Tight-Binding Model

  • Samuel J. MagorrianEmail author
Part of the Springer Theses book series (Springer Theses)


In this chapter, we present a description of the electronic and optical properties of mono- and few-layer InSe in the context of a tight-binding model. We find a marked change in the band gap on going from the bulk (band gap \(\sim \)1.3 eV) to the monolayer (band gap \(\sim \)2.8 eV) case, in agreement with experiment. We find that the principal interband optical transition is of a dominantly out-of-plane polarised character, with the oscillator strength increasing for thicker crystals, while the next-lowest energy transition couples strongly to in-plane polarised light, with an oscillator strength which is largely independent of the number of layers.


  1. 1.
    Goringe CM, Bowler DR, Hernández E (1997) Rep Prog Phys 60:1447ADSCrossRefGoogle Scholar
  2. 2.
    Frauenheim T, Seifert G, Elstner M, Niehaus T, Köhler C, Amkreutz M, Sternberg M, Hajnal Z, Carlo AD, Suhai S (2002) J Phys Condens Matter 14:3015ADSCrossRefGoogle Scholar
  3. 3.
    Haldane FDM (1988) Phys Rev Lett 61:2015ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    Pereira VM, Neto AHC, Peres NMR (2009) Phys Rev B 80:45401ADSCrossRefGoogle Scholar
  5. 5.
    Pearce AJ, Mariani E, Burkard G (2016) Phys Rev B 94:155416ADSCrossRefGoogle Scholar
  6. 6.
    Hancock Y, Uppstu A, Saloriutta K, Harju A, Puska MJ (2010) Phys Rev B 81:245402ADSCrossRefGoogle Scholar
  7. 7.
    Bandurin DA, Tyurnina AV, Geliang LY, Mishchenko A, Zólyomi V, Morozov SV, Kumar RK, Gorbachev RV, Kudrynskyi ZR, Pezzini S, Kovalyuk ZD, Zeilter U, Novoselov KS, Patanè A, Eaves L, Grigorieva II, Fal’ko VI, Geim AK, Cao Y (2017) Nat Nanotechnol 12:223ADSCrossRefGoogle Scholar
  8. 8.
    Zólyomi V, Drummond ND, Fal’ko VI (2014) Phys Rev B 89:205416ADSCrossRefGoogle Scholar
  9. 9.
    Slater JC, Koster GF (1954) Phys Rev 94:1498ADSCrossRefGoogle Scholar
  10. 10.
    Jones R (2015) Rev Mod Phys 87:897ADSCrossRefGoogle Scholar
  11. 11.
    Fiorentini V, Baldereschi A (1995) Phys Rev B 51:17196ADSCrossRefGoogle Scholar
  12. 12.
    Johnson KA, Ashcroft NW (1998) Phys Rev B 58:15548ADSCrossRefGoogle Scholar
  13. 13.
    Bernstein N, Mehl MJ, Papaconstantopoulos DA (2002) Phys Rev B 66:075212ADSCrossRefGoogle Scholar
  14. 14.
    Parashari SS, Kumar S, Auluck S (2008) Phys B 403:3077ADSCrossRefGoogle Scholar
  15. 15.
    Thilagam A, Simpson DJ, Gerson AR (2010) J Phys Condens Matter 23:025901ADSCrossRefGoogle Scholar
  16. 16.
    Babu KR, Lingam CB, Auluck S, Tewari SP, Vaitheeswaran G (2011) J Solid State Chem 184:343ADSCrossRefGoogle Scholar
  17. 17.
    Camassel J, Merle P, Mathieu H, Chevy A (1978) Phys Rev B 17:4718ADSCrossRefGoogle Scholar
  18. 18.
    Millot M, Broto JM, George S, González J, Segura A (2010) Phys Rev B 81:205211ADSCrossRefGoogle Scholar
  19. 19.
    Mudd GW, Svatek SA, Ren T, Patanè A, Makarovsky O, Eaves L, Beton PH, Kovalyuk ZD, Lashkarev GV, Kudrynskyi ZR, Dmitriev AI (2013) Adv Mater 25:5714CrossRefGoogle Scholar
  20. 20.
    Rigoult J, Rimsky A, Kuhn A (1980) Acta Crystallogr B 36:916CrossRefGoogle Scholar
  21. 21.
    Lew Yan Voon LC, Ram-Mohan LR (1993) Phys Rev B 47:15500Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.National Graphene InstituteUniversity of ManchesterManchesterUK

Personalised recommendations