyl exposure as stressor during pregnancy and behavior in adolescent offspring. Acta Psychiatr Scand. 2007;116:438–46.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    McCreary JK, Metz GAS. Environmental enrichment as an intervention for adverse health outcomes of prenatal stress. Environ Epigenet. 2016;2(3):dvw013.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Dolinoy DC. Epigenetic gene regulation: early environmental exposures. Pharmacogenomics. 2007;8(1):5–10.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Lillycrop KA, Burdge GC. Epigenetic mechanisms linking early nutrition to long term health. Best Pract Res Clin Endocrinol Metab. 2012;26:667–76.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Peyronnet J, et al. Long-lasting adverse effects of prenatal hypoxia on developing autonomic nervous system and cardiovascular parameters in rats. Pflugers Arch. 2002;443:858–65.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Blake KV, et al. Maternal cigarette smoking during pregnancy, low birth weight and subsequent blood pressure in early childhood. Early Hum Dev. 2000;57:137–47.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet. 2007;8:253–62.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Stein AD, Lumey LH. The relationship between maternal and offspring birth weights after maternal prenatal famine exposure: the Dutch Famine Birth Cohort Study. Hum Biol. 2000;72:641–54.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Edwards CE, Benediktsson R, Lindsay RS, Seckl JR. Dysfunction of the placental glucocorticoid barrier: a link between the fetal environment and adult hypertension? Lancet. 1993;341:355–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Brand SR, Engel SM, Canfield RL, Yehuda R. The effect of maternal PTSD following in utero trauma exposure on behavior and temperament in the 9-month-old infant. Ann N Y Acad Sci. 2006;1071:454–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Van den Bergh BR, Van CB, Smits T, et al. Antenatal maternal anxiety is related to HPA-axis dysregulation and self-reported depressive symptoms in adolescence: a prospective study on the fetal origins of depressed mood. Neuropsychopharmacology. 2008;33:536–45.PubMedCrossRefGoogle Scholar
  63. 63.
    Entringer S, Epel ES, Kumsta R, et al. Stress exposure in intrauterine life is associated with shorter telomere length in young adulthood. Proc Natl Acad Sci U S A. 2011;108:E513–8.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Shalev I, Entringer S, Wadhwa PD, Wolkowitz OM, Puterman E, Lin J, Epel ES. Stress and telomere biology: a lifespan perspective. Psychoneuroendocrinology. 2013;38(9):1835–42.  https://doi.org/10.1016/j.psyneuen.2013.03.010.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Clinical Physiology Institute, CNRPisaItaly
  2. 2.Division of CardiologyJohns Hopkins School of MedicineBaltimoreUSA

Personalised recommendations