Advertisement

Hybrid \(\mathbf {k\cdot p}\) Tight-Binding Theory

  • Samuel J. MagorrianEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter, we take advantage of the significant anisotropy of the 2D materials and InSe, which feature strong covalent bonding within crystalline layers, whilst the bonding between the layers has a comparatively weak van der Waals character. Each layer is reduced to a basis of its monolayer \(\mathbf {k\cdot p}\) bands, then in multilayer films we couple successive layers with tight-binding hops—which are between monolayer band states rather than atomic orbitals. A model developed using this approach is here described as a hybrid \(\mathbf {k\cdot p}\) tight-binding (HkpTB) model.

References

  1. 1.
    Wallace PR (1947) Phys Rev 71:622ADSCrossRefGoogle Scholar
  2. 2.
    Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Phys Rev Lett 105:136805ADSCrossRefGoogle Scholar
  3. 3.
    Liu H, Neal AT, Zhu Z, Luo Z, Xu X, Tománek D, Ye PD (2014) ACS Nano 8:4033CrossRefGoogle Scholar
  4. 4.
    Rigoult J, Rimsky A, Kuhn A (1980) Acta Crystallogr B 36:916CrossRefGoogle Scholar
  5. 5.
    Bandurin DA, Tyurnina AV, Geliang LY, Mishchenko A, Zólyomi V, Morozov SV, Kumar RK, Gorbachev RV, Kudrynskyi ZR, Pezzini S, Kovalyuk ZD, Zeilter U, Novoselov KS, Patanè A, Eaves L, Grigorieva II, Fal’ko VI, Geim AK, Cao Y (2017) Nat Nanotechnol 12:223ADSCrossRefGoogle Scholar
  6. 6.
    Kress-Rogers E, Nicholas R, Portal J, Chevy A (1982) Solid State Commun 44:379ADSCrossRefGoogle Scholar
  7. 7.
    Heyd J, Scuseria GE, Ernzerhof M (2003) J Chem Phys 118:8207ADSCrossRefGoogle Scholar
  8. 8.
    Heyd J, Scuseria GE, Ernzerhof M (2006) J Chem Phys 124:219906ADSCrossRefGoogle Scholar
  9. 9.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666ADSCrossRefGoogle Scholar
  10. 10.
    Jacobberger RM, Machhi R, Wroblewski J, Taylor B, Gillian-Daniel AL, Arnold MS (2015) J Chem Edu 92:1903CrossRefGoogle Scholar
  11. 11.
    Na SR, Suk JW, Tao L, Akinwande D, Ruoff RS, Huang R, Liechti KM (2015) ACS Nano 9:1325CrossRefGoogle Scholar
  12. 12.
    Haar S, Bruna M, Lian JX, Tomarchio F, Olivier Y, Mazzaro R, Morandi V, Moran J, Ferrari AC, Beljonne D, Ciesielski A, Samor P (2016) J Phys Chem Lett 7:2714CrossRefGoogle Scholar
  13. 13.
    Chen H, Müller MB, Gilmore KJ, Wallace GG, Li D (2008) Adv Mater 20:3557CrossRefGoogle Scholar
  14. 14.
    Liu Y-T, Zhu X-D, Duan Z-Q, Xie X-M (2013) Chem Commun 49:10305CrossRefGoogle Scholar
  15. 15.
    Abergel DSL, Wallbank JR, Chen X, Mucha-Kruczyński M, Fal’ko VI (2013) New J Phys 15:123009CrossRefGoogle Scholar
  16. 16.
    Wallbank JR, Patel AA, Mucha-Kruczyński M, Geim AK, Fal’ko VI (2013) Phys Rev B 87:245408ADSCrossRefGoogle Scholar
  17. 17.
    Sevik C, Wallbank JR, Gülseren O, Peeters FM, Çakır D (2017) 2D Materials 4:035025CrossRefGoogle Scholar
  18. 18.
    Danovich M, Ruiz-Tijerina DA, Hunt RJ, Szyniszewski M, Drummond ND, Fal’ko VI (2018) Phys Rev B 97:195452ADSCrossRefGoogle Scholar
  19. 19.
    Demirci S, Avazlı N, Durgun E, Cahangirov S (2017) Phys Rev B 95:115409ADSCrossRefGoogle Scholar
  20. 20.
    Klimeš J, Bowler DR, Michaelides A (2009) J Phys Condens Matter 22:022201ADSCrossRefGoogle Scholar
  21. 21.
    West LC, Eglash SJ (1985) Appl Phys Lett 46:1156ADSCrossRefGoogle Scholar
  22. 22.
    Levine BF, Choi KK, Bethea CG, Walker J, Malik RJ (1987) Appl Phys Lett 50:1092ADSCrossRefGoogle Scholar
  23. 23.
    Faist J, Capasso F, Sivco DL, Sirtori C, Hutchinson AL, Cho AY (1994) Science 264:553ADSCrossRefGoogle Scholar
  24. 24.
    Köhler R, Tredicucci A, Beltram F, Beere HE, Linfild EH, Davies AG, Ritchie DA, Iotti RC, Rossi F (2002) Nature 417:156ADSCrossRefGoogle Scholar
  25. 25.
    Ando T, Fowler AB, Stern F (1982) Rev Mod Phys 54:437ADSCrossRefGoogle Scholar
  26. 26.
    Allakhverdiev KR, Babaev SS, Salaev EY, Tagyev MM (1979) Phys Status Solidi (b) 96:177ADSCrossRefGoogle Scholar
  27. 27.
    Kuroda N, Nishina Y (1980) Solid State Commun 34:481ADSCrossRefGoogle Scholar
  28. 28.
    Wu D, Pak AJ, Liu Y, Zhou Y, Wu X, Zhu Y, Lin M, Han Y, Ren Y, Peng H, Tsai Y-H, Hwang GS, Lai K (2015) Nano Lett 15:8136ADSCrossRefGoogle Scholar
  29. 29.
    Schmidt P, Vialla F, Latini S, Massicotte M, Tielrooij K-J, Mastel S, Navickaite G, Danovich M, Ruiz-Tijerina DA, Yelgel C, Fal’ko V, Thygesen KS, Hillenbrand R, Koppens FHL (2018) Nat Nanotechnol 13:1035ADSCrossRefGoogle Scholar
  30. 30.
    Ruiz-Tijerina DA, Danovich M, Yelgel C, Zólyomi V, Fal’ko VI (2018) Phys Rev B 98:35411ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.National Graphene InstituteUniversity of ManchesterManchesterUK

Personalised recommendations